

RADIO TEST REPORT

Product	:	IEEE 802.11ax/ac/a/b/g/n 2x2 WiFi with Bluetooth5.0 Combo Module
Model Name	:	WNFB-265AXI(BT)
Series Model	:	AP12275_M2P
FCC ID	:	RYK-WNFB265AXIBT
Test Regulation	:	FCC 47 CFR Part 15 Subpart C (Section 15.247)
Received Date	:	Jul. 22, 2020
Test Date	:	Nov. 16, 2020 ~ Jan. 29, 2021
Issued Date	:	Feb. 22, 2021
Applicant	:	SparkLAN Communications, Inc. 8F., No.257, Sec. 2, Tiding Blvd., Neihu District, Taipei City 11493, Taiwan (R.O.C.)
Issued By	:	Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report are responsible of the test sample(s) provided by the client only and are not to be used to indicate applicability to other similar products.

REVISION HISTORY

Original Test Report No.: 4789558390-US-R3-V0

Rev.	Test report No. 4789558390-US-R3-V0	Date	Page revised	Contents
Original	4789558390-US-R3-V0	Feb. 22, 2021	-	Initial issue

Table of Contents

	. Attestation of Test Results	4
2.	. Summary of Test Results	5
3.	. Test Methodology and Reference Procedure	s6
4.	. Facilities and Accreditation	6
5.	. Measurement Uncertainty	7
6.	. Equipment under Test	8
	6.1. Description of EUT	
	6.2. Channel List	
	6.3. Test Condition6.4. Description of Available Antennas	
	6.4. Description of Available Antennas6.5. Test Mode Applicability and Tested Char	
7.	. Test Equipment	
8.	. Description of Test Setup	
8. 9.		
9.	 Test Results 9.1. Channel Bandwidth 	 16
9.	 9.1. Channel Bandwidth 9.2. Conducted output power 	16
9.	 Test Results	
9.	9.1. Channel Bandwidth 9.2. Conducted output power 9.3. Hopping Channel Separation 9.4. Number of Hopping Frequency Used	
9.	9.1. Channel Bandwidth 9.2. Conducted output power 9.3. Hopping Channel Separation 9.4. Number of Hopping Frequency Used 9.5. Dwell Time on Each Channel	16 16 18 20 22 25
9.	Test Results 9.1. Channel Bandwidth 9.2. Conducted output power 9.3. Hopping Channel Separation 9.4. Number of Hopping Frequency Used 9.5. Dwell Time on Each Channel 9.6. Conducted Out of Band Emission	16 16 18 20 22 25 30
9.	9.1. Channel Bandwidth	16 16 18 20 22 25 30 35
9.	9.1. Channel Bandwidth	16 16 18 20 22 25 30 30 35 48

1. Attestation of Test	t Results
APPLICANT:	SparkLAN Communications, Inc. 8F., No.257, Sec. 2, Tiding Blvd., Neihu District, Taipei City 11493, Taiwan (R.O.C.)
MANUFACTURER	SparkLAN Communications, Inc. 8F., No.257, Sec. 2, Tiding Blvd., Neihu District, Taipei City 11493, Taiwan (R.O.C.)
EUT DESCRIPTION:	IEEE 802.11ax/ac/a/b/g/n 2x2 WiFi with Bluetooth5.0 Combo Module
MODEL:	WNFB-265AXI(BT)
SERIES MODEL:	AP12275_M2P
SAMPLE STAGE:	Identical Prototype
DATE of TESTED:	Nov. 16, 2020 ~ Jan. 29, 2021

APPLICABLE STANDARDS

STANDARD

Test Results PASS

FCC 47 CFR PART 15 Subpart C (Section 15.247)

Underwriters Laboratories Taiwan Co., Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Taiwan Co., Ltd. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Underwriters Laboratories Taiwan Co., Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Underwriters Laboratories Taiwan Co., Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Prepared By:

Sally Lu Project Handler Date : Feb. 22, 2021

Approved and Authorized By:

lan

Waternil Guan Date : Feb. 22, 2021 Engineer

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

2. Summary of Test Results

Summary of Test Results		
FCC Clause Test Items		Result
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS
15.247(b)	Conducted Output Power	PASS
15.247(d)	Antenna Port Emission	PASS
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS
15.207	AC Power Conducted Emission	PASS
15.203	Antenna Requirement	PASS

Note:

1. For the Radiated Band Edge test plots were recorded in Appendix I, the Radiated Emissions test plots were recorded in Appendix II.

3. Test Methodology and Reference Procedures

The tests documented in this report were performed in accordance with 47 CFR FCC Part 2, KDB558074 D01 Meas Guidance v05r02, KDB414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013.

