FCC CERTIFICATION On Behalf of Mizco International Inc.

FM Transmitter Model No.: MP-Q8XL

FCC ID: RZOMP-Q8XL

Prepared for Address	:	Mizco International Inc. 80 Essex Avenue East Avenel New Jersey 07001 United States
Prepared by Address	:	Accurate Technology Co., Ltd. F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number	:	ATE20130366
Date of Test	:	March 13-18, 2013
Date of Report	:	March 18, 2013

TABLE OF CONTENTS

Desc	cription	Page
Test	Report Certification	
1. (GENERAL INFORMATION	4
1.1		
1.2		
1.3		
1.4	. Measurement Uncertainty	5
2. I	MEASURING DEVICE AND TEST EQUIPMENT	6
3.	SUMMARY OF TEST RESULTS	7
4.	HARMONICS AND SPURIOUS RADIATED EMISSION AND BAND EDGE FOR FO	CC
PART	Г 15 SECTION 15.239(С)	8
4.1	. Block Diagram of Test Setup	8
4.2		
4.3	· · · · · · · · · · · · · · · · · · ·	
4.4		
4.5		
4.6	6	
	FUNDAMENTAL RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(B) .	
5.1	o i	
5.2		
5.3	<i>o</i>	
5.4	1 6	
5.5 5.6		
	OCCUPIED BANDWIDTH FOR FCC PART 15 SECTION 15.239(A)	
6.1 6.2	1	
6.3	0	
6.4		
6.5		
	TUNING RANGE	
7.1		
7.2	•	
7.3		
7.4		
7.5	. Test Result	23
8.	ANTENNA REQUIREMENT	24
8.1	-	
8.2	1	

Test Report Certification

Applicant	:	Mizco International Inc.		
Manufacturer	:	DAZA Electronics Company		
EUT Description	:	FM Transmitter		
		(A) MODEL NO.: MP-Q8XL		
		(B) SERIAL NO.: N/A		
		(C) POWER SUPPLY: DC 12V (Power by Battery)		

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.239 ANSI 63.4: 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.239 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :

March 13-18, 2013

Prepared by :

(Engineer)

Approved & Authorized Signer :

(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	FM Transmitter
Model Number	:	MP-Q8XL
Power Supply	:	DC 12V (Power by Battery)
Operate Frequency	:	88.1-88.7MHz (step 0.2MHz)
Applicant Address	:	Mizco International Inc. 80 Essex Avenue East Avenel New Jersey 07001 United States
Manufacturer Address	:	DAZA Electronics Company Bldg. G, Xinmusheng Low Carbon Industrial Park, No. 6 Xinmu Road, Pinghu, Longgang District, Shenzhen ,China
Date of sample received	:	March 13, 2013
Date of Test	:	March 13-18, 2013

1.2. Accessory and Auxiliary Equipment

iPod	: Manufacturer: Apple
	Model No.: A1199
	S/N: 7M6369W3VQ5

1.3.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm Site Location	:	ACCURATE TECHNOLOGY CO. LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

1.4. Measurement Uncertainty

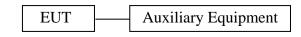
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 6, 2013	Feb. 5, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 6, 2013	Feb. 5, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 6, 2013	Feb. 5, 2014
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Feb. 6, 2013	Feb. 5, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014
Battery	CSB	F2	HR1234W		

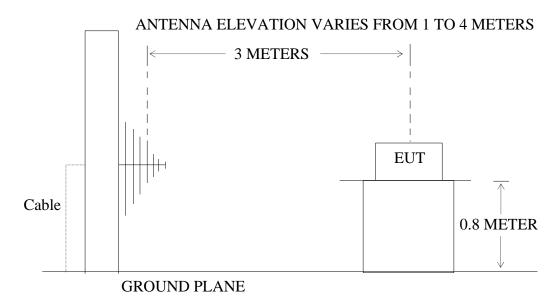
Table 1: List of Test and Measurement Equipment

3. SUMMARY OF TEST RESULTS


FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.239(c) Section 15.209	Harmonics and Spurious Radiated Emission and Band Edge	Compliant
Section 15.239(b)	Fundamental Radiated Emission	Compliant
Section 15.239(a)	Occupied Bandwidth	Compliant
Section 15.239	Tuning Range	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

4. HARMONICS AND SPURIOUS RADIATED EMISSION AND BAND EDGE FOR FCC PART 15 SECTION 15.239(C)


4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT: FM Transmitter)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: FM Transmitter)

4.2. The Emission Limit for section 15.239(c)

4.2.1. The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in Section 15.209.

		Limit,		
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measuremen in band 9-90kHz, 110-490kHz and above 1000MHz is	
30 - 88	100	40	performed with Average detector.	
88 - 216	150	43.5	Except those frequency bands mention above, the	
216 - 960	200	46	final measurement for frequencies below 1000MHz is	
Above 960	500	54	performed with Quasi Peak detector.	

Radiation Emission Measurement Limits According to Section 15.209

4.3.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1.FM Transmitter (EUT)

Model Number	:	MP-Q8XL
Serial Number	:	N/A
Manufacturer	:	DAZA Electronics Company

4.4.Operating Condition of EUT

4.4.1.Setup the EUT and simulator as shown as Section 4.1.

