

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

EMC_SZ_FR_21.00 FCC Release 2014-03-20

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 1 of 24

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	. 10
9.	.1 Conducted peak output power	. 10
9.	2 6dB bandwidth	. 11
9.	.3 Power spectral density	. 13
9.	.4 Spurious RF conducted emissions	. 14
9.	.5 Band edge	. 18
9.	.6 Spurious radiated emissions for transmitter	. 20
10	Test Equipment List	. 23
11	System Measurement Uncertainty	. 24

2 Details about the Test Laboratory

Details about the Test Laboratory

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China

FCC Registration 502708 Number:

Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product:	R/C Helicopter
Model no.:	RODEO 150
FCC ID:	S29RODEO150
Rating Voltage:	DC 7.4V 850mAn supplied by Li-ion rechargeable battery
RF Transmission Frequency:	5725-5850MHz
No. of Operated Channel:	7 (5733MHz, 5752MHz, 5771MHz, 5790MHz, 5809MHz, 5825MHz, 5847MHz)
Modulation:	DSSS
Duty Cycle:	≥98%
Antenna Type:	External Integral Antenna
Antenna Gain:	2dBi
Description of the EUT:	The Equipment Under Test (EUT) is a helicopter with a 5.8G Transmitter system and a 2.4G Receive system.

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2015 Edition	Subpart C - Intentional Radiators

All the test methods were according to KDB558074 D01 DTS Meas Guidance v03r02 and ANSI C63.10 (2013).

5 Summary of Test Results

	Technical Requir	ements			
FCC Part 15 Subpart	C	Γ	I		
Test Condition		Pages		est Resu	
			Pass	Fail	N/A
§15.207	Conducted emission AC power port				\square
§15.247 (b) (1)	Conducted peak output power	10			
§15.247(a)(1)	20dB bandwidth				\boxtimes
§15.247(a)(1)	Carrier frequency separation				\boxtimes
§15.247(a)(1)(iii)	Number of hopping frequencies				\boxtimes
§15.247(a)(1)(iii)	Dwell Time				\boxtimes
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	11	\boxtimes		
§15.247(e)	Power spectral density	13	\boxtimes		
§15.247(d)	Spurious RF conducted emissions	14	\square		
§15.247(d)	Band edge	18	\square		
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	20			
§15.203	Antenna requirement	See note 1	\boxtimes		

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses an integral antenna, which gain is 3.0dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: S29RODEO150 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

Performed

- Not Performed

The Equipment under Test

■ - Fulfills the general approval requirements.

□ - **Does not** fulfill the general approval requirements.

Sample Received Date:

Testing Start Date: May 30, 2016

Testing End Date:

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

May 25, 2016

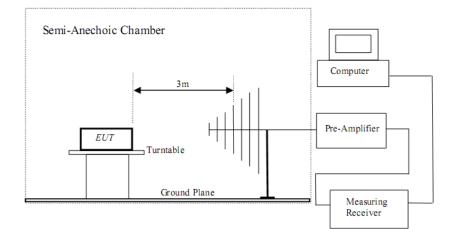
June 7, 2016

Reviewed by:

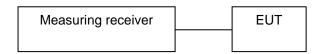
Johnshi

John Zhi EMC Project Manager

Prepared by:


Alen Xion

Alan Xiong EMC Project Engineer



7 Test Setups

7.1 Radiated test setups

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)

9 Technical Requirement

9.1 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
5725-5875	≤1	≤30

Test result as below table

	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Low channel 5733MHz	0.74	Pass
Middle channel 5790MHz	0.99	Pass
High channel 5847MHz	1.41	Pass

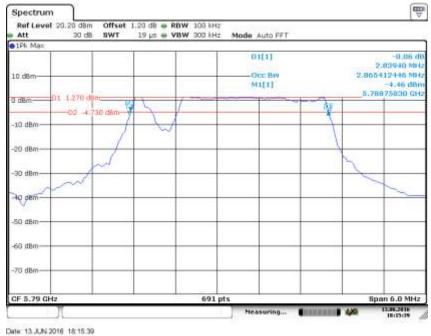
9.2 6dB bandwidth

Test Method

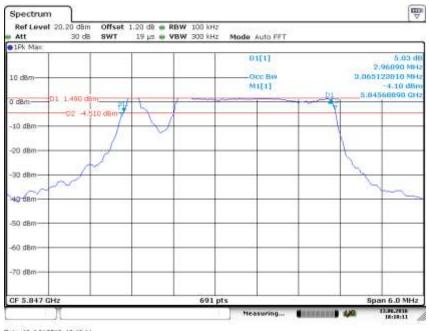
- 1. Use the following spectrum analyzer settings:
- RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
 Use the automatic bandwidth measurement capability of an instrument, may be employed using the X Db bandwidth mode with X set to 6 Db, care shall be taken so that
- the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 Db.
- 3. Allow the trace to stabilize, record the X Db Bandwidth value.

