### **Underwriters Laboratories Inc.**



www.ulk.co.kr

Project No.: 12CA08535

File No.: MC16340

Report No.: 12CA08535-5-FCC

Date: August 17, 2013

Model No.: FXRD-1417WA

FCC ID.: RYK-WPEA121N

IC Number: 6158A-WPEA121NW

# **RF** Test Report

in accordance with FCC Part 15 Subpart E §15.407 and IC RSS-210 Issue 8

for

# **Detector**

Vieworks Co., Ltd.

#601 ~ 610, Suntechcity 2, 307-2, Sangdaewon-dong Jungwon-Gu Seongnam-city Gyeonggi-do, 462-806, South korea

# Copyright © 2005 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Only those products bearing the UL Mark should be considered as being covered by UL.

UL Korea, Ltd 33<sup>rd</sup> FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea

Tel: +82.2.2009.9000, Fax:+82.2.2009.9405

An organization dedicated to public safety and committed to quality service for over 100 years Project Number: 12CA08535 File Number: MC16340 Page: 2 of 17

Model Number: FXRD-1417WA

### **Summary of Test Results:**

The following tests were performed on a sample submitted for evaluation of compliance with FCC Part 15 C Section 15.247 and IC RSS-210 Issue 8.

| No |           |           | FCC Part15 Subpart C Conformance               | Result   | Remark             |
|----|-----------|-----------|------------------------------------------------|----------|--------------------|
|    | FCC Rule  | IC Rule   | Requirements                                   | Verdict  | Remark             |
| 1  | 15.403(i) | A9.2      | 26dB & 99% Bandwidth Measurement               | N/A      | *Note <sup>2</sup> |
| 2  | 15.407(a) | A9.2      | Power Spectral Density Measurement             | N/A      | *Note <sup>2</sup> |
| 3  | -         | -         | Average Power Measurement                      | -        | -                  |
| 4  | 15.407(a) | A9.2      | Output Power Measurement                       | N/A      | *Note <sup>2</sup> |
| 5  | 15.407(b) | A9.3      | Conducted Spurious Emission<br>Measurement     | N/A      | *Note <sup>2</sup> |
| 6  | 15.407(b) | A9.3      | Band Edges Measurement                         | N/A      | *Note <sup>2</sup> |
| 7  | 15.407(g) | A9.5      | Frequency Stability Measurement                | N/A      | *Note <sup>2</sup> |
| 8  | 15.207    | Gen 7.2.2 | AC Conducted Emission Measurement              | N/A      | *Note <sup>3</sup> |
| 9  | 15.407(c) | A9.5      | Automatically Discontinue<br>Transmission      | N/A      | *Note <sup>2</sup> |
| 10 | 15.205(a) | -         | Restricted bands of operation                  | Complied | -                  |
| 11 | 15.209(a) | -         | Radiated emission limits, general requirements | Complied | -                  |

<sup>\*</sup>Note 1: N/T=Not Tested, N/A=Not Applicable

The modular reports allow for a maximum gain dipole antenna to be 2.0dBi/2.0 dBi in the 2.4GHz band and 5GHz bands. This host device uses a PCB antenna with a maximum gain of 4.7dBi in the 2.4GHz band and 2.2dBi in the 5GHz bands, therefore the limits used for the output power and power spectral density in the modular reports for 5GHz operations (DTS and NII) show compliance for the host using these antennas as they are of equal or lower gain. For 2.4GHz operations the composite gain for 2x2 beamforming modes is 7.7dBi. the output power limit for a 7.7dBi antenna is 28.3dBm. the maximum measured output power was 27.19dBm which complies with this limit of 28.3dBm. All bandwidth, power and power density measurements were made in accordance with the latest FCC KDB guidance documents for DTS and NII transmitters.

Radiated spurious emissions were tested for the host system so the different antenna type is covered by the system level tests.

### **Conclusion:**

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by UL Korea Ltd. in accordance with the procedures stated in each test requirement and specification. The test list was determined by the Applicant as being applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

Witness tested by

Hongsuk Oh, WiSE Associate Project Engineer

UL Verification Services- 3014ASEO

length

UL Korea Ltd.

Aug. 17, 2013

Reviewed by

Jeawoon, Choi, WiSE Operations Manager

UL Verification Services- 3014ASEO

UL Korea Ltd.

Aug. 17, 2013

<sup>\*</sup>Note <sup>2</sup>: Test was performed by modular transmitter (FCC ID: RYK-WPEA121N, Test Report no. FR131667AN issued on May.02, 2011 by Sporton International Inc.)

<sup>\*</sup>Note <sup>3</sup>: The EUT is battery operating only.

Project Number: 12CA08535 File Number: MC16340 Page: 3 of 17

Model Number: FXRD-1417WA

# **Test Report Details**

Test Report No: 12CA08535-5-FCC

Witness Tests Performed By: UL Korea Ltd.

33<sup>rd</sup> FL. GFC Center, 737 Yeoksam-dong, Gangnam-gu, Seoul, 135-

984, Korea

Test Site: KES Co., Ltd.

477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803,

Korea

Applicant: Vieworks Co., Ltd.