4. Facilities and Accreditation

Test Location	Underwriters Laboratories Taiwan Co., Ltd.	
Address	Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan	
Accreditation Certificate	Underwriters Laboratories Taiwan Co., Ltd. is accredited by TAF, Laboratory Code 3398. The full scope of accreditation can be viewed at http://accreditation.taftw.org.tw/taf/public/basic/viewApplyItems.action?unitNo=3398	

5. Measurement Uncertainty

For statement of conformity, accuracy method (Section 8.2.4 and 8.2.5 of ISO Guide 98-4) was applied as decision rule for measurement in this test report.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted disturbance at mains terminals ports	0.15MHz ~ 30MHz	2	1.5
RF Conducted	9 kHz - 40GHz	2	1.0
Radiated disturbance below 30MHz	9 kHz - 30 MHz	2	1.9
Radiated disturbance below 1 GHz	30MHz ~ 1GHz	2	5.4
Radiated disturbance above 1GHz	1GHz ~ 40GHz	2	4.7

6. Equipment under Test

6.1. Description of EUT

Product	IEEE 802.11ax/ac/a/b/g/n 2x2 WiFi with Bluetooth5.0 Combo Module		
Model Name	WNFB-265AXI(BT)		
Series Model	AP12275_M2P		
Operating Frequency	2402MHz ~ 2480MHz		
Modulation	GFSK, $\pi/4$ -DQPSK and 8DPSK		
Transfer Rate	Up to 3 Mbps		
Number of Channel	79		
Maximum Output Power	8.15 dBm		
Normal Voltage	3.3 Vdc		
S/N	20B65E2100031		
Software Version	N/A		

1. The models difference table as below:

Brand	Model	Difference
SparkLAN	WNFB-265AXI(BT)	-
Ampak	AP12275_M2P	Same as WNFB-265AXI(BT), marketing purpose only.

*Except above change, there are no change to technical construction that is included circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction.

2. The EUT contains following accessory devices.

Product	Brand	Model	Description
			2.4GHz: 2.02dBi
Dipole Antenna 1	SparkLAN	AD-103AG	5GHz: 2.03dBi
			RP-SMA
			2.4GHz: 3.14dBi
Dipole Antenna 2	SparkLAN	AD-302N	5GHz: 2.73dBi
			RP-SMA
			2.4GHz: 3.14dBi
Dipole Antenna 3	SparkLAN	AD-303N	5GHz: 3.24dBi
			RP-SMA

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer the manufacturer's or user's manual.

Test report No.	: 4789558390-US-R3-V0
Page	: 10 of 59
Issued date	: Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT

6.2. Channel List

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

6.3. Test Condition

Test Item	Test Site No.	Environmental Condition	Input Power	Test Date	Tested by
Antenna Port Conducted Measurement	SR4	23~26°C / 63~68%RH	120Vac / 60 Hz	Nov. 16, 2020 ~ Jan. 29, 2021	Mike Cai
Radiated Spurious Emission	966-2	22~26°C / 62~68%RH	120Vac / 60 Hz	Dec. 6, 2020 ~ Jan. 29, 2021	Mike Cai
AC power Line Conducted Emission	SR1	23~25°C / 63~68%RH	120Vac / 60 Hz	Dec. 6, 2020 ~ Jan. 29, 2021	Mike Cai

Note: FCC Test Firm Registration Number: 498077

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

6.4. Description of Available Antennas

Ant. No.	Transmitter Circuit	Brand Name	Model Name	Ant. Type	Maximum Gain (dBi)	Remark
1	Chain (0)+(1)	SparkLAN	AD-103AG	Dipole	2.4GHz: 2.02 5GHz: 2.03	Length of Antenna cable:150mm
2	Chain (0)+(1)	SparkLAN	AD-302N	Dipole	2.4GHz: 3.14 5GHz: 2.73	Connector type of Antenna cable: I-
3	Chain (0)+(1)	SparkLAN	AD-303N	Dipole	2.4GHz: 3.14 5GHz: 3.24	PEX/MHF4 to RP- SMA(F)

Note: The above antenna information was provided from customer and for more detailed features description, please refer the manufacturer's specification or user's manual.

6.5. Test Mode Applicability and Tested Channel Detail

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- For below 1 GHz radiated emission and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- For Antenna Port Conducted Measurement, this item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.
- For AC power line conducted emissions, the pre-scan has been determined by AC power 120Vac/60Hz (worst case)
- The modulation and bandwidth are similar for $\pi/4$ -DQPSK mode and 8DPSK mode, therefore investigated 8DPSK mode to representative mode in test report.
- The antennas No.2/ No.3 has the highest gain, therefore, the fundamental of the EUT was investigated in two antennas, it was determined antenna No.3 was worst-case, the Antenna No.3 was selected for the final test.

Test item	Modulation Type	Available Channel	Test Channel	Packet Type
Radiated Emissions	GFSK	0 to 78	0,39,78	DH5
(Above 1GHz)	8DPSK	0 to 78	0,39,78	3DH5
Radiated Emissions (Below 1GHz)	GFSK	0 to 78	0	DH5
AC Power Line Conducted Emission	GFSK	0 to 78	0	DH5
Antenna Port Conducted	GFSK	0 to 78	0,39,78	DH1*,DH3*, DH5
Measurement	8DPSK	0 to 78	0,39,78	3DH1*,3DH3*,3DH5

