

FCC - TEST REPORT

Report Number	:	68.950.16.711.0	01	Date of Issue	December 16, 2016
Model	<u>:</u>	AIBAO			
Product Type	:	R/C Helicopter			_
Applicant	:	GUANGZHOU	Walkera	Technology C	co., LTD
Address	:	Taishi Industrial	Park, D	ongchong Tov	vn, Nansha District, 511475
		Guanzhou, Chir	na		
Manufacturer	:	GUANGZHOU \	Walkera	Technology C	co., LTD
Address	:	Taishi Industrial	Park, D	ongchong Tov	vn, Nansha District, 511475
		Guanzhou, Chir	na		
					_
Test Result	:	■ Positive	□ Nega	ative	
Total pages including Appendices		35			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test setups	8
8	Systems test configuration	9
9	Technical Requirements 9.1 Conducted Emission AC Power Port 9.2 Emission bandwidth 9.3 Maximum Conducted Output Power 9.4 Peak Power Spectral Density 9.5 Unwanted Emissions 9.6 Duty Cycle 9.7 Frequency Stability	10 13 14 16 27 28 29
10	Test Equipment List	30
11	System Measurement Uncertainty	31

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

Number:

502708

IC Registration

10320A-1

No:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Description of the Equipment Under Test

Product: R/C Helicopter

Model no.: AIBAO

FCC ID: S29AIBAO

Rating: 7.6VDC, (supplied by Li-Po Battery)

RF Transmission Frequency: 5.725GHz~5.850GHz

Modulation: 802.11a: BPSK, QPSK, 16QAM, 64QAM, OFDM

Antenna Type: Integral Antenna

Antenna Gain: 3.31dBi

Description of the EUT: The Equipment Under Test (EUT) is a R/C Helicopterwith WIFI function

which operated at 5GHz

Only 5GWiFi test data include in this report.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart E,	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2015 Edition	Subpart E - Unlicensed National Information Infrastructure Devices				

Test Method:

FCC KDB 558074 D01 DTS Meas Guidance v03r05 KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices

5 Summary of Test Results

Technical Requirements									
FCC Part 15 Subpart E, FCC Part 15 Subpart C									
Test Condition	Pages	Test Result							
		Pass	Fail	N/A					
15.207Conducted Emission AC Power Port	10								
15.403(a)(5) Emission bandwidth	13								
15.407(a)(1) 15.407(a)(3) Maximum Conducted Output Power	19								
15.407(a)(1) 15.407(a)(3) Peak Power Spectral Density	22								
15.407(b)(1) 15.407(b)(4) 15.407(b)(6) 15.407(b)(7) 15.209 Unwanted Emissions	46								
Duty Cycle	81								
15.407(g) Frequencies Stability	85								
15.407(h) Dynamic Frequency Selection (DFS).a	87								

NOTE 1"a": This result include in this report is not operated in the DFS band of the product.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: ACJ96NAIBAO complies with Section FCC Part 15 Subpart C Rules and FCC Part 15 Subpart E Rules.

SUMMARY:

ΑII	tests	according	to the	regulations	cited	on page	5	were

- - Performed
- ☐ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: November 07, 2016

Testing Start Date: November 09, 2016

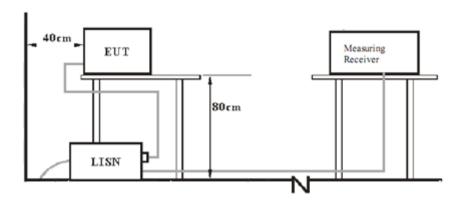
Testing End Date: December 15, 2016

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

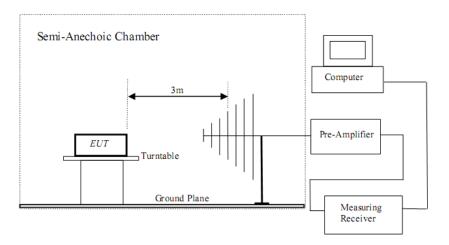
Reviewed by: Prepared by:

John Zhi Section Manager

Johnshi


Alan Xiong Project Engineer

Alem Xing



7 Test setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8. Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	DESCRIPTION MANUFACTURER		S/N(LENGTH)