Limit

Test result


Limit [kHz] ≥500 Frequency 6dB bandwidth Result MHz kHz 2822.0 Pass Low channel 5733MHz 2839.4 Pass Middle channel 5790MHz High channel 5847MHz 2960.9 Pass 5733MHz ÷ Spectrum Ref Level 20.20 dam Offset 1.20 d8 . RBW 100 kHz Mode Auto FFT Att 30 d8 SWT 19 µs 🖷 VBW 300 kHz 1Pk Ma 0.17 dt 2.82200 MH 2.874095514 MHz 10 d8n Occ Bw M1[1] -3.96 dBi 5.73174960 GH 0 dB -10 dBr -20 08 -30 dB 49-0 -S0 dB -60 di -70 dBn Span 6.0 MHz CF 5.733 GH 691 p

Date: 13 JUN 2016 18:12:50


EMC_SZ_FR_21.00 FCC Release 2014-03-20 10.96.2018

5790MHz

5847MHz

Date 13 JUN 2016 18 18 11

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 12 of 24

9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Avergae, Sweep=auto, The number of measurement points in the sweep≥2x span/RBW, Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm]

≤8

Test result

Frequency	Power spectral density	Result
MHz	dBm	
Low channel 5733MHz	-0.73	Pass
Middle channel 5809MHz	-0.76	Pass
High channel 5847MHz	-1.71	Pass

9.4 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

5733MHz

	# 22.00 dBm			RBW 100 kHg	harmen and	2	
Att	40 dB	SWT	9,7 ms 👄	VBW 300 kHz	Mode Auto Swee	p	
1Pk Max	T	-		12	-M1[1]		-40.12 dbn
					and 11		908.90 MH
10 d8m-				-		1	
0 dBm		-	-			-	
-10 dBm-	-	-		-		-	
10.00						_	
-20 dBm-	DI -19.340	OB/TR-					
-30 dBm	_						
00808							
-40 dBm-	-		-	-		-	
							MI
\$2.4B0	wanter the	and the Case	enter they		Marshell Marson all and all	لم مد من الم الم مالي التي ال	and the second second
-60 dBm							
-70 dBm-		-	-	-		-	-
-70 dBm—							
	0 MHz			691			Stop 1.0 GHz
-70 dBm— Start 30.	о мнг Л	~		691	ats Neasuring	Cincinan 4	
8tart 30.	0 MHz M 2016 16.58.43	(691		Tintena 4	ND 80.96.2918
8tart 30.				691		•	ND 80.96.2918
8tart 30. ale: 3 JUN	2016 16 58 43			691		•	80.98.288 16:35:40
Start 30, de 3 JUN Spectru	 2016 16 58 43 m					•	80.98.288 16:35:40
Spectru Ref Lave	2016 16 58 43 m	Offset		RBW 100 kHz	tleasuring		80.98.288 16:35:40
Spectru Ref Leve Att	 2016 16 58 43 m						00,00,000 19:00:00 29:00:00 29:00:00 20:0
Spectru Ref Lave	2016 16 58 43 m	Offset		RBW 100 kHz	tleasuring		93.96.2910 16:91-0 ↓ 0.66 d0#
Start 30. ale 3.JUN Spectru Ref Leve Att 1Pk Max	2016 16 58 43 m	Offset		RBW 100 kHz	Mode Auto Swee		ND 80.96.2918
Spectrue Ref Leve	2016 16 56 43 m 4 22.00 dBm +0 dB	Offset		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:91-0 ↓ 0.66 d0#
stort 30. de 3.JUN Spectru Ref Leve Att 10 d8m-	2016 16 58 43 m	Offset		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:31:40 0.055 d0m
stort 30. de 3.JUN Spectru Ref Leve Att 10 d8m-	2016 16:58:43 m 4 22:00 dBm 40 dB	Offset		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:31:40 0.055 d0m
Start 30. ale 3.JUN Spectru Ref Leve Att 1Pk Max	2016 16:58:43 m 4 22:00 dBm 40 dB	Offset		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:31:40 0.055 d0m
Spectrus Ref Lave Att 10 dBm	2016 16:58:43 m 4 22:00 dBm 40 dB	Offset		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:31:40 0.055 d0m
Stort 30. ate 3 JUN Spectrus Ref Lave Att 9 JPk Max 10 dBm	2016 16:58:43 m 4 22:00 dBm 40 dB	Offset SWT		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:31:40 0.055 d0m
Stort 30. de 3 JUN Spectru Ref Leve Att 10 d8m- -10 d8m- -10 d8m-	2016 16 58 43 m 4 22.00 dBm 40 dB	Offset SWT		RBW 100 kHz	Mode Auto Swee		93.96.2910 16:91-0 ↓ 0.66 d0#
Stort 30. ale 3 JUN Spectru Ref Lave Att 10 dBm- -10 dBm- -20 dBm- -30 dBm-	2016 16 58 43 m 4 22.00 dBm 40 dB M1 M1 D1 -19.340	Offset SWT	390 ms • (RBW 100 kHz VBW 300 kHz	Made Auto Swee	p	93.96.2910 16:91-0 ↓ 0.66 d0#