- 4.4.2.Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX modes [Connect EUT use Auxiliary Equipment (iPod) playing typical audio signal with a 2.5 kHz tone at a level 16 dB higher than that required to produce a frequency deviation of 75 kHz] and measure it. The transmit frequency are 88.1-88.7MHz. We select 88.1MHz, 88.5MHz, 88.7MHz TX frequency to transmit.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz.

The frequency range from 30MHz to 1000MHz is checked.

The final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

4.6.The Field Strength of Radiation Emission Measurement Results **PASS.**

The frequency range 30MHz to 1000MHz is investigated.

Date of Test:	March 15, 2013	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	MP-Q8XL	Power Supply:	DC 12V
	TX 88.1MHz (Connect to iPod's		
Test Mode:	Dock)	Test Engineer:	Bob

Harmonics and Spurious radiation emission

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dB) QP
Horizontal	176.2685	61.07	-22.21	38.86	43.50	-4.64
Vertical	176.2684	57.70	-21.05	36.65	43.50	-6.85

Band edge

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dB) QP
Horizontal	87.7600	29.00	-22.63	6.37	40.00	-33.63
Horizontal	88.0000	53.78	-22.63	31.15	40.00	-8.85
Horizontal	88.2000	54.00	-22.64	31.36	43.50	-12.14
Horizontal	89.7800	29.07	-22.68	6.39	43.50	-37.11
Vertical	87.2960	29.87	-22.48	7.39	40.00	-32.61
Vertical	88.0000	59.94	-22.38	37.56	40.00	-2.44
Vertical	88.2000	60.87	-22.35	38.52	43.50	-4.98
Vertical	89.7960	30.22	-22.12	8.10	43.50	-35.40

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	March 15, 2013	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	MP-Q8XL	Power Supply:	DC 12V
	TX 88.5MHz (Connect to iPod's		
Test Mode:	Dock)	Test Engineer:	Bob

Harmonics and Spurious radiation emission

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dB) QP
Horizontal	176.8876	63.93	-22.14	41.79	43.50	-1.71
Vertical	176.8876	58.50	-21.04	37.46	43.50	-6.04

Band edge

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dB) QP
Horizontal	87.2600	28.83	-22.48	6.35	40.00	-33.65
Horizontal	88.4000	58.97	-22.32	36.65	43.50	-6.85
Horizontal	88.6000	59.73	-22.29	37.44	43.50	-6.06
Horizontal	89.6080	27.54	-22.14	5.40	43.50	-38.10
Vertical	86.8760	29.17	-22.60	6.57	40.00	-33.43
Vertical	88.4000	51.28	-22.64	28.64	43.50	-14.86
Vertical	88.6000	51.82	-22.65	29.17	43.50	-14.33
Vertical	89.3040	27.48	-22.67	4.81	43.50	-38.69

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss – Amplifier Gain

Date of Test:	March 15, 2013	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	MP-Q8XL	Power Supply:	DC 12V
	TX 88.7MHz (Connect to iPod's		
Test Mode:	Dock)	Test Engineer:	Bob

Harmonics and Spurious radiation emission

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dB) QP
Horizontal	177.5091	63.20	-22.08	41.12	43.50	-2.38
Vertical	177.5092	59.40	-21.03	38.37	43.50	-5.13

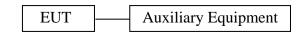
Band edge

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dB) QP
Horizontal	86.6157	28.93	-22.58	6.35	40.00	-33.65
Horizontal	88.6000	88.6000 59.63		-22.29 37.34 43.50		-6.16
Horizontal	88.8000	60.01	-22.26	37.75	43.50	-5.75
Horizontal	89.5318	27.56	-22.15	5.41	43.50	-38.09
Vertical	86.8960	30.10	-22.60	7.50	40.00	-32.50
Vertical	88.6000	52.42	-22.65	29.77	43.50	-13.73
Vertical	88.8000	50.86	-22.65	28.21	43.50	-15.29
Vertical	89.8080	28.95	-22.68	6.27	43.50	-37.23

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

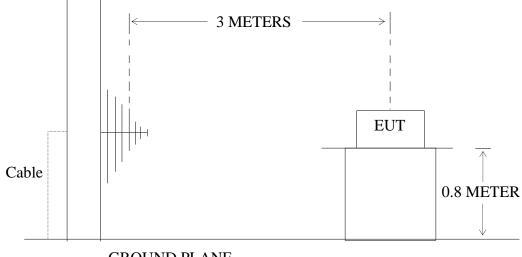
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:


Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

5. FUNDAMENTAL RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(B)

5.1.Block Diagram of Test Setup


5.1.1.Block diagram of connection between the EUT and simulators

(EUT: FM Transmitter)

5.1.2. Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

(EUT: FM Transmitter)

5.2. The Emission Limit For Section 15.239(b)

5.2.1.The field strength of any emission within the permitted 200kHz band shall not exceed 250microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.FM Transmitter (EUT)

Model Number	:	MP-Q8XL
Serial Number	:	N/A
Manufacturer	:	DAZA Electronics Company

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

5.4.2.Turn on the power of all equipment.

5.4.3. Let the EUT work in TX modes [Connect EUT use Auxiliary Equipment (iPod) playing typical audio signal with a 2.5 kHz tone at a level 16 dB higher than that required to produce a frequency deviation of 75 kHz] and measure it. The transmit frequency are 88.1-88.7MHz. We select 88.1MHz, 88.5MHz, 88.7MHz TX frequency to transmit.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement.

