Appendix A. RF Exposure Evaluation

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	5		Averaging Time E ², H ² or S (minutes)			
0.3-3.0	614	1.63	(100)*	6			
3.0-30	1842 / f	4.89 / f	(900 / f)*	6			
30-300	61.4	0.163	1.0	6			
300-1500			F/300	6			
1500-100,000			5	6			
(B) Limits for General Population / Uncontrolled Exposure							

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Power Density: $Pd(W/m^2) = \frac{E^2}{377}$

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$\mathsf{E}(\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\mathbf{E} = \text{Electric field (V/m)}$$

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

 \boldsymbol{d} = Separation distance between radiator and human body (m)

The formula can be changed to

$$\mathbf{Pd} = \frac{30 \times P \times G}{277}$$

 $\frac{377 \times d^2}{377 \times d^2}$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Antenna Type : Dipole Antenna

For Single Chain: Max Conducted Power for IEEE 802.11a: 17.21dBm

Test Frequency (MHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5280	20	5.97	3.953666	17.21	52.6017	0.0414

For Two Chain:

Max Conducted Power for IEEE 802.11n: 19.82dBm

Test Frequency (MHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5260	20	5.97	3.953666	19.82	95.9401	0.0755