The system was configured to channel 149(5745MHz), 157(5785MHz)) and 165(5825MHz) for 802.11a

9 Technical Requirement

9.1 Conducted Emission

Test Method

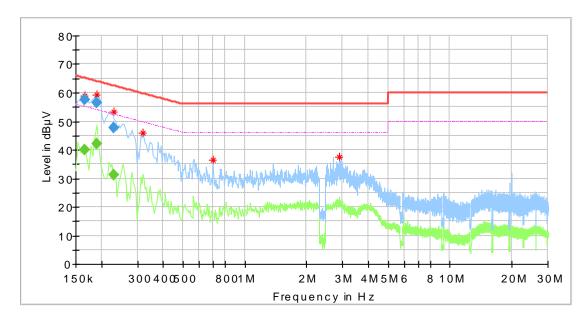
- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207, conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency



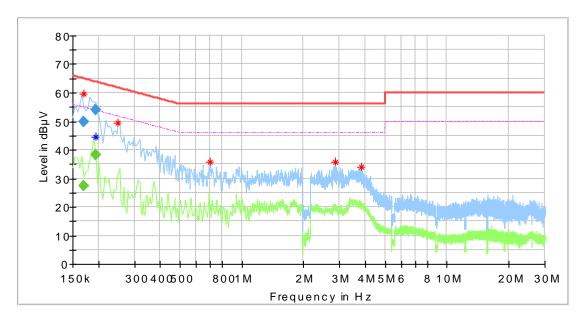
Conducted Emission

Product Type : R/C Helicopter

M/N : AIBAO
Operating Condition : Charging
Test Specification : Line

Comment : AC 120V/60Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.165500		39.95	55.18	15.23	L1	9.7
0.165500	57.53		65.18	7.65	L1	9.7
0.189500	-	41.95	54.06	12.11	L1	9.7
0.189500	56.46		64.06	7.60	L1	9.7
0.230500		31.26	52.43	21.17	L1	9.7
0.230500	47.65		62.43	14.78	L1	9.7



Conducted Emission

Product Type : R/C Helicopter

M/N : AIBAO
Operating Condition : Charging
Test Specification : Neutral

Comment : AC 120V/60Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.170500		27.33	54.94	27.61	N	9.6
0.170500	49.74		64.94	15.20	N	9.6
0.193500		38.18	53.88	15.70	N	9.6
0.193500	53.92		63.88	9.96	N	9.6

9.2 Emission bandwidth

2. Test Method of 6dB Bandwidth

According to KDB789033 D02

- a) Set RBW = 100KHz
- b) Set the video bandwidth (VBW) ≥ 3 × RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Limit: ≥500KHz

3. Test Method of 99% Bandwidth

According to KDB789033 D02

- a) Set center frequency to the nominal EUT channel center frequency
- b) Set span = 1.5 times to 5.0 times the OBW.
- c) Set RBW = 1 % to 5 % of the OBW
- d) Set VBW ≥ 3 · RBW
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99 % power bandwidth function of the instrument (if available).
- g) If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

Limit: No limit

Test result as below table:

IEEE 802.11a modulation Test Result

Band	Channel	Antenna	Channel Frequency (MHz)	Measured 99% Bandwidth (MHz)	Measured 26dB Bandwidth (MHz)	Measured 6dB Bandwidth (MHz)
	Low	Antenna1	5745	16.551	N/A	16.315
		Antenna2	5745	16.610	N/A	16.139
5.8G	N 4: -1	Antenna1	5785	16.904	N/A	16.374
Band	Mid	Antenna2	5785	16.492	N/A	16.374
	Lligh	Antenna1	5825	17.199	N/A	16.374
	High	Antenna2	5825	16.492	N/A	16.374

Remark: "N/A" means "Not Applicable"

9.3 Maximum conducted output power

Test Method

According to KDB789033 D02

Limits: The maximum conducted output power over the frequency band of operation shall not exceed 1W for 5.725-5.85GHz Band, provided the maximum antenna gain does not exceed 6dBi.