#601 ~ 610, Suntechcity 2, 307-2, Sangdaewon-dong Jungwon-Gu

Seongnam-city Gyeonggi-do, 462-806, South korea

Applicant Contact: Jeong-mi Kim

Title: Manager

Phone: +82-70-7011-6176

Fax: +82-31-737-4953

FCC ID: RYK-WPEA121N

IC Number: 6158A-WPEA121NW

E-mail: salangshy@vieworks.com

Product Type: X-ray Detector

Model Number: FXRD-1417WA

Multiple Model Name: FXRD-1417WB

The manufacturer has declared to all the multiple model names into

the basic model without any further evaluation by UL

Trademark

**Trademark** 

Sample Serial Number: N/A

Test standards: FCC Part 15 C Section 15.407 and IC RSS-210 Issue 8

Sample Serial Number: N / A

Sample Receive Date: 2013.07.09

Testing Date: 2013.07.30 ~ 2013.08.09

Test Report Date: 2013.08.17

Overall Results: Pass

UL Korea Ltd. reports apply only to the specific test samples and test results submitted for UL's review. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. UL Korea Ltd. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from UL Korea Ltd. issued reports. This report shall not be used to claim, constitute or imply product certification, approval, or any agency of the National Authorities. This report may contain test results that are not covered by the NVLAP or KOLAS accreditation.

Project Number: 12CA08535 File Number: MC16340 Page: 4 of 17

Model Number: FXRD-1417WA

# **Report Directory**

| 1.   | GENERAL PRODUCT INFORMATION             | 5  |
|------|-----------------------------------------|----|
| 1.1. | L. EQUIPMENT DESCRIPTION                | 5  |
| 1.2  |                                         |    |
| 1.3  | 3. EQUIPMENT CONFIGURATION              | 5  |
| 1.4  | 4. TECHNICAL DATA                       | 5  |
| 1.5  | 5. Antenna Information                  | 5  |
| 1.6  |                                         |    |
| 1.7  |                                         |    |
| 1.8  | · ·                                     |    |
| 1.9  | P. DESCRIPTION OF ADDITIONAL MODEL NAME | 7  |
| 2.   | TEST SPECIFICATION                      | 7  |
| 3.   | TEST CONDITIONS                         |    |
| 3.1. | L. EQUIPMENT USED DURING TEST           | 7  |
| 3.2. |                                         |    |
| 3.3  | 3. Power Interface                      | 7  |
| 3.4  | 4. Operating Frequencies                | 8  |
| 3.5  |                                         |    |
| 3.6  |                                         |    |
| 3.7  | 7. LIST OF TEST EQUIPMENT               | 9  |
| 4.   | OVERVIEW OF TECHNICAL REQUIREMENTS      | 10 |
| 4.1  | I. Antenna Requirement                  | 10 |
| 5.   | TEST RESULTS                            | 11 |
|      |                                         |    |

Project Number: 12CA08535 File Number: MC16340 Page: 5 of 17

Model Number: FXRD-1417WA

# 1. General Product Information

# 1.1. Equipment Description

Wireless communication is established between the ViVIX-S Wireless detector and System Control Unit. The ViVIX-S system is compliant with IEEE 802.11a/b/g/n (2.4  $\mathbb{G}$ L / 5  $\mathbb{G}$ L).

# 1.2. Details of Test Equipment (EUT)

• Equipment Type : X-ray Detector

Model No. : FXRD-1417WA, FXRD-1417WB

• Operating characteristic : Short range wireless device operating in the 2400 – 2483.5 ISM frequency band

Manufacturer : Vieworks Co., Ltd.

#601 ~ 610, Suntechcity 2, 307-2, Sangdaewon-dong Jungwon GuSeongnam-city

Gyeonggi-do, 462-806, South korea

# 1.3. Equipment Configuration

The EUT is consisted of the following component provided by the manufacturer.

| Use*        | Product Type                                                                                                          | Manufacturer       | Model       | Comments        |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----------------|--|--|--|--|
| EUT         | X-ray Detector                                                                                                        | Vieworks Co., Ltd. | FXRD-1417WA | S/N: D3CABH001  |  |  |  |  |
| EUT Battery |                                                                                                                       | Vieworks Co., Ltd. | FXRB-01A    | S/N: B1-AAAT002 |  |  |  |  |
|             | *Note: Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment. SIM - Simulator (Not Subjected to Test) |                    |             |                 |  |  |  |  |

### 1.4. Technical Data

| Item                                                  | System Control Unit                                                                                                                                                                                     |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Frequency Ranges                                      | 5180 ~ 5240 MHz, 5190 ~ 5230 MHz, 5745~5825 MHz, 5755 ~ 5795 MHz                                                                                                                                        |  |  |
| Kind of modulation (s) OFDM, BPSK, QPSK, 16QAM, 64QAM |                                                                                                                                                                                                         |  |  |
| Channel                                               | 5180 ~ 5240 MHz: 4 channel (11a/n_HT20- Non DFS)<br>5190 ~ 5230 MHz: 2 channel (11n_HT40- Non DFS)<br>5745~5825 MHz: 5 channel (11a/n_HT20- Non DFS)<br>5755 ~ 5795 MHz: 2 channel (11n_HT40 - Non DFS) |  |  |
| Antenna information                                   | Integral type(PCB antenna)                                                                                                                                                                              |  |  |
| Working temperature                                   | -20 ~ 70 °C                                                                                                                                                                                             |  |  |
| Supply Voltage                                        | DC +24 V                                                                                                                                                                                                |  |  |
| *Note: All the technical dat                          | a described above were provided by the manufacturer.                                                                                                                                                    |  |  |