691 pts

Date: 3 JUN 2016; 16:58:21

80 88m 60 88m -70 88m -70 88m

EMC_SZ_FR_21.00 FCC Release 2014-03-20 8top 40.0 GHz 82.96.2818 16:58:22

5809MHz

Construction	~ 1°						1
Spectrun Ref Level	22.00 dBm	Offset	1.20 dB =	RBW 100 kHz	1		
Att	40 dB	SWT		VBW 300 kHz	Mode Auto Swee	φ.	
1Pk Max	r			1			-47.00 d
					M1[1]	a (5	580.80 M
10 d8m			-	-		1 1	S. Carriero
0 dBm		-	-	-		-	
-10 dBm							
-20 dBm	01 -19.120	dBris	_	_			
20120							
-30 dBm	-	-	-	-		-	
-40 dBm			-		ML	-	
50 d0m i	10000000	and the second	-	10000000	*	dar de com star ser	Million and
SHAMOLM	and a support	OCT OF COMMENT	COMPLEX.	www.atute_se	Contrast of the second		
-60 dBm					-	- C	
-70 dBm	-	-	-	-		-	
ate: 3 JUN 2	JL 916 18:57:05				tleasuring		16:37:45
ate: 3 JUN 2	 016 18 57 05				Measuring	- Horney -	
	_	Control of the second se			Heasuring		16:37:85
Spectrun	_	0	1.20 dB 👄	RBW 100 kHz	Heasuring		
Spectrun Ref Level Att	n]	0		RBW 100 kHz VBW 300 kHz	Mode Auto Swee		16:37:85
Spectrun Ref Level Att	n	Offset			Mode Auto Swee		16:07:05
Spectrun Ref Level Att	n	Offset					16:37:85
Spectrum Ref Level Att 1Pk Max	n	Offset			Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 9 IPk Max 10 dBm	n 22.00 dBm 40 dB	Offset			Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 9 IPk Max 10 dBm	n 22.00 dBm 40 dB	Offset			Mode Auto Swee		0.00 d
Spectrum Ref Level Att 1Pk Max 10 dBm 0 dBm	n 22.00 dBm 40 dB	Offset			Mode Auto Swee		0.00 d
Spectrun Ref Level Att 1Pk Max 10 dBm 0 dBm	n 22.00 dBm 40 dB	Offset			Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 dBm	n 22.00 dBm 40 dB	Offset SWT			Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 dBm	n 22.00 (Bhm 40 dB	Offset SWT			Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 dBm	n 22.00 (Bhm 40 dB	Offset SWT			Mode Auto Swee		0.00 d
Spectrum Ref Level Att D IPk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 1Pt Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 dBm 	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 d8m 10 d8m 10 d8m -10 d8m -30 d8m -40 d8m -60 d8m	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 dBm 10 dBm 20 dBm -10 dBm -30 dBm -40 dBm -40 dBm	n 22.00 dBm 40 dB	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d
Spectrum Ref Lavel Att 10 d8m 10 d8m 10 d8m -10 d8m -30 d8m -40 d8m -60 d8m	n 22.00 dBm 40 dB ///1	Offset SWT	390 ms 🖝		Mode Auto Swee		0.00 d

Date 3 JUN 2016 16:56:50

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 16 of 24

5847MHz

				M	1[1]			46.25 dBr 743.80 MH
10 d8m-	-							
) dBm			 		-			-
10 dBm			 					_
20 dBm-	01 -18/970 (Bric.						
30 dBm		_	 					
40 dBm			 			ML		_
50 dB/9t pot	Carlound de	the group	 atarra	and worked	لميهمهم	T	man	alarthas
60 dBm		an sanai	Colonia Ora		_			
70 dBm-								-