Test result as below table

IEEE 802.11a modulation Test Result

Band	Channel	Frequency (MHz)	Antenna	Power (dBm)	Total Power (dBm)	Power Limit (dBm)
	Low	5745	Antenna1	12.24	17.89	30.00
	Low	5745	Antenna2	16.51	17.09	30.00
5.8G Band	Mid 5785	M:4 5705	Antenna1	12.06	19.00	30.00
5.0G Ballu		3763	Antenna2	16.84	18.09	
	High	gh 5825	Antenna1	13.13	18.19	30.00
			Antenna2	16.56	16.19	

9.4 Maximum power spectral density

Test Method

According to KDB789033 D02

For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW \geq 1/T, where T is defined in section II.B.l.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

Limit: The maximum power spectral density shall not exceed 30dBm for the 5.8GHz Band in any 1 megahertz band.

IEEE 802.11a modulation Test Result

Band	Channel	Frequency (MHz)	Antenna	Meas PSD (dBm)	Total Corr'd PSD (dBm)	PSD Limit (dBm)
	Low	E74E	Antenna1	4.33	6.28	30.00
	Low	5745	Antenna2	1.88	0.20	
5.8G Band	Mid	Mid 5785	Antenna1	4.25	6.28	30.00
5.0G Banu			Antenna2	2.01	0.20	
	High	igh 5825	Antenna1	4.77	6.72	30.00
			Antenna2	2.03	0.72	

9.5 Unwanted emissions

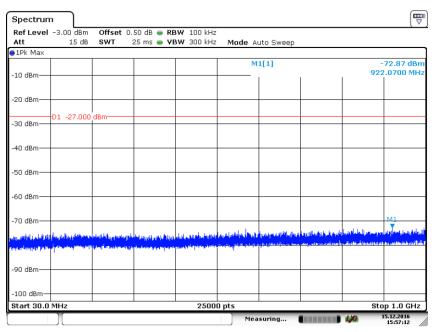
Test Method

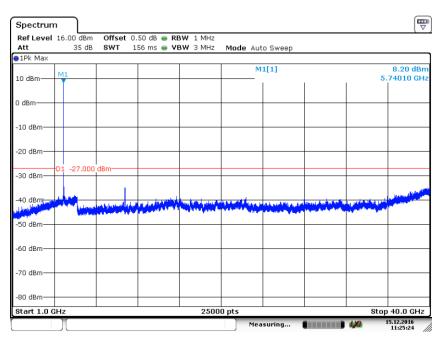
According to KBD789033 D02

Limits:

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

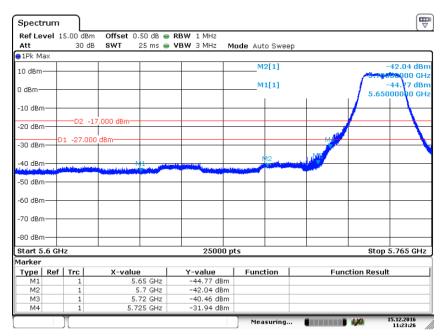
Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.


The provisions of §15.205 apply to intentional radiators operating under this section.

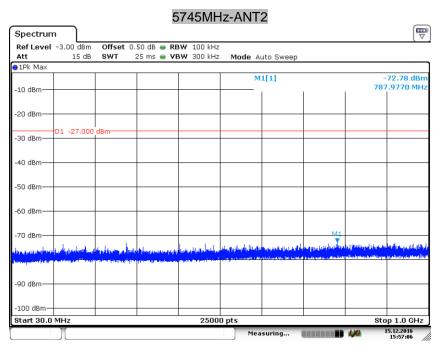

Transmitting spurious emission test result as below (Conducted Mode):