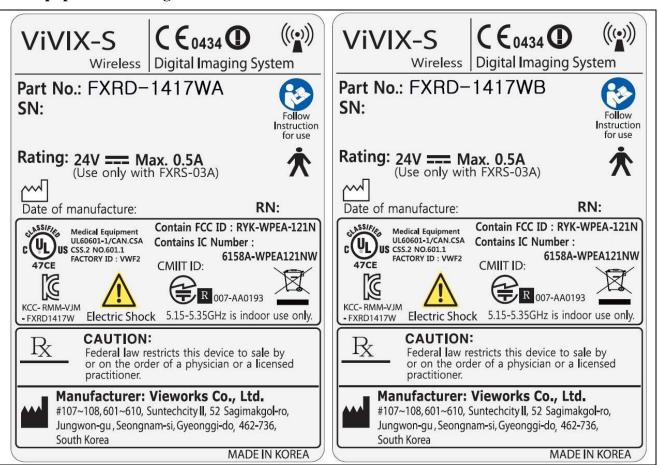
### 1.5. Antenna Information

| Item                                               | System Control Unit |
|----------------------------------------------------|---------------------|
| Antenna Model Name AEi-2450/5500DP-C1.13[Vieworks] |                     |
| Antenna Type                                       | PCB antenna         |
| Manufacturer                                       | Viework Co., Ltd.   |
| GAIN(dBi) - 2.4GHz                                 | 4.66 dBi            |

Project Number: 12CA08535 File Number: MC16340 Page: 6 of 17

Model Number: FXRD-1417WA

| GAIN(dBi) - 5GHz                                                                 | 2.19 dBi  |  |  |  |  |
|----------------------------------------------------------------------------------|-----------|--|--|--|--|
| Polarization                                                                     | Isotropic |  |  |  |  |
| *Note: All the technical data described above were provided by the manufacturer. |           |  |  |  |  |


# 1.6. Equipment Type :

| Radio and ancillary equipment for fi Radio and ancillary equipment for ve Radio and ancillary equipment for pe | ehicular mounted use                           |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| ☐ Stand alone ☐ Host connected                                                                                 |                                                |
| Self contained single unit                                                                                     | Module with associated connection or interface |

# 1.7. Technical descriptions and documents

| ]  | No.                                                             | Document Title and Description |  |  |  |
|----|-----------------------------------------------------------------|--------------------------------|--|--|--|
|    | 1                                                               | User Manual                    |  |  |  |
| *1 | *Note: The following document was provided by the manufacturer. |                                |  |  |  |

# 1.8. Equipment Marking Plate



Project Number: 12CA08535 File Number: MC16340 Page: 7 of 17

Model Number: FXRD-1417WA

# 1.9. Description of additional model name

| Model name  | Model name Designation   | Description of design                                                                                                                                                                      |
|-------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FXRD-1417WB | Identical to FXRD-1417WA | Depending on scitillator of detector, the model name is different. Scintillator is Csi(TI), model name is FXRD-1417WA. And also when the scintillator is Gadox, model name is FXRD-1417WB. |

# 2. Test Specification

The following test specifications and standards have been applied and used for testing.

### 1) FCC Part 15 C Section 15.247

Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

### 2) ANSI C63.4:2009

American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

#### 3) KDB 789033 D01 UNII General Test Procedures v01r03

Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

# 3. Test Conditions

# 3.1. Equipment Used During Test

| Use*      | Product Type              | Manufacturer           | Model                   | Comments               |
|-----------|---------------------------|------------------------|-------------------------|------------------------|
| EUT       | X-ray Detector            | Vieworks Co., Ltd.     | FXRD-1417WA             | S/N: D3CABH001         |
| EUT       | Battery                   | Vieworks Co., Ltd.     | FXRB-01A                | S/N: B1-AAAT002        |
| AE        | System control unit       | Vieworks Co., Ltd.     | FXRS-03A                | S/N : S2-ABH-D002      |
| AE        | Note PC                   | Lenovo                 | X2000                   | -                      |
| *Noto: He | e = FUT - Equipment Under | Tost AE Auviliary/Asso | ciated Equipment SIM Si | mulator (Not Subjected |

<sup>\*</sup>Note: Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment. SIM - Simulator (Not Subjected to Test)

# 3.2. Input/Output Ports

| Port<br>#                                                           | Name                                                                                    | Type* | Cable Max. >3m | Shielded | Comments                   |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|----------------|----------|----------------------------|--|
| 1                                                                   | Signal port                                                                             | I/O   | 15 m           | Shielded | SCU - X-Ray detector Cable |  |
| Note 1:                                                             | Note 1: All the interface cables and Power Cable have been provided by the manufacturer |       |                |          |                            |  |
| Note 2: *AC = AC Power Port DC = DC Power Port N/E = Non-Electrical |                                                                                         |       |                |          | Non-Electrical             |  |

I/O = Signal Input or Output Port (Not Involved in Process Control)

