§1.1307(b)(1) & §2.1093 - RF EXPOSURE

According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1093 RF exposure is calculated.

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range (MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: <u>17.09 (dBm)</u> Maximum peak output power at antenna input terminal: <u>51.16 (mW)</u> Prediction distance: <u>20 (cm)</u> Predication frequency: <u>2400 (MHz)</u> Antenna Gain (typical): <u>2 (dBi)</u> antenna gain: <u>1.58 (numeric)</u> Power density at predication frequency at 20 cm: <u>0.016 (mW/cm²)</u>

MPE limit for uncontrolled exposure at prediction frequency: $1.0 \text{ (mW/cm}^2)$

Maximum peak output power at antenna input terminal: <u>18.22 (dBm)</u> Maximum peak output power at antenna input terminal: <u>66.37 (mW)</u> Prediction distance: <u>20 (cm)</u> Predication frequency: <u>5250 (MHz)</u> Antenna Gain (typical): <u>2 (dBi)</u> antenna gain: <u>1.58 (numeric)</u> Power density at predication frequency at 20 cm: <u>0.021(mW/cm²)</u>

MPE limit for uncontrolled exposure at prediction frequency: $1.0 \text{ (mW/cm}^2)$

Test Result

The EUT is a mobile device. The power density level at 20 cm is 0.016 mW/cm, which is below the uncontrolled limit of 1.0mW/cm^2 at 2400 MHz. The power density level at 20 cm is 0.021 mW/cm², which is below the uncontrolled exposure limit of 1.0mW/cm^2 at 5250 MHz.