IEEE 802.11a modulation Test Result

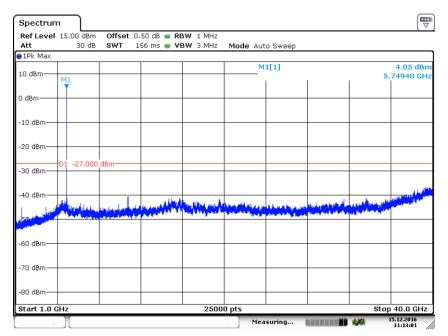
5745MHz-ANT1



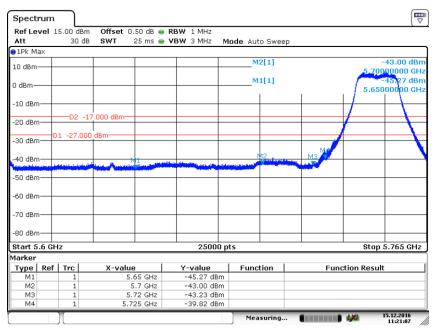
Date: 15.DEC.2016 15:57:12



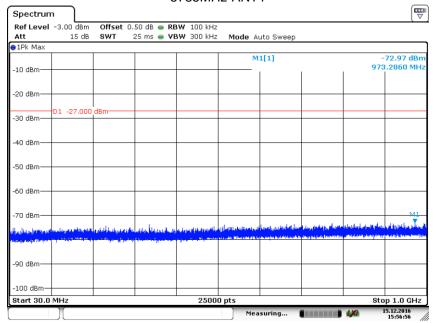
Date: 15.DEC.2016 11:25:23

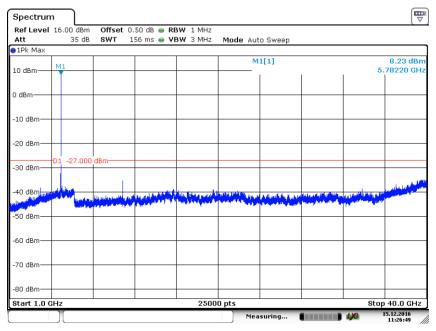


Date: 15.DEC.2016 11:23:27

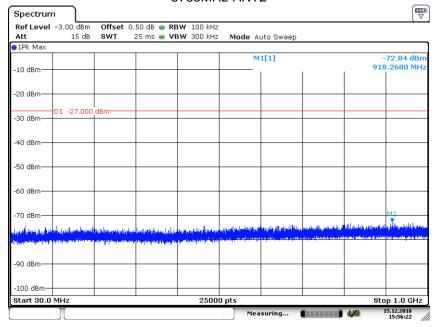


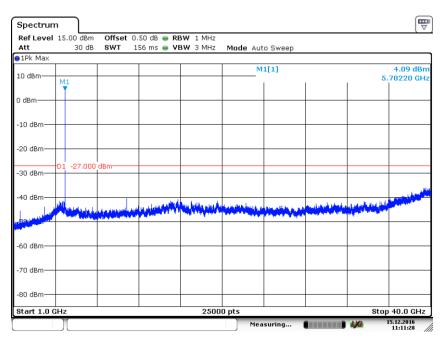
Date: 15.DEC.2016 15:57:06


Date: 15.DEC.2016 11:13:02

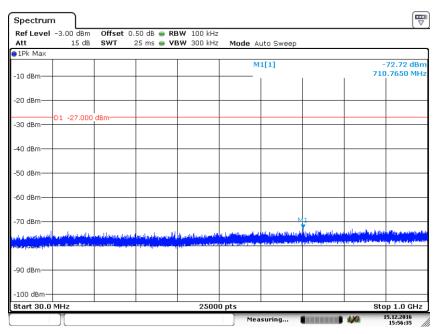

Date: 15.DEC.2016 11:21:07

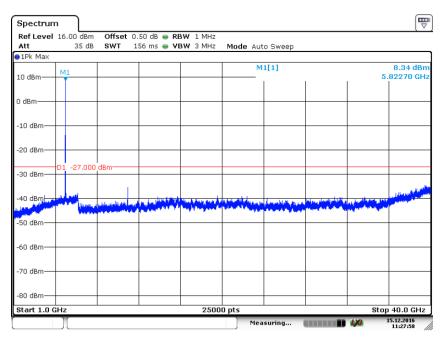
5785MHz-ANT1


Date: 15.DEC.2016 15:56:55

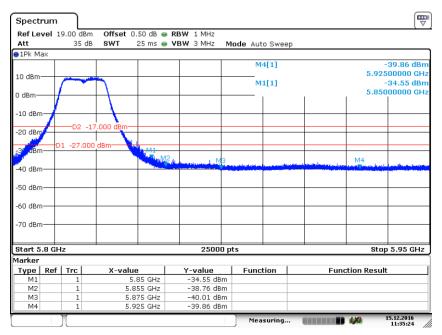

Date: 15.DEC.2016 11:26:49

5785MHz-ANT2

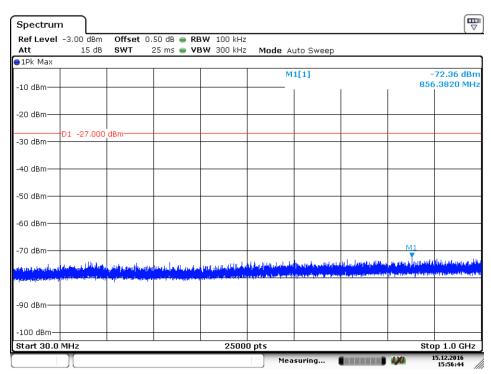

Date: 15.DEC.2016 15:56:22


Date: 15.DEC.2016 11:11:28

5825MHz-ANT1

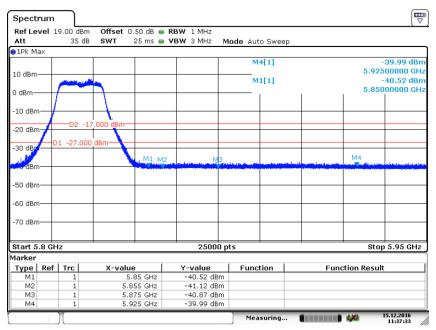


Date: 15.DEC.2016 15:56:35


Date: 15.DEC.2016 11:27:58


Date: 15.DEC.2016 11:35:24

5825MHz-ANT2



Date: 15.DEC.2016 15:56:44

Date: 15.DEC.2016 11:12:13

Date: 15.DEC.2016 11:37:33

Transmitting spurious emission test result as below (Radiated Mode):

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

802.11A Modulation 5745MHz Test Result

Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dBμV/m	dB		
273.651875	42.01	Horizontal	46.00	3.99	QP	Pass
315.307812	42.51	Horizontal	46.00	3.49	QP	Pass
359.993125	41.61	Horizontal	46.00	4.39	QP	Pass
399.994375	39.24	Vertical	46.00	6.76	QP	Pass