The bandwidth of test receiver is set at 300kHz.

5.6. The Emission Measurement Result

PASS.

Date of Test:	March 15, 2013	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	MP-Q8XL	Power Supply:	DC 12V
	TX 88.1MHz (Connect to iPod's		
Test Mode:	dock)	Test Engineer:	Bob

Fundamental Radiated Emissions

Frequency	Reading(dBµV/m)	Factor (dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin (dB)		
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	Polarization
88.1000	65.22	68.17	-22.64	42.58	45.53	48.00	68.00	-5.42	-2.47	Horizontal
88.1000	62.53	65.18	-22.37	40.16	42.81	48.00	68.00	-7.84	-25.19	Vertical

Note:

1. Measurement was performed with modulated signal with average detector and peak detector.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	March 11-12, 2013	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	MP-Q8XL	Power Supply:	DC 12V
	TX 88.5MHz (Connect to iPod's		
Test Mode:	dock)	Test Engineer:	Bob

Fundamental Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor (dB)	Result(d	BµV/m)	Limit(d	BµV/m)	Margi	n (dB)	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	Polarization
88.5000	66.85	69.48	-22.64	44.21	46.84	48.00	68.00	-3.79	-21.16	Horizontal
88.5000	61.83	64.72	-22.30	39.53	42.42	48.00	68.00	-8.47	-25.58	Vertical

Note:

1. Measurement was performed with modulated signal with average detector and peak detector.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss – Amplifier Gain

Date of Test:	March 11-12, 2013	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	MP-Q8XL	Power Supply:	DC 12V
	TX 88.7MHz (Connect to iPod's		
Test Mode:	dock)	Test Engineer:	Bob

Fundamental Radiated Emissions

I	Frequency	Reading(dBμV/m)	Factor (dB)	Result(d	BµV/m)	Limit(dl	BµV/m)	Margi	in (dB)	
	(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	Polarization
	88.7000	66.89	69.30	-22.65	44.24	46.65	48.00	68.00	-3.76	-21.35	Horizontal
	88.7000	63.28	66.66	-22.28	41.00	44.38	48.00	68.00	-7.00	-23.62	Vertical

Note:

1. Measurement was performed with modulated signal with average detector and peak detector.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

6. OCCUPIED BANDWIDTH FOR FCC PART 15 SECTION 15.239(A)

6.1. The Requirement For Section 15.239(a)

6.1.1. Emission from the device shall be confined within a band 200kHz wide centered on the operating frequency. The 200kHz band shall lie wholly within the frequency range of 88-108MHz.

6.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1.FM Transmitter (EUT)

Model Number	:	MP-Q8XL
Serial Number	:	N/A
Manufacturer	:	DAZA Electronics Company

6.3. Operating Condition of EUT

- 6.3.1.Setup the EUT and simulator as shown as Section 5.1.
- 6.3.2.Turn on the power of all equipment.
- 6.3.3. Let the EUT work in TX modes [Connect EUT use Auxiliary Equipment (iPod) playing typical audio signal with a 2.5 kHz tone at a level 16 dB higher than that required to produce a frequency deviation of 75 kHz] measure it. The transmit frequency are 88.1-88.7MHz. We are select 88.1MHz, 88.5MHz, 88.7MHz TX frequency to transmit.

6.4.Test Procedure

- 6.4.1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 6.4.2. Set EUT as normal operation. Playing typical audio signal with a 2.5 kHz tone at a level 16 dB higher than that required to produce a frequency deviation of 75 kHz
- 6.4.3. Set EMI test receiver Center Frequency = fundamental frequency, RBW= 3kHz, VBW= 10kHz, Span=300kHz.
- 6.4.4. Set EMI test receiver Max hold. Mark peak, -26dB.

6.5.Test Result

The EUT does meet the FCC requirement.

Frequency (MHz)	Occupied Bandwidth (kHz)
88.1	84.6
88.5	85.2
88.7	85.8

The spectral diagrams in appendix I.

7. TUNING RANGE

7.1. The Requirement For Section 15.239

88-108MHz

7.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.2.1. FM Transmitter (EUT)

Model Number	:	MP-Q8XL
Serial Number	:	N/A
Manufacturer	:	DAZA Electronics Company

- 7.3. Operating Condition of EUT
 - 7.3.1.Setup the EUT and simulator as shown as Section 5.1.
 - 7.3.2.Turn on the power of all equipment.
 - 7.3.3. Let the EUT work in TX modes [Connect EUT use Auxiliary Equipment (iPod) playing typical audio signal with a 2.5 kHz tone at a level 16 dB higher than that required to produce a frequency deviation of 75 kHz] measure it. The transmit frequency are 88.1-88.7MHz. We are select 88.1M, 88.5M, 88.7MHz TX frequency to transmit.

7.4.Test Procedure

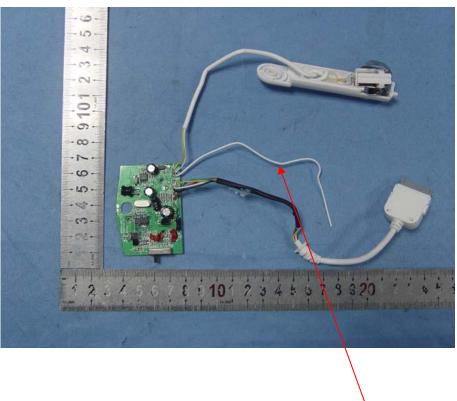
- 7.4.1.The EUT was placed on a turn table which is 0.8m above ground plane.
- 7.4.2.Set the EUT working on the working frequency.
- 7.4.3. Set EMI test receiver center frequency = working frequency, RBW=3kHz, VBW= 10kHz, Span=300kHz.
- 7.4.4.Measuring the working frequency.
- 7.4.5. The working frequency should be inside 88-108 MHz.