TP = Telecommunication Ports

# 3.3. Power Interface

| Mode<br># | Voltage<br>(V) | Current (A) | Power<br>(W) | Frequency (DC/AC-Hz) | Comments         |
|-----------|----------------|-------------|--------------|----------------------|------------------|
| Rated     | DC +24 V       | Max. 0.5 A  | -            | DC                   | Rated of Battery |
| 1         | DC +24 V       | -           | -            | DC                   |                  |

Project Number: 12CA08535 File Number: MC16340 Page: 8 of 17

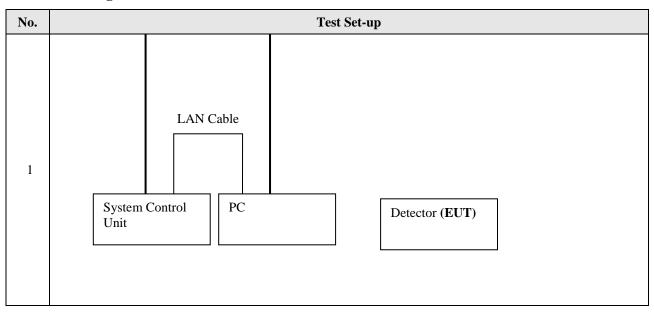
Model Number: FXRD-1417WA

# 3.4. Operating Frequencies

| Mode # | Frequency tested                                                                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Operating frequency range : 5 180 MHz ~ 5 240 MHz (11a & 11n_HT20)                                                                                 |
| 1      | 3 channels in the Transmitter modes of 11b/g/n-HT20 are tested.  - Low: 5 180 MHz / CH = 36  - Mid: 5 220 MHz / CH = 44  - Top: 5 240 MHz / CH= 48 |
|        | Operating frequency range : 5 190 MHz ~ 5 230 MHz (11n_HT40)                                                                                       |
| 2      | 3 channels in the Transmitter modes of 11n-HT40 are tested.  - Low: 5 190 MHz / CH = 38  - Top: 5 230 MHz / CH= 46                                 |

# 3.5. Operation Modes

| Mode # | Description                                                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Carrier on mode: Signal from the RF module was generated continuously for the representative channels (Low, Mid, High) by the test program incorporated |


#### \*Note:

- 1. The worst-case condition is determined by the baseline measurement of rf output power of the modular transmitter test report. The worst-case channel was determined as the channel with highest output power.
- 2. Output power from the device during the radiated spurious measurements are within expected tolerance of the module test results to justify using the original conducted antenna port measurements for the module(average power).
  - -. 11a: 12.0 dBm, 11an-HT20: 14.0 dBm, 11an-HT40: 15.0 dBm for each channel
  - -. 11a/n-HT20/40: 16.0 dBm for each channel.

Project Number: 12CA08535 File Number: MC16340 Page: 9 of 17

Model Number: FXRD-1417WA

# 3.6. Test Configurations



# 3.7. List of Test Equipment

| No | Description                            | Manufacturer             | Model               | Identifier    | Cal. Due   |
|----|----------------------------------------|--------------------------|---------------------|---------------|------------|
| 1  | Spectrum Analyzer                      | R&S                      | FSV30               | 100736        | 2013.01.10 |
| 2  | 8360B Series Swept Signal<br>Generator | НР                       | 83630B              | 3844A00786    | 2013.06.06 |
| 3  | Low Pass Filter                        | Mini-Circuits            | NLP-1200+           | V8979400903-1 | 2013.07.11 |
| 4  | High Pass Filter                       | Wainwright<br>Instrument | WHK6.0/18G-<br>10SS | 11            | 2013.07.07 |
| 5  | High Pass Filter                       | Wainwright<br>Instrument | WHJS3000-10TT       | 1             | 2013.01.10 |
| 6  | Trilog-BroadBand<br>Antenna            | Schwarzbeck              | VULB 9168           | 9168-462      | 2013.10.25 |
| 7  | Horn Antenna                           | A.H.                     | SAS-571             | 414           | 2013.03.22 |
| 8  | Preamplifier                           | R&S                      | SCU18               | 0117          | 2013.01.12 |

Project Number: 12CA08535 File Number: MC16340 Page: 10 of 17

Model Number: FXRD-1417WA

# 4. Overview of Technical requirements

| The following essential requirements and test specifications are relevant to the presumption of conformity FCC Part 15 |                                                |             |          |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|----------|--|--|--|--|--|
| C Section 15.407                                                                                                       |                                                |             |          |  |  |  |  |  |
| Reference<br>Clause No.                                                                                                | Essential technical requirements               | Test method | Reported |  |  |  |  |  |
| 15.205(a)                                                                                                              | Restricted bands of operation                  | Note 1      | [X]      |  |  |  |  |  |
| 15.209(a)                                                                                                              | Radiated emission limits, general requirements | Note 1      | [X]      |  |  |  |  |  |
| 15.203                                                                                                                 | Antenna Requirement                            |             | [ X ]    |  |  |  |  |  |

- Note 1: The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 MHz (ANSI C63.4-2009), the guidance provided in KDB 558074 and KDB 662911 D01 v02r01/D02 v01were used in the measurement of the DUT.
- Note 2: This device use already certified module so that the below specified test items are not tested in the end product evaluation. (TX Module FCC ID : RYK-WPEA121N, Test Report no. FR131667AN issued on May.02,2011 by Sporton International Inc. )
  - -. 26dB bandwidth
  - -. Tx Output Power
  - -. Band edge
  - -. Tx Spectral Power Density
  - -. Conducted Spurious Emission
  - -. Peak Excursion Ratio
  - -. Frequency Stability
  - -. Discontinuous Transmission

# 4.1. Antenna Requirement

### 4.1.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section § 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in Db that the gain of the antenna exceeds 6 dBi.