608.605000	38.69	Vertical	46.00	7.31	QP	Pass
899.991875	41.41	Vertical	46.00	4.59	QP	Pass
4995.062500	49.56	Horizontal	74.00	24.46	PK	Pass
3829.937500	49.86	Vertical	74.00	24.14	PK	Pass
11492.468750	51.84	Horizontal	74.00	22.16	PK	Pass
11488.687500	49.31	Vertical	74.00	24.69	PK	Pass
37476.875000	46.95	Horizontal	74.00	27.05	PK	Pass
38380.937500	47.73	Vertical	74.00	26.27	PK	Pass

802.11A Modulation 5785MHz Test Result

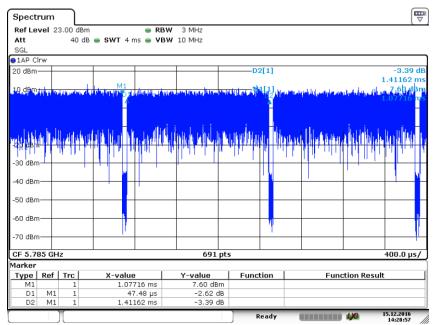
Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dBμV/m	dB		
3856.937500	48.27	Horizontal	74	25.73	PK	Pass
3857.125000	46.94	Vertical	74	27.06	PK	Pass
11567.406250	51.55	Horizontal	74	22.45	PK	Pass
11571.187500	52.66	Vertical	74	21.34	PK	Pass
38377.500000	47.53	Horizontal	74	26.47	PK	Pass
34711.062500	46.20	Vertical	74	27.80	PK	Pass

802.11A Modulation 5825MHz Test Result

Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dBμV/m	dB		
3883.750000	47.25	Horizontal	74	26.75	PK	Pass
1620.250000	48.48	Vertical	74	25.52	PK	Pass
11646.468750	51.90	Horizontal	74	22.10	PK	Pass
11649.562500	52.21	Vertical	74	21.79	PK	Pass
39656.937500	47.36	Horizontal	74	26.64	PK	Pass
35584.187500	46.97	Vertical	74	27.03	PK	Pass

Remark:

- (1) QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss Amp. factor + Reading Because the max PK Emission Level less than 54dBuV/m, so according to C63.10, the AV emission level fulfill the requirement of Limit.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.