7.5.Test Result

The EUT does meet the FCC requirement.

Display of the EUT LED (MHz)	Display of the EMI test receiver (MHz)
88.1	88.1592
88.5	88.4586
88.7	88.6586

The working frequency rang is from 88.1 to 88.7MHz.

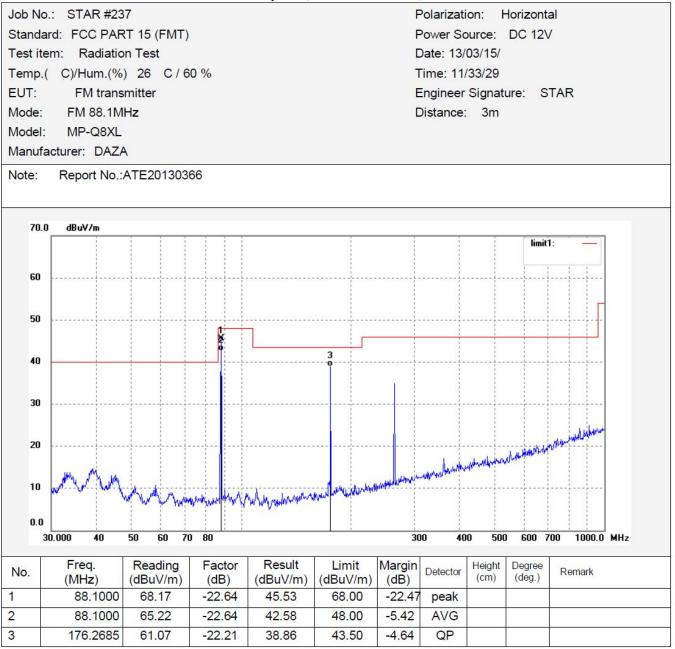

8. ANTENNA REQUIREMENT

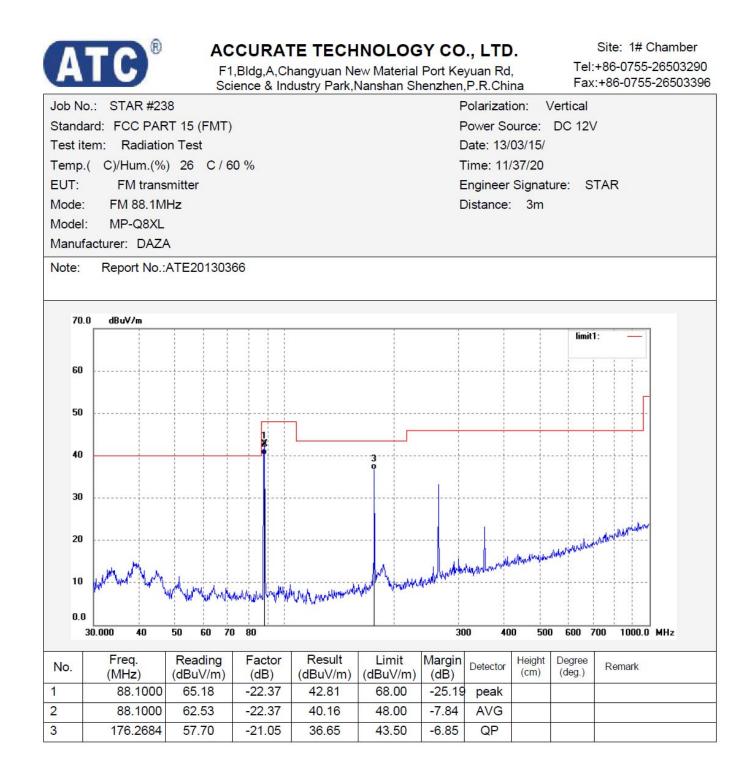
8.1. The Requirement

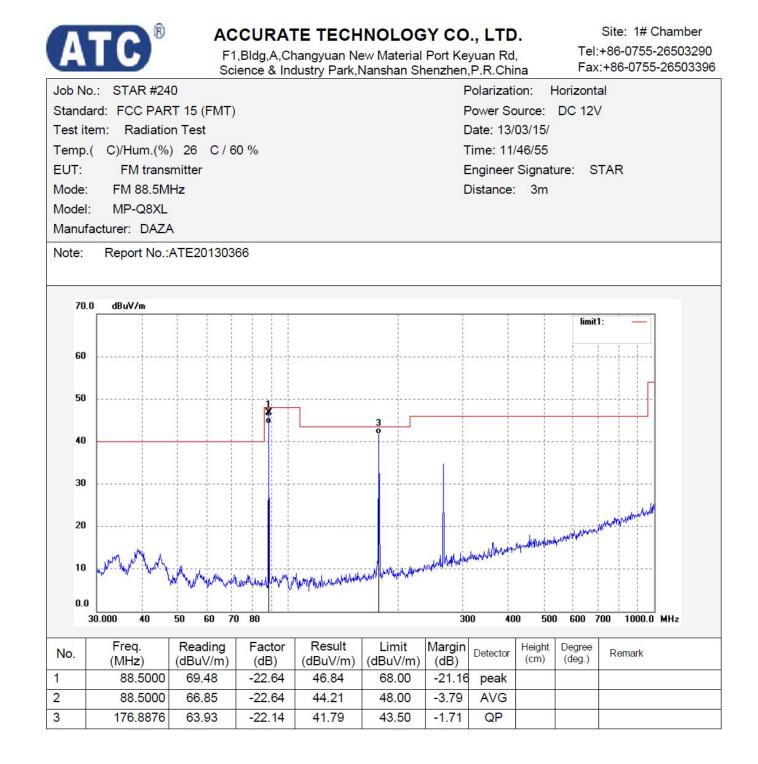
According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