Cwte: 3 JUN 2016; 16:48:54

	20 dB 🖶 RBW 100 kHz 30 ms 🖶 VBW 300 kHz 🕴	Mode Auto Sweep	
1Pk Max			4.40.40
		M1[1]	1.10 db/ 5.0260 G
0 dBm			
M1			
dBm			
10 dBm			
51 dBm 101 -19,970 dBm			
20 dBm 101 -19.970 dBm			
30 dBm			_
22308			and and more and the
40 dBm	when the My sections	mununun	when when the state
40 dBm			
22526-06-07			
50 dBm			
70 dBm			
535535			

Date: 3 JUN 2016; 16:48:12

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

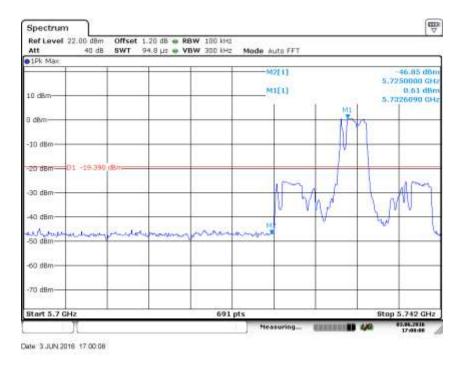
Page 17 of 24

9.5 Band edge

Test Method

1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold.


- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Test result

Cate: 3 JUN 2016: 16:54:48

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 19 of 24

9.6 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

According to part 15.247(d), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Transmitting spurious emission test result as below:

5733MHz

Fundamenta	Fundamental emission level96.84dBµV/mPeak							
Limited for e	76.84	dBµV/m	Peak					
Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result		
MHz	dBuV/m		dBµV/m		dBµV/m			
46.27	18.40	Horizontal	40.00	QP	21.60	Pass		
287.59	21.63	Horizontal	46.00	QP	24.37	Pass		
858.97	28.87	Horizontal	46.00	QP	17.13	Pass		
143.76	12.88	Vertical	43.50	QP	30.62	Pass		
287.59	24.15	Vertical	46.00	QP	21.85	Pass		
869.59	31.09	Vertical	46.00	QP	14.91	Pass		
*11466	47.47	Horizontal	74	Peak	26.53	Pass		
*11466	48.65	Vertical	74	Peak	25.35	Pass		
17199	49.85	Horizontal	76.84	Peak	26.99	Pass		
17199	50.15	Vertical	76.84	Peak	26.69	Pass		

5790MHz

Fundamenta	al emission lev		97.20	dBµV/m	Peak	
Limited for e	77.20	dBµV/m	Peak			
Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBµV/m	
*11580	47.96	Horizontal	74	Peak	26.04	Pass
*11580	43.98	Vertical	74	Peak	30.02	Pass
17370	50.27	Horizontal	77.20	Peak	26.93	Pass
17370	50.28	Vertical	77.20	Peak	26.92	Pass

5847MHz

Fundamenta	98.09	dBµV/m	Ave				
Limited for e	78.09	dBµV/m	Ave				
Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result	
MHz	dBuV/m		dBµV/m		dBµV/m		
*11694	45.19	Horizontal	74	Peak	28.81	Pass	
*11694	46.40	Vertical	74	Peak	27.60	Pass	
17541	50.26	Horizontal	78.09	Peak	27.83	Pass	
17541	50.02	Vertical	78.09	Peak	28.07	Pass	

EMC_SZ_FR_21.00 FCC Release 2014-03-20

Remark:

- (1) AV Emission Level= PK Emission Level+20log (dutycycle)
- (2) Testing is carried out with frequency rang 30MHz to 40GHz, which above 3th harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
С	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2016-7-24
	EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2016-7-24
RE	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2016-8-14
	Horn Antenna	Rohde & Schwarz	HF907	102294	2016-7-24
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2016-7-24
	3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- Power spectral density
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System	Measurement	Uncertainty
--------	-------------	-------------

Items	Extended Uncertainty
	Horizontal: 4.83dB; (30MHz-1GHz)
Dediction emission	Vertical: 4.91dB; (30MHz-1GHz)
Radiation emission	Horizontal: 4.89dB; (1Hz-18GHz)
	Vertical: 4.88dB; (1Hz-18GHz)