9.6 Duty Cycle

Test Data:

Mode	ON Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)
802.11a	1.364	1.412	0.966	96.6%

802.11a

Date: 15.DEC.2016 14:28:57

9.7 Frequencies Stability

Frequency Error at -30°C:

Test Conditions	Measured Frequency (MHz)
rest Conditions	5745
V nom(V)	5745.097
V max(V)	5745.088
V min(V)	5745.079
Max. Deviation Frequency	0.097
Max. Frequency Error (ppm)	16.884

Test Conditions	Measured Frequency (MHz)
rest Conditions	5785
V nom(V)	5785.525
V max(V)	5785.469
V min(V)	5785.497
Max. Deviation Frequency	0.525
Max. Frequency Error (ppm)	90.752

Test Conditions	Measured Frequency (MHz)
rest conditions	5825
V nom(V)	5825.491
V max(V)	5825.417
V min(V)	5825.402
Max. Deviation Frequency	0.511
Max. Frequency Error (ppm)	84.292

Frequency Error at -20°C:

Test Conditions	Measured Frequency (MHz)
rest Conditions	5745
V nom(V)	5745.068
V max(V)	5745.071
V min(V)	5745.069
Max. Deviation Frequency	0.071
Max. Frequency Error (ppm)	12.359

Test Conditions	Measured Frequency (MHz)
rest Conditions	5785
V nom(V)	5785.549
V max(V)	5785.499
V min(V)	5785.512
Max. Deviation Frequency	0.587
Max. Frequency Error (ppm)	94.901

Test Conditions	Measured Frequency (MHz)
rest Conditions	5825
V nom(V)	5825.431
V max(V)	5825.398
V min(V)	5825.365
Max. Deviation Frequency	0.398
Max. Frequency Error (ppm)	68.26

Frequency Error at -10°C:

Test Conditions	Measured Frequency (MHz)
rest Conditions	5745
V nom(V)	5745.056
V max(V)	5745.061
V min(V)	5745.057
Max. Deviation Frequency	0.061
Max. Frequency Error (ppm)	10.618

Test Conditions	Measured Frequency (MHz)
rest Conditions	5785
V nom(V)	5785.511
V max(V)	5785.469
V min(V)	5785.474
Max. Deviation Frequency	0.511
Max. Frequency Error (ppm)	88.332

Test Conditions	Measured Frequency (MHz)
	5825
V nom(V)	5825.405
V max(V)	5825.377
V min(V)	5825.346
Max. Deviation Frequency	0.405
Max. Frequency Error (ppm)	69.528

Frequency Error at 0°C:

Test Conditions	Measured Frequency (MHz)
	5745
V nom(V)	5745.065
V max(V)	5745.049
V min(V)	5745.051
Max. Deviation Frequency	0.065
Max. Frequency Error (ppm)	11.314

Test Conditions	Measured Frequency (MHz)
	5785
V nom(V)	5785.468
V max(V)	5785.439
V min(V)	5785.496
Max. Deviation Frequency	0.496
Max. Frequency Error (ppm)	85.739

Test Conditions	Measured Frequency (MHz)
	5825
V nom(V)	5825.375
V max(V)	5825.367
V min(V)	5825.339
Max. Deviation Frequency	0.375
Max. Frequency Error (ppm)	64.378

Frequency Error at 10°C:

Test Conditions	Measured Frequency (MHz)
	5745
V nom(V)	5745.047
V max(V)	5745.037
V min(V)	5745.039
Max. Deviation Frequency	0.047
Max. Frequency Error (ppm)	8.181

Test Conditions	Measured Frequency (MHz)
	5785
V nom(V)	5785.507
V max(V)	5785.472
V min(V)	5785.458
Max. Deviation Frequency	0.507
Max. Frequency Error (ppm)	87.640

Test Conditions	Measured Frequency (MHz)
	5825
V nom(V)	5825.421
V max(V)	5825.383
V min(V)	5825.372
Max. Deviation Frequency	0.383
Max. Frequency Error (ppm)	65.751