* Only for Dwell Time on Each Channel test

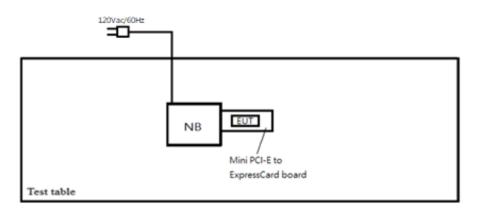
7. Test Equipment

Test Equipment List									
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Expired date				
Radiated Spurious Emission									
Spectrum Analyzer	Keysight	N9010A	MY56070827	2020/11/11	2021/11/10				
EMI Test Receiver	Rohde & Schwarz	ESR7	101754	2019/12/17 2020/12/11	2020/12/16 2021/12/10				
Loop Antenna	ETS lindgren	6502	00213440	2019/12/19	2020/12/18				
-	Lisingion	0302	00210110	2020/12/25	2021/12/24				
Trilog- Broadband	Schwarzbeck &	VULB 9168 &	774 & AT-	2020/1/3	2021/1/2				
Antenna with 5dB Attenuator	EMCI	MCI N-6-05		2021/1/13	2022/1/12				
Horn Antenna	0.1	BBHA 9120 D	01690	2020/1/3	2021/1/2				
(1-18 GHz)	Schwarzbeck	BBHA 9120 D	01690	2020/12/30	2021/12/29				
Horn Antenna	Schwarzbeck	BBHA 9170	781	2019/12/27	2020/12/26				
(18-40 GHz)	Schwarzbeck	ДДНА 9170	/81	2020/12/30	2021/12/29				
Preamplifier (30-1000 MHz)	EMCI	EMC330E	980405	2020/6/9	2021/6/8				
Preamplifier (1-18 GHz)	EMCI	EMC051835BE	980406	2020/2/4	2021/2/2				
Preamplifier (18-40GHz)	EMCI	EMC184040SEE	980426	2020/5/19	2021/5/18				
Cables	Hanyitek	K1K50-UP0264- K1K50-2500	170214-4 & 170425-2	2020/7/2	2021/7/1				
Cables	Hanyitek	K1K50-UP0264-	170214-1 &	2020/1/8	2021/1/7				
Cubics	Thanyhok	K1K50-2500	170214-2	2021/1/7	2022/1/6				

	Test Equipment List								
Equipment	Manufacturer Model No. Serial No.		Cal. Date	Expired date					
	Antenna Port Conducted Measurement								
Spectrum Analyzer	Keysight	N9010A	MY56070834	2020/11/6	2021/11/5				
Pulse Power	Anritsu	MA2411B	1531202	2019/12/23	2020/12/22				
Sensor	Allitisu	WIA2411D	1551202	2020/12/21	2021/12/20				
Power Meter	Anritsu	ML2495A	1645002	2019/12/23	2020/12/22				
Power Meter				2020/12/21	2021/12/20				
	AC po	wer Line Con	ducted Emission						
EMI Test Receiver	Rohde & Schwarz	ESR7	101753	2020/11/17	2021/11/16				
Two-Line V- Network	Rohde & Schwarz	ENV216	102136	2020/8/19	2021/8/18				
Impuls-Begrenzer Pulse Limiter	Rohde & Schwarz	ESH3-Z2	102219-Qt	2020/8/12	2021/8/11				
Cables	TITAN	CFD200	T0732ACFD20 020A300-1	2020/9/1	2021/8/31				

UL Software					
Description Name Vers					
Radiated measurement	EZ_EMC	1.1.4.2			
Conducted measurement	Keysight.TestSystem	1.0.0.0			
AC power Line Conducted Emission	EZ_EMC	1.1.4.2			

8. Description of Test Setup


Support Equipment

Equipment	Brand Name	Model Name	S/N	Remark
Notebook	Lenovo	T430	PBE38AK	N/A
Mini PCI-E to ExpressCard board	N/A	N/A	N/A	N/A

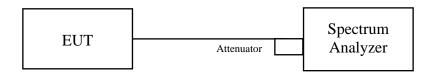
Test Setup

Controlled using a bespoke application (Bluetool V1.9.7.4) on a test Notebook. The application was used to enable a continuous transmission mode and to select the test channels, data rates, modulation schemes and power setting as required.

Setup Diagram for Test

9. Test Results

9.1. Channel Bandwidth


Requirements

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

Test procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

Test Setup

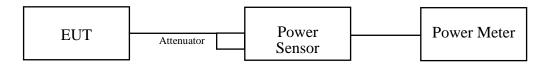
The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Test Data

Channel	Frequency (MHz)	20dB Bandy	vidth (MHz)
	Frequency (writz)	GFSK	8DPSK
0	2402	0.935	1.301
39	2441	0.938	1.301
78	2480	0.935	1.301

Spectrum Plot	of Worst Value
GFSK / CH 39	8DPSK / CH 78
Spectrum Image: Constraint of the sector of th	Spectrum Image: Constraint of the second secon
Top dBm F1 F2 CF 2.441 GHz 1001 pts Span 3.0 MHz Marker Type Bef Trc X-value Function Type Bef Trc X-value Function Function Result D2 M1 1 2.4405.039 GHz -15.70 dBm M3 1 2.4412278 GHz 4.69 dBm Marker	Top dBm F1 F2 CF 2.48 GHz 1001 pts Span 3.0 MHz Marker Type Ref Trc X-value Function Yupe Ref Trc X-value Function Function Result 02 1 1.247941558 GHz 1.11 dB 1.11 dB 02 M3 1 2.4602218 GHz 4.29 dBm Marker

9.2. Conducted output power


Requirements

The Maximum Output Power Measurement is 125mW.

Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Test Setup

The loss between RF output port of the EUT and the input port of the Power Meter has been taken into consideration.

Test Data

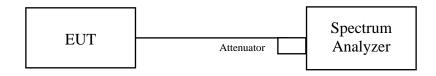
Peak Power

Channel	Frequency (MHz)	-	: Power W)	Output Power (dBm)		Power Limit (mW)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK		
0	2402	3.83	5.96	5.83	7.75	125	Pass
39	2441	4.10	6.53	6.13	8.15	125	Pass
78	2480	5.05	6.47	7.03	8.11	125	Pass

Average Power (Reference Only)

Channel	Frequency (MHz)	Output Power (mW)		Output Power (dBm)		
		GFSK	8DPSK	GFSK	8DPSK	
0	2402	3.57	3.23	5.53	5.09	
39	2441	3.85	3.60	5.86	5.56	
78	2480	4.75	3.63	6.77	5.6	

9.3. Hopping Channel Separation

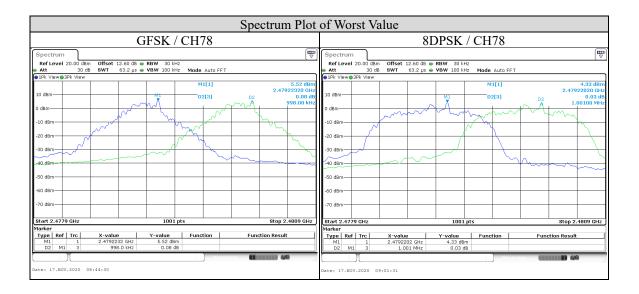

Requirements

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

Test procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.

Test Setup


The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Test Data

Mode	Channel	Frequency (MHz)	Adjacent Hopping Channel Separation (MHz)	Limit (MHz)	Result
	00	2402	1.001	0.623	PASS
GFSK	39	2441	1.001	0.625	PASS
	78	2480	0.998	0.623	PASS
	00	2402	1.001	0.867	PASS
8DPSK	39	2441	1.001	0.867	PASS
	78	2480	1.001	0.867	PASS

Note: Limit (MHz) = two/three of 20dB Bandwidth

9.4. Number of Hopping Frequency Used


Requirements

At least 15 channels frequencies and should be equally spaced.

Test procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Test Data

There are 79 hopping frequencies in the hopping mode. On the plots, it shows that the hopping frequencies are equally spaced.

	GFSK												
Spectrum													
RefLevel 20.00 dB		50 dB 👄 RBW 100 k .7 μs 👄 VBW 300 k		uto FFT									
●1Pk Max		· -											
10 dBm		n h a a a a n P	00044	nnondoa									
plabm +/+/+++++	┟╫╫╢╢╢╢	$\{A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,$	AAAA	AAAAAAAA	HAAAAA								
-10 aBm	<u> </u>	VVVVV	<u> </u>	~ V V V V V V V	VVVV								
					*								
-20 dBm													
-30 dBm					l.								
-40 dBm					"hunder								
-50 dBm													
-60 dBm													
-70 dBm													
Start 2.4415 GHz		1001	l pts	1 1	Stop 2.4835 GHz								
				Measuring									
Date: 17.NOV.2020	09:26:29												
Spectrum													
Ref Level 20.00 dB	m Offset 12.6												
🛑 Att 30 d		.9 µs 👄 VBW 300 k	Hz Mode Au	uto FFT									
Att 30 c IPk Max		.9 µs 👄 VBW 300 k	Hz Mode Au	uto FFT									
● 1Pk Max		.9 µs 👄 VBW 300 k	Hz Mode Au	uto FFT									
		.9 μs 🖝 VBW 300 k	Hz Mode Au	uto FFT									
● 1Pk Max		.9 μs • VBW 300 k	HZ Mode Au										
● 1Pk Max 10 dBm 0 0 0 0 0 0 0 0		.9 µs • VBW 300 k	HZ Mode Au										
10 dBm 0 dBm -10 dBm		.9 µs ● VBW 300 k											
IPk Max I0 dBm O dBm		.9 µs • VBW 300 k											
10 dBm 0 dBm -10 dBm		.9 µs ● VBW 300 k											
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm													
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm		.9 μs • VBW 300 k											
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		.9 μs • VBW 300 k											
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm		.9 μs • VBW 300 k											
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm		.9 μs • VBW 300 k											
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm		.9 μs • YBW 300 k											
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm		.9 μs • VBW 300 k			Stop 2.4415 GHz								
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm					Stop 2.4415 GHz								