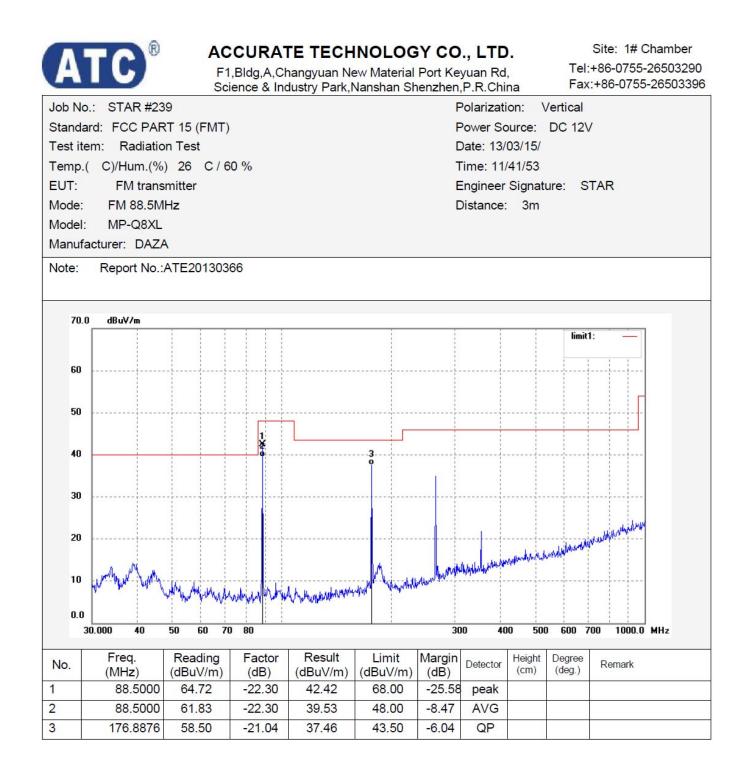
8.2. Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement.

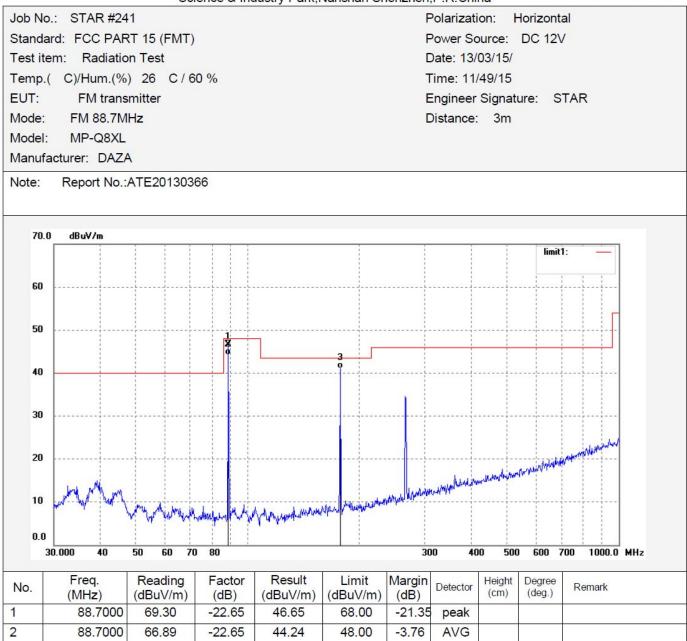



Antenna


APPENDIX I (Test Curves)