### 4.1.2. Antenna Connected Construction

The antenna used of this product is dipole Antenna Assembly and peak max gain of each antennas as below. Antenna is permanently installed in the end product enclosure and no user exchange is allowed.

| Band               | 2412 – 2462 MHz | 5745 – 5825 MHz<br>5180 – 5320 MHz<br>5500 – 5700 MHz |  |
|--------------------|-----------------|-------------------------------------------------------|--|
| Antenna Gain (dBi) | 3.6 dB Max.     | 4.7 dB Max.                                           |  |

Project Number: 12CA08535 File Number: MC16340 Page: 11 of 17

Model Number: FXRD-1417WA

# 5. Test Results

# 5.1. Transmitter radiated spurious emissions spurious emission

|                                     | TEST: Transmitter ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | adiated spurious emissions and Condu | cted spurious emission |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|--|--|--|--|
| Supplementary 15.209.               | Radiated emissions from the EUT were measured according to ANSI C63.4-2009 procedure.  1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. The antenna is is varied from 1 to 4 meters above the ground to find the maximum field strength. Measurement are made with both horizontal and vertical polarizations For dundamental investigation, the EUT was positioned for 3 orthogonal orientations.  2. For measurement below 1GHz, the resolution bandwidth is set to 100 kHz for peak detection or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.  3. For measurement above 1GHz, the resolution bandwidth is set to 1 MHz and video bandwidth is set to 1 MHz for peak measurement and 10 Hz for average measurement.  4. For 2.4GHz transmitter measurement, the spectrum from 30 MHz to 26GHz is investigated for Low, Mid and High channels.  For 5 GHz transmitter measurement, the spectrum from 30 MHz to 40GHz is investigated for Low, Mid and High channels. |                                      |                        |  |  |  |  |
| Reference Claus                     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Part15 C Section 15.407 (b)          |                        |  |  |  |  |
| Parameters reco                     | rded during the test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory Ambient Temperature       | 22 °C                  |  |  |  |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relative Humidity                    | 36 %                   |  |  |  |  |
|                                     | Frequency range Measurement Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                        |  |  |  |  |
| Fully configured the following free | I sample scanned over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30MHz to 10 <sup>th</sup> harmonics  | Enclosure Port         |  |  |  |  |

### **Configuration Settings**

| Test Item                       | Power Interface Mode # (See Section 3.3) | Test Configurations Mode # (See Section 3.6) | EUT Operation Mode # (See 3.5) |  |  |  |  |  |
|---------------------------------|------------------------------------------|----------------------------------------------|--------------------------------|--|--|--|--|--|
| Radiated Spurious emission      | 1                                        | 1                                            | 1                              |  |  |  |  |  |
| Conducted Spurious emission     | N/T                                      | N/T                                          | N/T                            |  |  |  |  |  |
| Supplementary information: None |                                          |                                              |                                |  |  |  |  |  |

# Limits

For transmitters operating in the  $5.15 \sim 5.25$  GHz band: all emissions outside of the  $5.15 \sim 5.35$  GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the  $5.25 \sim 5.35$  GHz band: all emissions outside of the  $5.15 \sim 5.35$  GHz band shall not exceed an EIRP of -27 dBm/MHz.

Devices operating in the  $5.25 \sim 5.35$  GHz band that generate emissions in the  $5.15 \sim 5.25$  GHz band must meet all applicable technical requirements for operation in the  $5.15 \sim 5.25$  GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the  $5.15 \sim 5.25$  GHz band.

For transmitters operating in the  $5.47 \sim 5.725$  GHz band: all emissions outside of the  $5.47 \sim 5.725$  GHz band shall not exceed an EIRP of -27 dBm/MHz.

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Project Number: 12CA08535 File Number: MC16340 Page: 12 of 17

Model Number: FXRD-1417WA

| Frequency (MHz) | Distance (meters) | Field Strength (dBuV/m) | Field Strength (uV/m) |
|-----------------|-------------------|-------------------------|-----------------------|
| 30-88           | 3                 | 40.0                    | 100                   |
| 88-216          | 3                 | 43.5                    | 150                   |
| 216-960         | 3                 | 46.0                    | 200                   |
| Above 960       | 3                 | 54.0                    | 500                   |