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

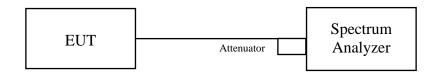
				8DI	PSK				
Spectrun	n								
Ref Leve			et 12.60 dB 👄						
Att 1Pk Max	30	db SWT	94.7 µs 🖷	VBW 300 k	Hz Mode	Auto FFT			
10 dBm									
	1. 1	N.	1		يار وار	4			1
66882464	<u>linni (</u> m	e hall water	pdydarhidhidae	hand the second states and the second states	ՐՆՐՆՈՒՆՆ	<u> l'herrar</u> ter	et al rando	WLAND AND A	4r4
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M
-40 00111									
-50 dBm									www
-60 dBm									
-70 dBm									
Start 2.44	15 GHz			1001	l pts			Stop 2.	.4835 GHz
	2					Manag			94
)	-		
		09:28:40				J			
Spectrun	n			RBW 100 k	Hz				
Spectrun Ref Leve Att	n I 20.00 (et 12.60 dB 👄	RBW 100 k VBW 300 k		Auto FFT			Ţ
Spectrun Ref Leve Att	n I 20.00 (dBm Offs	et 12.60 dB 👄			Auto FFT			V
Spectrun Ref Leve Att 1Pk Max	n I 20.00 (dBm Offs	et 12.60 dB 👄			Auto FF T			
Spectrun Ref Leve Att 1Pk Max	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode				
Spectrun Ref Leve Att 1Pk Max	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		y lange line		
Spectrun Ref Leve Att 1Pk Max 10 dBm 0 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB 👄	VBW 300 k	Hz Mode		Angra	www.	
Spectrun Ref Leve Att 1Pk Max 10 dBm 0 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		J. Cherly March	www.	
Spectrun Ref Leve Att 10 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		al Chronener	w ^w w ⁿ wha ^w	
Spectrun Ref Leve Att 10 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		h Chr. h p. h p.	www.lutur	
Spectrum Ref Leve Att 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		Angeline	internet and and	
Spectrun Ref Leve Att 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		- Contyrtion	aprogram and a second	
Spectrum Ref Leve Att 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		h landapalipa	www.warty.chart	
Spectrun Ref Leve Att 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		L. Contopolition	aprar yalar	
Spectrum Ref Leve Att 10 dBm -10 dBm -10 dBm -20 dBm -30 dB	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		Lange Contraction		
Spectrun Ref Leve Att 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -31 dB	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		h Chr. h phys		
Spectrum Ref Leve Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode		h Chr. h pulan		
Spectrum Ref Leve Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm	n I 20.00 i 30	dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	Hz Mode				
Spectrum Ref Leve Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm		dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●		HZ Mode				
Spectrum Ref Leve Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm		dBm Offs) dB SWT	et 12.60 dB ● 94.9 µs ●	VBW 300 k	HZ Mode				4415 GHz

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000

Facsimile (FAX) :+886-3-583-7948

9.5. Dwell Time on Each Channel

Requirements


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- f. Measure the maximum time duration of one single pulse.

```
A Period Time = (channel number)*0.4
For normal mode:
DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)
DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)
For AFH mode:
DH1 Time Slot: Reading * (800/2)*31.6/(channel number)
DH3 Time Slot: Reading * (800/4)*31.6/(channel number)
DH5 Time Slot: Reading * (800/6)*31.6/(channel number)
```

<u>Test Setup</u>

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, TaiwanTelephone:+886-2-7737-3000Facsimile (FAX):+886-3-583-7948Doc No: 17-EM-F0876 / 5.0

Test Data

GFSK

Modulation	Channel	Frequency (MHz)	Length of transmission time (msec)	Result (msec)	Limit (msec)	Result
DH1	39	2441	0.210	67.200	400	PASS
DH3	39	2441	1.460	233.600	400	PASS
DH5	39	2441	2.720	290.133	400	PASS

8DPSK

Modulation	Channel	Frequency (MHz)	Length of transmission time (msec)	Result (msec)	Limit (msec)	Result
3DH1	39	2441	0.207	66.240	400	PASS
3DH3	39	2441	1.470	235.200	400	PASS
3DH5	39	2441	2.710	289.067	400	PASS

Note :

1. In normal mode:

DH1 hopping rate is 1600 hops/s with 2 slots in 79 hopping channels. With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 2 / 79) x (0.4 x 79) = 320.08 hops.

DH3 hopping rate is 1600 hops/s with 4 slots in 79 hopping channels. With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 4 / 79) x (0.4 x 79) = 160 hops.

DH5 hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.

2. Dwell time (ms) = Hops Over Occupancy Time (hops) x Length of transmission time (ms).

(AFH mode)

GFSK

Modulation	Channel	Frequency (MHz)	Length of transmission time (msec)	Result (msec)	Limit (msec)	Result
DH1	39	2441	0.210	33.600	400	PASS
DH3	39	2441	1.460	116.800	400	PASS
DH5	39	2441	2.720	145.067	400	PASS