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

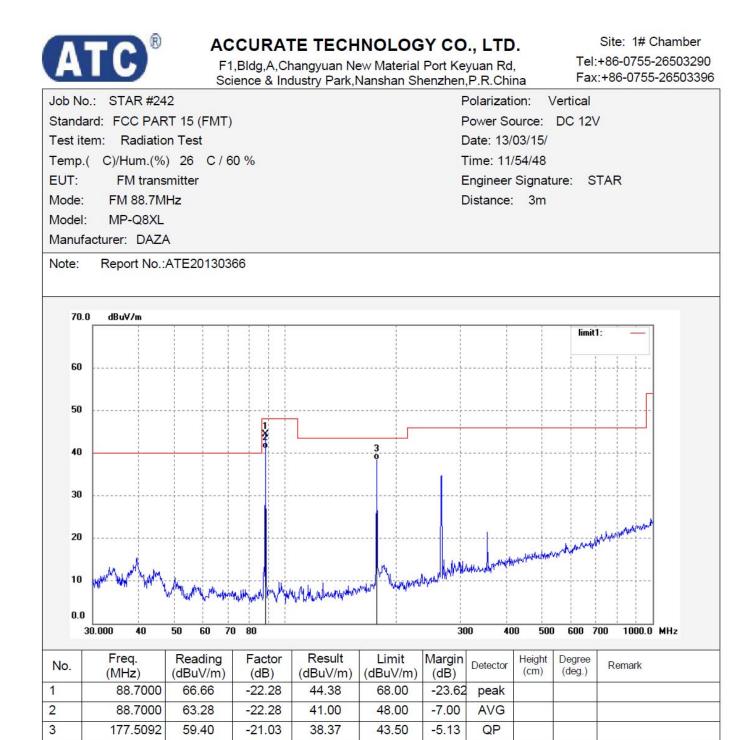


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

3

177.5091

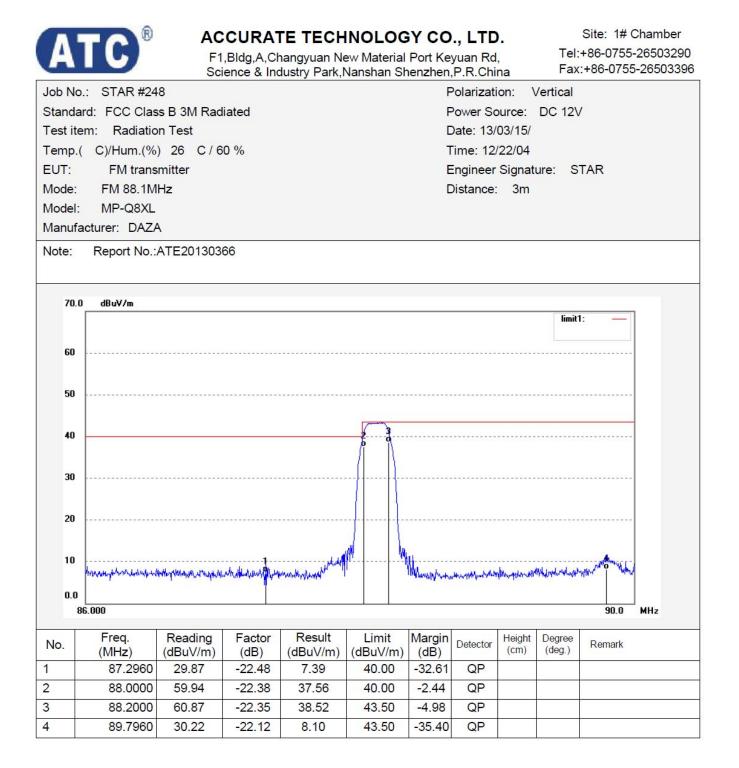
63.20

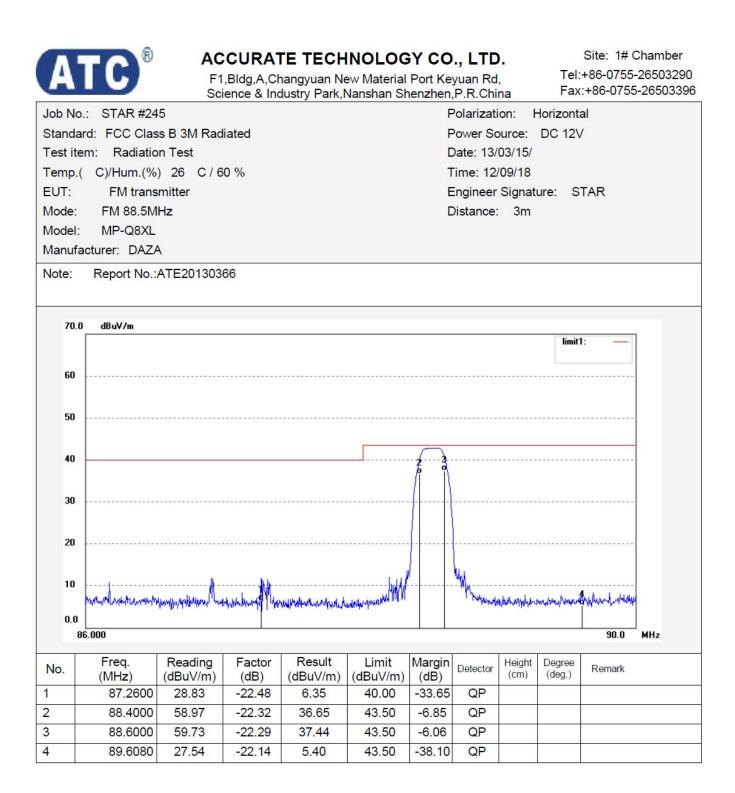

-22.08

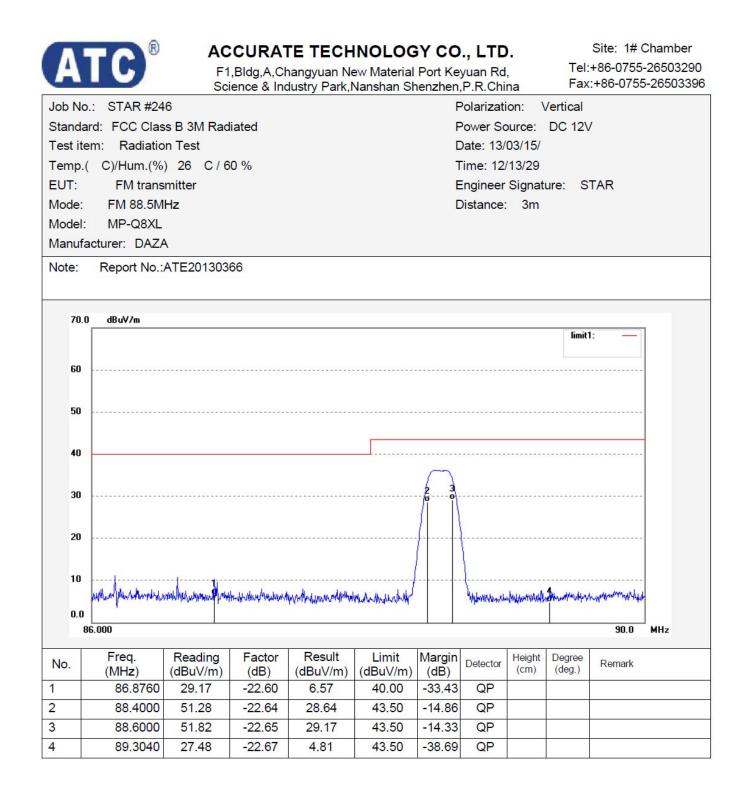
41.12

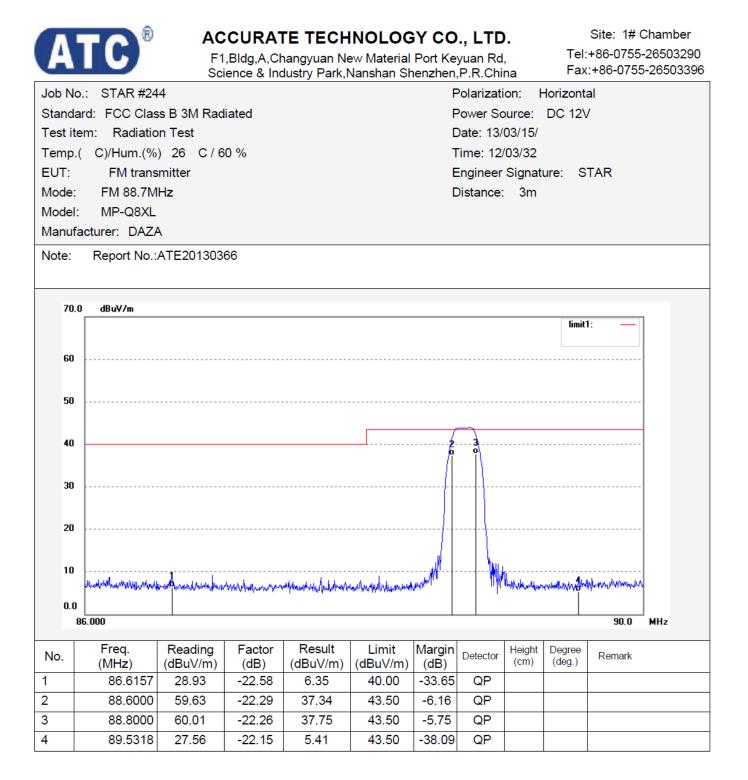
43.50

-2.38

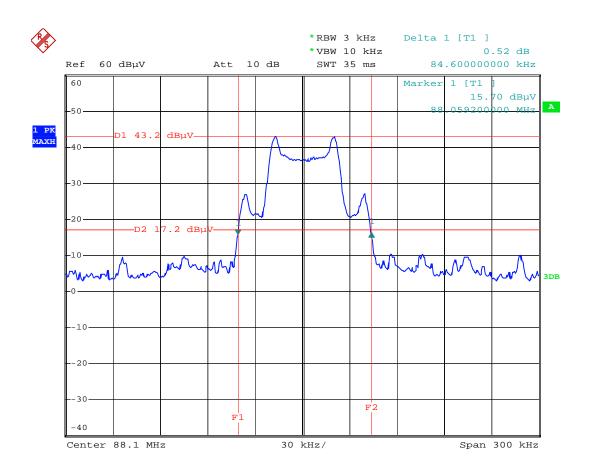

QP

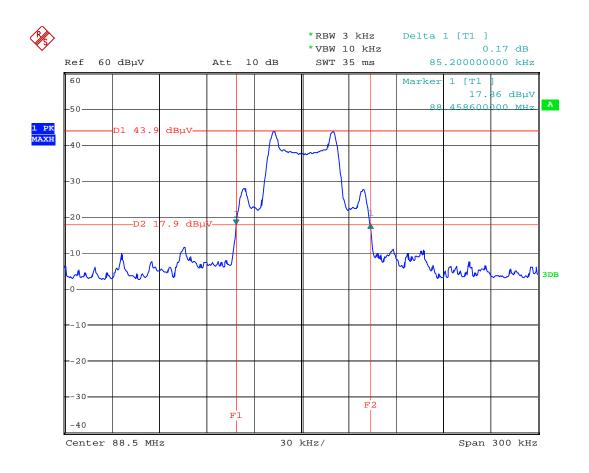




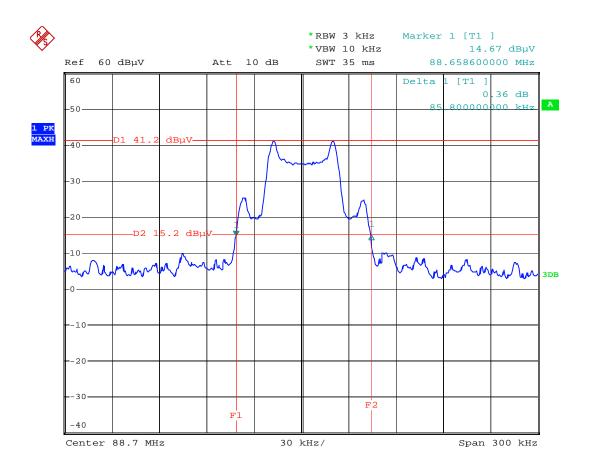

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No							,P.R.China		
	o.: STAR #24	7				F	Polarization:	Horizont	tal
Standa	ard: FCC Clas	s B 3M Rad	ated			F	ower Source	e: DC 12	V
Test it	tem: Radiatio	n Test				[Date: 13/03/	15/	
Temp.	.(C)/Hum.(%) 26 C/6	0 %			-	Time: 12/17/	03	
EUT:	FM trans	mitter				E	Engineer Sig	nature: S	TAR
Mode:	FM 88.1M	Hz				C	Distance:	3m	
Model	: MP-Q8XL								
Manuf	facturer: DAZA	4							
Note:	Report No.:	ATE201303	66						
70.	.0 dBuV/m							limit	1
60									
50									
40									
40					5 1				
					8 3				
30					6 5				
30					2 30				
					8 3				
30					2 30				
30				1.00%	e de				
30 20 10	ognow between out of	waterman	hallondonyah (ja	monand	2	where any the following the fo	hereasthereaster	ul waa waa waa ku da	L., Many