Project Number: 12CA08535 File Number: MC16340 Page: 13 of 17

Model Number: FXRD-1417WA

### 5.1.1. Radiated Spurious Emissions for Below 1 GHz

Measurement method : X Radiated Conducted

Mode of operation: Continuous Wave

Power setting: Max. Power condition declared by the manufacturer

Worst case configuration: 5GHz\_HT40

Table 1. Test data for Radiated emission for Below 1 GHz

| Radi            | Ant            | Ant Correction factors |      |               | Total Limit |                        | nit             |                   |             |
|-----------------|----------------|------------------------|------|---------------|-------------|------------------------|-----------------|-------------------|-------------|
| Frequency (MHz) | Reading (dBuV) | Detect<br>Mode         | Pol. | Distance (dB) | AF (dB/m)   | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) |
| 124.8           | 24.87          | Q.P.                   | Н    | N/A           | 11.58       | 2.10                   | 38.55           | 43.50             | 4.95        |
| 145.6           | 22.07          | Q.P.                   | V    | N/A           | 12.86       | 2.33                   | 37.25           | 43.50             | 6.25        |
| 167.1           | 22.33          | Q.P.                   | Н    | N/A           | 12.72       | 2.50                   | 37.55           | 43.50             | 5.95        |
| 180.4           | 24.83          | Q.P.                   | V    | N/A           | 11.61       | 2.62                   | 39.05           | 43.50             | 4.45        |
| 734.5           | 15.48          | Q.P.                   | Н    | N/A           | 21.37       | 6.00                   | 42.85           | 46.00             | 3.15        |
| 734.5           | 14.92          | Q.P.                   | V    | N/A           | 21.37       | 6.00                   | 42.29           | 46.00             | 3.71        |

### **Supplementary information:**

-. The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

#### Remark

- a. To get a maximum emission level from the EUT, the EUT was moved throughout the x-axis, Y-axis and Z-axis. The worst case is Y-axis.
- b. Actual = Reading + AF + AMP + CL (AF : Antenna factor, AMP : Amp gain, CL : Cable loss)
- c. Distance factor = 20log(Measurement distance / The measured distance)
- d. Margin = Limit (dBuV/m) Actual (dBuV/m)

Project Number: 12CA08535 File Number: MC16340 Page: 14 of 17

Model Number: FXRD-1417WA

# 5.1.2. Radiated Spurious Emissions for Above 1 GHz

Measurement method : Radiated Conducted

Mode of operation: Continuous Wave

Power setting: Max. Power condition declared by the manufacturer

Worst case configuration: 11a-54 bps, 11n\_HT20-MCS7,11n\_HT40-MCS7

# 802.11a\_Non DFS (5 180 - 5 240 MHz)

### Table 2. Low Channel (5 180 MHz)

| Table 2. Lo        | Table 2. Low Channel (5 100 MILE) |                |      |                    |           |                        |                 |                   |                |  |
|--------------------|-----------------------------------|----------------|------|--------------------|-----------|------------------------|-----------------|-------------------|----------------|--|
| Radiated emissions |                                   |                | Ant  | Correction factors |           |                        | Total           | Limit             |                |  |
| Frequency (MHz)    | Reading (dBuV)                    | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |  |
| 10360              | 46.78                             | Peak           | Н    | N/A                | 37.58     | -33.70                 | 50.66           | 74.00             | 23.34          |  |
| 10360              | 35.43                             | Average        | Н    | N/A                | 37.58     | -33.70                 | 39.31           | 54.00             | 14.69          |  |
| 10360              | 46.82                             | Peak           | V    | N/A                | 37.58     | -33.70                 | 50.70           | 74.00             | 23.30          |  |
| 10360              | 39.44                             | Average        | V    | N/A                | 37.58     | -33.70                 | 43.32           | 54.00             | 10.68          |  |

### Table 3. Middle Channel (5 220 MHz)

| Tuble 5: Whate Chamier (5 220 Wills) |                |                |      |                    |           |                        |                 |                   |                |  |
|--------------------------------------|----------------|----------------|------|--------------------|-----------|------------------------|-----------------|-------------------|----------------|--|
| Radiated emissions                   |                |                | Ant  | Correction factors |           |                        | Total           | Limit             |                |  |
| Frequency (MHz)                      | Reading (dBuV) | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |  |
| 10440                                | 44.78          | Peak           | Н    | N/A                | 37.67     | -33.66                 | 48.79           | 74.00             | 25.21          |  |
| 10440                                | 39.92          | Average        | Н    | N/A                | 37.67     | -33.66                 | 43.93           | 54.00             | 10.07          |  |
| 10440                                | 44.54          | Peak           | V    | N/A                | 37.67     | -33.66                 | 48.55           | 74.00             | 25.45          |  |
| 10440                                | 39.35          | Average        | V    | N/A                | 37.67     | -33.66                 | 43.36           | 54.00             | 10.64          |  |

Table 4. High Channel (5 240 MHz)

| Radi            | Ant            | Correction factors |      |               | Total     | Limit                  |                 |                   |             |
|-----------------|----------------|--------------------|------|---------------|-----------|------------------------|-----------------|-------------------|-------------|
| Frequency (MHz) | Reading (dBuV) | Detect<br>Mode     | Pol. | Distance (dB) | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) |
| 10480           | 43.94          | Peak               | Н    | N/A           | 37.61     | -33.64                 | 47.91           | 74.00             | 26.09       |
| 10480           | 33.70          | Average            | Н    | N/A           | 38.11     | -33.64                 | 38.17           | 54.00             | 15.83       |
| 10480           | 44.46          | Peak               | V    | N/A           | 38.11     | -33.64                 | 48.93           | 74.00             | 25.07       |
| 10480           | 30.31          | Average            | V    | N/A           | 38.11     | -33.64                 | 34.78           | 54.00             | 19.22       |