8DPSK

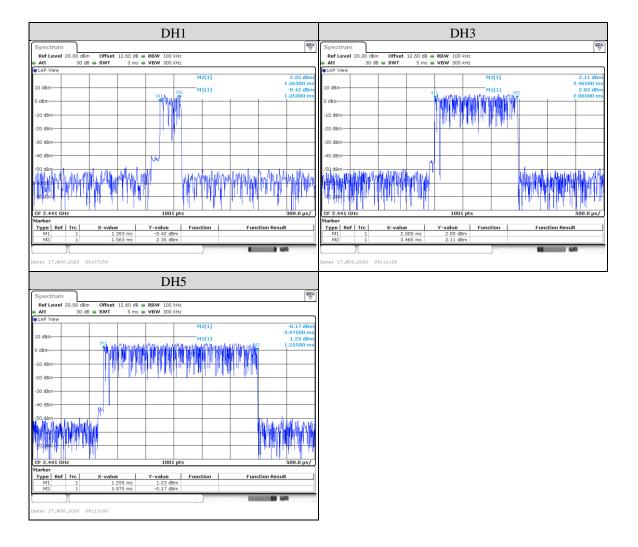
Modulation	Channel	Frequency (MHz)	Length of transmission time (msec)	Result (msec)	Limit (msec)	Result
3DH1	39	2441	0.207	33.120	400	PASS
3DH3	39	2441	1.470	117.600	400	PASS
3DH5	39	2441	2.710	144.533	400	PASS

Note :

1. In AFH (adaptive frequency hopping) mode:

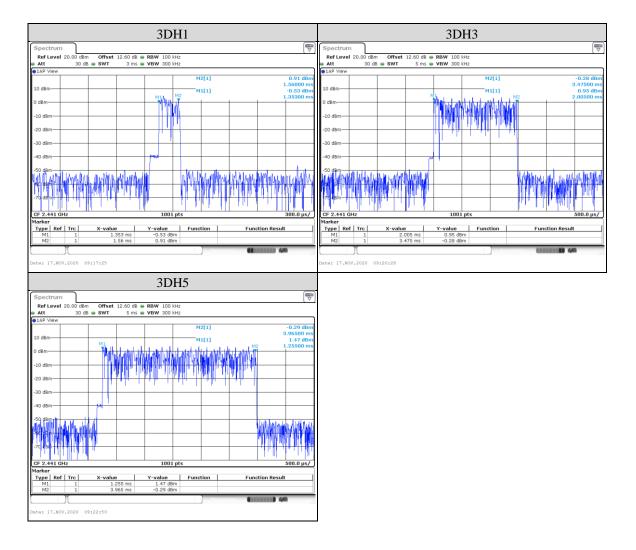
DH1 hopping rate is 800 hops/s with 2 slots in 20 hopping channels. With channel hopping rate (800 / 2 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 2 / 20) x (0.4 x 20 = 160 hops.

DH3 hopping rate is 800 hops/s with 4 slots in 20 hopping channels. With channel hopping rate (800 / 4 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 4 / 20) x (0.4 x 20) = 80 hops.


DH5 hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20 = 53.33 hops.

2. Dwell time (ms) = Hops Over Occupancy Time (hops) x Length of transmission time (ms).

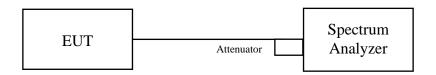
: 4789558390-US-R3-V0
: 28 of 59
: Feb. 22, 2021
: RYK-WNFB265AXIBT


GFSK

Test report No.	: 4789558390-US-R3-V0
Page	: 29 of 59
Issued date	: Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT

8DPSK

9.6. Conducted Out of Band Emission


Requirements

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b) (3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209 (a) is not required.

Test procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

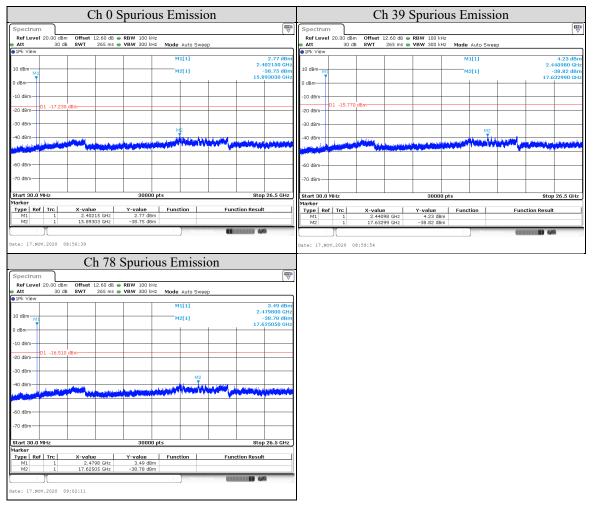
Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Test report No.	: 4789558390-US-R3-V0
Page	: 31 of 59
Issued date	: Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT

Test Data

GFSK


	Ch 0 Spurious Emission										C	h 39 S	Spuri	ous E	missi	on			
Spectrun	n								Ē	Spectru	n								
👄 Att	1 20.00 dBr 30 dl		12.60 dB 👄 265 ms 👄	RBW 100 ki VBW 300 ki		Auto Sweep	0			Ref Leve Att	1 20.00 dBn 30 dB		12.60 dB 👄 265 ms 👄			Auto Swee	p		(.)
1Pk View	1	1			M	11[1]			5.22 dBm	1Pk View			1	1	N	11[1]			5.19 dBm
10 dBm									402150 GHz	10 dBm									40980 GHz
Ť					M	12[1]			-37.82 dBm 649760 GHz						Ň	12[1]		17.6	39.26 dBm 58580 GHz
0 dBm										0 dBm							<u> </u>		
-10 dBm			-							-10 dBm—							ļ!		
-20 dBm	-D1 -14.780) dBm								-20 dBm-	-D1 -14.810	dBm							
-30 dBm						M2				-30 dBm-						M2			
-40 dBm-	1.1.1.1.1.1.1	umality .			1.	MINAM	and the second	a destados o	t tradicitution de a	-40 dBm-		, Maria				Allen Jak	a station .	a landi a ta	1.000 11.000 -
and and and and a state		and the second se			the second staff.	Proposed BAR				ومرادل والدري			ياراند. ورو _{ل و} روار المراجع			Property and	A A A A A A A A A A A A A A A A A A A		
-60 dBm										-60 dBm									
-70 dBm										-70 dBm							ļ!		
Start 30.0 Marker	MHz			3000	0 pts			Stop	p 26.5 GHz	Start 30.0 Marker	MHz			3000	0 pts			Stop	26.5 GHz
Type Re	f Trc	X-valu	e	Y-value 5.22 dB	Func	tion	Fun	ction Result	t	Type Re		X-valu		Y-value		tion	Func	ction Result	
M1 M2	1	17.649	215 GHz 976 GHz	-37.82 dB	sm Sm					M1 M2	1		198 GHz 158 GHz	5.19 d -39.26 d					
						Measuri			6	[][Measur			1
Date: 17.N	ov.2020 0	8:38:55								Date: 17.N	ov.2020 0	8:42:48							
		C.	h 78 S	Spuric	ous E	missi	on												
Spectrun	n								Ē										
Ref Leve	el 20.00 dBr			RBW 100 k					(*										
Att 1Pk View	30 di	B SWT	265 ms 👳	VBW 300 ki	Hz Mode	Auto Sweep	0												
					M	12[1]			-38.86 dBm										
10 dBm-14		-			M	1[1]			648870 GHz 6.44 dBm										
0 dBm-								2.4	479800 GHz										
-10 dBm-	D1 -13.560) dBm																	
-20 dBm																			
-30 dBm																			
						M2													
-40 dBm-	السراقين استر		مىلىر اور ورايار.	المراجع المراجع	and an all shares	The second	ANNIN .	الم الأقريب	يصبحه الأطر										
and the second		1	and a stranger	a she and a second															
-60 dBm																			
-70 dBm																			
CF 13.265	GHz			3000	0 pts			Span	26.47 GHz										
Marker																			
Type Re M1	ef Trc 1	X-valu 2.47	e 798 GHz	Y-value 6.44 dB	Func Im	tion	Fun	ction Result	t										
M2	1		187 GHz	-38.86 dB				-	-										
L						Measuri													
Date: 17.N	OV.2020 0	8:46:05																	
										L									

Ch 0 Band	l Edge			Ch	78 Ba	nd Edge			
Spectrum		Spectrur	n			0			
	Mode Auto FFT		I 20.00 dBm Offset 30 dB SWT		RBW 100 kH: VBW 300 kH:		т		()
IPk View	M1[1] 5.59 dBr	• 1Pk View		_		M1[1]		6	75 dBm
10 dBm	M1[1] 2.4022280 GH M2[1] 2.60 dBr 2.400000 GH	10 dBm		MI A		M1[1]		2.4802	270 GHz 48 dBm
0 dBm	2.40000 GH	U UBIII		A I				2.4633	00 GH2
-10 dBm D1 -14.410 dBm -20 dBm		-10 dBm-	D1 -13.250 dBm						
-30 dBm		- 30 dBm-							
-40 dBm	munerar Mar Mar Mark	-40 dBm-	and and a more of	"What has	Ĉ,	10-10	munu		
-50 dBm	Mar and Mar and Mar and	-50 dBm	r		Kalenan	and and and and a sol	- unun	Manna	warm
-60 dBm		-60 dBm-							
Start 2.375 GHz 1001 pts	F1 Stop 2.405 GHz		GHz	FI	1 1001	nts		Stop 2.5	15 GHz
Marker		Marker							
Type Ref Trc X-value Y-value M1 1 2.402228 GHz 5.59 dBm M2 1 2.4 GHz -42.60 dBm	Function Function Result	Type Re M1 M2	1 2.48	0227 GHz 4835 GHz	Y-value 6.75 dBm -43.48 dBm	1	Func	tion Result	
M3 1 2.39968 GHz -41.26 dBm	Measuring	M3	1 2.48	3584 GHz	-42.65 dBm		-		
Date: 17.NOV.2020 08:39:08		Date: 17.N	 DV.2020 08:46:22			- Mea	suring	1958	111
Hopping Ba	nd Edge								
Spectrum									
	Mode Auto FFT	_							
1Pk View	M1[1] 6.69 dBr 2.463240 GH								
10 dBm	M2[1] -47.73 dBr 2.400000 GH	n							
-10 dBm	Nixi Anna Mathematiki And								
-20 dBm		-							
-30 dBm		1							
-40 d8m	M3 North many the week								
-60 dBm		-11							
-70 dBm		-							
Start 2.39 GHz 1001 pts	Stop 2.5 GHz	╢							
Marker		1							
Type Ref Trc X-value Y-value M1 1 2.46324 GHz 6.69 dBm	Function Function Result	4							
M2 1 2.4 GHz -47.73 dBm M3 1 2.4835 GHz -45.70 dBm		-							
	Measuring 🚺 🗰								
Date: 17.NOV.2020 09:26:59									
		_							