30 20 10 0.0	Myrred Industry March 19	ungunununu	halbondonyal-life	manunal	e d	utor antest	henrytheranisely	el waar structured	
30 20 10 0.0	ognow between out of	waterman	tullionalonyotille	manually	6	utor antical	herrightenersely	dwyrddwrdd	90.0 MHz
30 20 10 0.0	Myrred Industry March 19	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector He	ight Degree m) (deg.)	
30 20 10 0.0	иучуни и иниципальна 86.000 Freq.	Reading	Factor		Limit	Margin	Detector He	ight Degree	90.0 MHz
30 20 10 0.0	и мули 86.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector He	ight Degree	90.0 MHz
30 20 10	муни муни 86.000 Freq. (MHz) 87.7600	Reading (dBuV/m) 29.00	Factor (dB) -22.63	(dBuV/m) 6.37	Limit (dBuV/m) 40.00	Margin (dB) -33.63	Detector He (c QP QP	ight Degree	90.0 MHz





F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


h NI-		-									
D 110	o.: STAR #24	3				F	Polarizati	on: \	/ertical		
anda	rd: FCC Clas	s B 3M Rad	liated			F	ower Sc	ource:	DC 12\	/	
st ite	em: Radiatio	on Test					Date: 13/	03/15/			
mp.((C)/Hum.(%) 26 C/6	0 %			Т	⁻ ime: 11/	59/51			
JT:	FM trans	mitter				E	Engineer	Signat	ure: S	TAR	
ode:	FM 88.7M	Hz					Distance:	3m			
odel:	MP-Q8XL										
anufa	acturer: DAZA	4									
ote:	Report No.:	ATE201303	66								
70.0) dBuV/m										
									limit	1: —	1
60											-
	1										1
50											đ
50											
50 40											-
							1777MW2				-