Project Number: 12CA08535 File Number: MC16340 Page: 15 of 17

Model Number: FXRD-1417WA

# 11n\_HT20

Table 5. Low Channel (5 180 MHz)

| Radiated emissions |                | Ant            | Correction factors |               |           | Total                  | Limit           |                   |             |
|--------------------|----------------|----------------|--------------------|---------------|-----------|------------------------|-----------------|-------------------|-------------|
| Frequency (MHz)    | Reading (dBuV) | Detect<br>Mode | Pol.               | Distance (dB) | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) |
| 10360              | 46.22          | Peak           | Н                  | N/A           | 37.58     | -33.70                 | 50.10           | 74.00             | 23.90       |
| 10360              | 36.06          | Average        | Н                  | N/A           | 37.58     | -33.70                 | 39.94           | 54.00             | 14.06       |
| 10360              | 44.69          | Peak           | V                  | N/A           | 37.58     | -33.70                 | 48.57           | 74.00             | 25.43       |
| 10360              | 35.53          | Average        | V                  | N/A           | 37.58     | -33.70                 | 39.41           | 54.00             | 14.59       |

# Table 6. Middle Channel (5 220 MHz)

| Radi            | Radiated emissions |                | Ant  | Correction factors |           |                        | Total           | Limit             |             |
|-----------------|--------------------|----------------|------|--------------------|-----------|------------------------|-----------------|-------------------|-------------|
| Frequency (MHz) | Reading (dBuV)     | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) |
| 10440           | 45.68              | Peak           | Н    | N/A                | 37.67     | -33.66                 | 49.69           | 74.00             | 24.31       |
| 10440           | 33.27              | Average        | Н    | N/A                | 37.67     | -33.66                 | 37.28           | 54.00             | 16.72       |
| 10440           | 45.45              | Peak           | V    | N/A                | 37.67     | -33.66                 | 49.46           | 74.00             | 24.54       |
| 10440           | 33.84              | Average        | V    | N/A                | 37.67     | -33.66                 | 37.85           | 54.00             | 16.15       |

Table 7. High Channel (5 240 MHz)

| Radi            | Radiated emissions |                | Ant  | Correction factors |           |                        | Total           | Limit             |                |
|-----------------|--------------------|----------------|------|--------------------|-----------|------------------------|-----------------|-------------------|----------------|
| Frequency (MHz) | Reading (dBuV)     | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
| 10480           | 42.96              | Peak           | Н    | N/A                | 37.61     | -33.64                 | 46.93           | 74.00             | 27.07          |
| 10480           | 32.44              | Average        | Н    | N/A                | 38.11     | -33.64                 | 36.91           | 54.00             | 17.09          |
| 10480           | 44.36              | Peak           | V    | N/A                | 38.11     | -33.64                 | 48.83           | 74.00             | 25.17          |
| 10480           | 33.21              | Average        | V    | N/A                | 38.11     | -33.64                 | 37.68           | 54.00             | 16.32          |

Project Number: 12CA08535 File Number: MC16340 Page: 16 of 17

Model Number: FXRD-1417WA

#### 11n HT40

### Table 8. Low Channel (5 190 MHz)

| Radiated emissions |                | Ant            | Correction factors |               |           | Total                  | Total Lin       |                   |                |
|--------------------|----------------|----------------|--------------------|---------------|-----------|------------------------|-----------------|-------------------|----------------|
| Frequency (MHz)    | Reading (dBuV) | Detect<br>Mode | Pol.               | Distance (dB) | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
| 10380              | 47.32          | Peak           | Н                  | N/A           | 37.55     | -33.69                 | 51.18           | 74.00             | 22.82          |
| 10380              | 40.69          | Average        | Н                  | N/A           | 37.55     | -33.69                 | 44.55           | 54.00             | 9.45           |
| 10380              | 47.98          | Peak           | V                  | N/A           | 37.55     | -33.69                 | 51.84           | 74.00             | 22.16          |
| 10380              | 40.82          | Average        | V                  | N/A           | 37.55     | -33.69                 | 44.68           | 54.00             | 9.32           |

### Table 9. High Channel (5 230 MHz)

| Radiated emissions |                |                | Ant  | Correction factors |           |                        | Total           | Limit             |             |
|--------------------|----------------|----------------|------|--------------------|-----------|------------------------|-----------------|-------------------|-------------|
| Frequency (MHz)    | Reading (dBuV) | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Amp<br>gain+CL<br>(dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) |
| 10460              | 44.32          | Peak           | Н    | N/A                | 38.16     | -33.65                 | 48.83           | 74.00             | 25.17       |
| 10460              | 31.27          | Average        | Н    | N/A                | 37.62     | -33.65                 | 35.24           | 54.00             | 18.76       |
| 10460              | 47.13          | Peak           | V    | N/A                | 37.62     | -33.65                 | 51.10           | 74.00             | 22.90       |
| 10460              | 33.06          | Average        | V    | N/A                | 37.62     | -33.65                 | 37.03           | 54.00             | 16.97       |

### **Supplementary information:**

-. Measuring frequencies from 1 GHz to the 10<sup>th</sup> harmonic of highest fundamental Frequency. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.