Frequency Error at 20°C:

Test Conditions -	Measured Frequency (MHz)
	5745
V nom(V)	5745.043
V max(V)	5745.052
V min(V)	5745.049
Max. Deviation Frequency	0.052
Max. Frequency Error (ppm)	9.05

Test Conditions	Measured Frequency (MHz)
	5785
V nom(V)	5785.521
V max(V)	5785.443
V min(V)	5785.468
Max. Deviation Frequency	0.521
Max. Frequency Error (ppm)	90.06

Test Conditions	Measured Frequency (MHz)
	5825
V nom(V)	5825.391
V max(V)	5825.376
V min(V)	5825.351
Max. Deviation Frequency	0.391
Max. Frequency Error (ppm)	67.124

Frequency Error at 30°C:

Test Conditions -	Measured Frequency (MHz)
	5745
V nom(V)	5745.042
V max(V)	5745.041
V min(V)	5745.033
Max. Deviation Frequency	0.067
Max. Frequency Error (ppm)	7.311

Test Conditions	Measured Frequency (MHz)
	5785
V nom(V)	5785.502
V max(V)	5785.407
V min(V)	5785.423
Max. Deviation Frequency	0.502
Max. Frequency Error (ppm)	86.776

Test Conditions	Measured Frequency (MHz)
rest Conditions	5825
V nom(V)	5825.383
V max(V)	5825.403
V min(V)	5825.35
Max. Deviation Frequency	0.403
Max. Frequency Error (ppm)	69.185

Frequency Error at 40°C:

Test Conditions	Measured Frequency (MHz)
rest Conditions	5745
V nom(V)	5745.067
V max(V)	5745.063
V min(V)	5745.059
Max. Deviation Frequency	0.067
Max. Frequency Error (ppm)	11.662

Test Conditions	Measured Frequency (MHz)	
rest Conditions	5785	
V nom(V)	5785.466	
V max(V)	5785.399	
V min(V)	5785.419	
Max. Deviation Frequency	0.466	
Max. Frequency Error (ppm)	80.553	

Test Conditions	Measured Frequency (MHz)
rest Conditions	5825
V nom(V)	5825.319
V max(V)	5825.384
V min(V)	5825.297
Max. Deviation Frequency	0.384
Max. Frequency Error (ppm)	65.923

Frequency Error at 50°C:

Test Conditions	Measured Frequency (MHz)
rest Conditions	5745
V nom(V)	5745.051
V max(V)	5745.047
V min(V)	5745.054
Max. Deviation Frequency	0.054
Max. Frequency Error (ppm)	9.399

Test Conditions	Measured Frequency (MHz)
rest Conditions	5785
V nom(V)	5785.476
V max(V)	5785.455
V min(V)	5785.437
Max. Deviation Frequency	0.476
Max. Frequency Error (ppm)	82.282

Test Conditions	Measured Frequency (MHz)
rest Conditions	5825
V nom(V)	5825.281
V max(V)	5825.305
V min(V)	5825.271
Max. Deviation Frequency	0.305
Max. Frequency Error (ppm)	52.361

Remark: V min(V) = 85% of the nominal supply voltage

V max(V)=115% of the nominal supply voltage

10 Test Equipment List

List of Test Instruments

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2017-7-15
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2017-8-3
Horn Antenna	Rohde & Schwarz	HF907	102294	2017-7-15
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2017-7-15
3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2017-7-15
LISN	Rohde & Schwarz	ENV216	100326	2017-7-15
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

Emission bandwidth, Maximum Conducted Output Power, Peak Power Spectral Density, Unwanted Emissions, Duty Cycle and Frequency Stability Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2017-7-15

11 System Measurement Uncertainly

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty	
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.70dB	
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.99dB; Vertical: 4.97dB;	
Uncertainty for Radiated Emission in 3m chamber 1000MHz-18000MHz	Horizontal: 4.96dB; Vertical: 4.95dB;	
Uncertainty for Radiated Emission in 3m chamber 18000MHz-40000MHz	Horizontal: 5.14dB; Vertical: 5.12dB;	
Uncertainty for Conducted RF test	Power level test involved: 2.06dB Frequency test involved:1.16×10 ⁻⁷	

THE END