						4					-
40						-	1177714 				
40						1	1/milion 3 0 0				-
40 30						1	1/mily 3 0				-
40 30						1	9 				-
40 30 20		www.water	Waland and Manageline of		uquerrelismAqUeldur	1			e valdere dir value	at Windows	
40 30 20		ummentur	walan ang magana		uqueently the Aphendee	t de la constante de la consta	1/17/14 3 		en stand	04.115/114.49.49.164 0	-
40 30 20 10		wymanadada	waland and the again of		uquerrelistic Agletalue.	t de la construcción de la const		444-4-164W-4A	es alfore for all		- - - -
40 30 20 10 0.0 8	56.000 Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree	90.0	- - MHz
40 30 20 10	86.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				- - - MHz
40 30 20 10 0.0 8	Freq. (MHz) 86.8960	Reading (dBuV/m) 30.10	Factor (dB) -22.60	Result (dBuV/m) 7.50	Limit (dBuV/m) 40.00	Margin (dB) -32.50	Detector	Height	Degree	90.0	- - - -
40 30 20 10 0.0 8	Freq. (MHz) 86.8960 88.6000	Reading (dBuV/m) 30.10 52.42	Factor (dB) -22.60 -22.65	Result (dBuV/m) 7.50 29.77	Limit (dBuV/m) 40.00 43.50	Margin (dB) -32.50 -13.73	Detector QP QP	Height	Degree	90.0	- - - MHz
40 30 20 10 0.0 8	Freq. (MHz) 86.8960	Reading (dBuV/m) 30.10	Factor (dB) -22.60	Result (dBuV/m) 7.50	Limit (dBuV/m) 40.00	Margin (dB) -32.50	Detector	Height	Degree	90.0	- MHz

Date: 15.MAR.2013 16:56:54

Date: 15.MAR.2013 17:00:51

Date: 15.MAR.2013 17:07:31