#### Remark

- a. "\*" means the restricted band.
- b. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using Peak/average detector mode if frequency was in restricted band. Otherwise the frequency was in outside of restricted band, only peak detector should be used.
- c. Average test would be performed if the peak result were greater than the average limit and frequency was in the restricted band.
- d. To get a maximum emission level from the EUT, the EUT was moved throughout the x-axis, Y-axis and Z-axis. The worst case is Y -axis.
- e. Actual = Reading + AF + AMP + CL (AF : Antenna factor, AMP : Amp gain, CL : Cable loss)
- f. Distance factor = 20log(Measurement distance / The measured distance)
- g. Margin = Limit (dBuV/m) Actual (dBuV/m)
- h. If frequency was outside of restricted band, the calculation method for peak limit is same as below:  $68.23 \text{ dBuV/m} = \text{EIRP} 20 \log(d) + 104.77 = -27 20 \log(3) + 104.77$

\*distance: 3 m, \*EIRP: -27 dBm/MHz

Project Number: 12CA08535 File Number: MC16340 Page: 17 of 17

Model Number: FXRD-1417WA

### 5.1.3. Radiated Restricted Band Edge Measurements

Measurement method : Radiated Conducted

Mode of operation: Continuous Wave

#### Table 10. Measurement for restricted band of 11a - Non DFS

| Radiated emissions |                |                | Ant  | Correction factors |           |                 | Total           | Limit             |                |
|--------------------|----------------|----------------|------|--------------------|-----------|-----------------|-----------------|-------------------|----------------|
| Frequency (MHz)    | Reading (dBuV) | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Cable loss (dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
| 5048.20            | 17.93          | Peak           | V    | -9.54              | 33.31     | 8.96            | 50.66           | 74.00             | 23.34          |
| 5134.80            | 12.40          | Average        | V    | -9.54              | 33.38     | 9.20            | 45.44           | 54.00             | 8.56           |
| 4700.40            | 17.92          | Peak           | Н    | -9.54              | 32.53     | 8.85            | 49.76           | 74.00             | 24.24          |
| 5119.70            | 12.95          | Average        | Н    | -9.54              | 33.29     | 9.34            | 46.04           | 54.00             | 7.96           |

Table 11. Measurement for restricted band of 11n – Non DFS(5 GHz)

| Radiated emissions |                |                | Ant  | Correction factors |           |                 | Total           | Limit             |                |
|--------------------|----------------|----------------|------|--------------------|-----------|-----------------|-----------------|-------------------|----------------|
| Frequency (MHz)    | Reading (dBuV) | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Cable loss (dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
| 4921.40            | 17.80          | Peak           | V    | -9.54              | 33.08     | 9.40            | 50.74           | 74.00             | 23.26          |
| 5119.70            | 12.54          | Average        | V    | -9.54              | 33.29     | 9.34            | 45.63           | 54.00             | 8.37           |
| 4875.90            | 17.33          | Peak           | Н    | -9.54              | 32.81     | 9.31            | 49.91           | 74.00             | 24.09          |
| 4702.60            | 13.23          | Average        | Н    | -9.54              | 32.56     | 8.88            | 45.13           | 54.00             | 8.87           |

### Table 12. Measurement for restricted band of 11n(HT20) – Non DFS(5 GHz)

| Radiated emissions |                |                | Ant  | Correction factors |           |                 | Total           | Limit             |                |
|--------------------|----------------|----------------|------|--------------------|-----------|-----------------|-----------------|-------------------|----------------|
| Frequency (MHz)    | Reading (dBuV) | Detect<br>Mode | Pol. | Distance (dB)      | AF (dB/m) | Cable loss (dB) | Actual (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
| 4849.90            | 18.18          | Peak           | V    | -9.54              | 32.60     | 9.18            | 50.42           | 74.00             | 23.58          |
| 5147.80            | 13.54          | Average        | V    | -9.54              | 33.43     | 9.08            | 46.51           | 54.00             | 7.49           |
| 4770.80            | 17.17          | Peak           | Н    | -9.54              | 32.33     | 8.96            | 48.92           | 74.00             | 25.08          |
| 4947.40            | 12.03          | Average        | Н    | -9.54              | 33.27     | 9.40            | 45.16           | 54.00             | 8.84           |

#### Remark

- 1) Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using Peak/average detector mode if frequency was in restricted band. Otherwise the frequency was in outside of restricted band, only peak detector should be used.
- 2) Average test would be performed if the peak result were greater than the average limit and frequency was in the restricted band.
- 3) To get a maximum emission level from the EUT, the EUT was moved throughout the x-axis, Y-axis and Z-axis. The worst case is Y -axis.
- 4) Actual = Reading + AF + AMP + CL (AF : Antenna factor, AMP : Amp gain, CL : Cable loss)
- 5) Distance factor =  $20\log(Measurement distance / The measured distance)$
- 6) Margin = Limit (dBuV/m) Actual (dBuV/m)
- 7) If frequency was outside of restricted band, the calculation method for peak limit is same as below:  $68.23 \text{ dBuV/m} = \text{EIRP} 20 \log(d) + 104.77 = -27 20 \log(3) + 104.77$

\*distance: 3 m, \*EIRP: -27 dBm/MHz