8DPSK

С	Ch 78 Band Edge												
Spectrum			Spectrum										
Ref Level 20.00 dBm Offset 12.60 dB 🖷 RBW 100 kHz				Ref Level 20.00 dBm Offset 12.60 dB 🖷 RBW 100 kHz									
 Att 30 dB SWT 75.9 μs Pk View 	VBW 300 kHz Mode Auto FFT		Att 1Pk View	30 dB	SWT 9	14.7 μs 👄	VBW 300 k	Hz Mode /	Auto FFT				
	M1[1]	4.96 dBm						M1	[1]			5.49 dBm	
10 dBm	M2[1]	2.4022280 GHz ^{Ma} 3.88 dBm 2.4040000 GHz	10 dBm		M			M2	[1]		-4	02270 GHz 40.62 dBm	
0 dBm		2.400000 GHz	0 dBm					-			2.48	35000 GHz	
-10 dBm			-10 dBm										
D1 -15.040 dBm				D1 -14.510 c	dBm								
-20 dBm			-20 dBm										
-30 dBm			-30 dBm			6							
-40 dBm		M3 m	-40 dBm		p Mar	ma Ma	8						
- BBB - Marine Marine Marine	Moundance and and and	mV III	-40 dBm	mmmy		20	hanner	mon me	mm	many	mman	nam	
			-50 dBm										
-60 dBm			-60 dBm										
-70 dBm			-70 dBm										
		F1				F1							
Start 2.375 GHz Marker	1001 pts	Stop 2.405 GHz	Start 2.47 (Marker	GHz			1001	1 pts			Stop 2	.505 GHz	
Type Ref Trc X-value	Y-value Function	Function Result	Type Ref	Trc	X-value		Y-value	Functi	ion	Fund	tion Result		
M2 1 2.4 GHz	4.96 dBm -33.88 dBm		M1 M2	1	2.480227	5 GHz	5.49 dE -40.62 dE	3m					
M3 1 2.397193 GHz	-41.36 dBm		M3	1	2.4835	5 GHz	-40.62 dE	3m					
	Measurin	···· (····) 4/4		Л								1	
Date: 17.NOV.2020 08:57:05			Date: 17.NO	V.2020 09	:02:24								
Ho	pping Band Edge												
Spectrum													
	 RBW 100 kHz 	(•)											
Att 30 dB SWT 246.5 μs 0 1Pk View	VBW 300 kHz Mode Auto FFT												
	M1[1]	5.86 dBm											
10 dBm	M2[1]	2.428190 GHz -45.69 dBm											
o dBm May under Mind and Mary	anthe address of the and the address of the state of the	MMM 2.400000 GHz											
-10 dBm													
D1 -14.140 dBm													
-20 dBm													
-30 dBm													
-40 dBm													
-50 dBm		M3											
-60 dBm													
-70 dBm													
Start 2.39 GHz Marker	1001 pts	Stop 2.5 GHz											
Type Ref Trc X-value	Y-value Function	Function Result											
M1 1 2.42819 GHz M2 1 2.4 GHz	5.86 dBm -45.69 dBm												
M3 1 2.4835 GHz	-46.88 dBm												
	Measurin	1g 🚺 🧰 🎢											
Date: 17.NOV.2020 09:29:45													

9.7. Radiated Spurious Emission

Requirements

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequency(MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Test Procedures

[For $9 \text{ kHz} \sim 30 \text{ MHz}$]

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 30MHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

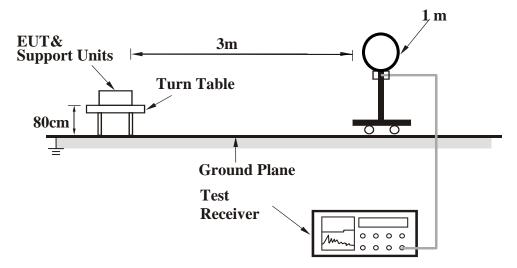
[For above 30 MHz]

- The EUT was placed on the top of a rotating table 0.8 meters (for $30MHz \sim 1GHz$) / 1.5 meters a. (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Underwriters Laboratories Taiwan Co., Ltd.

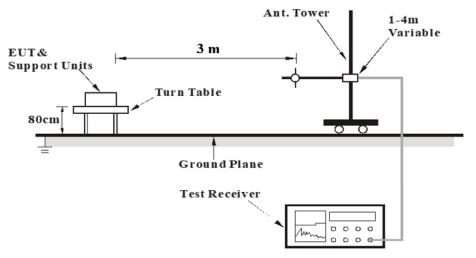
Note:

- a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- b. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1GHz.

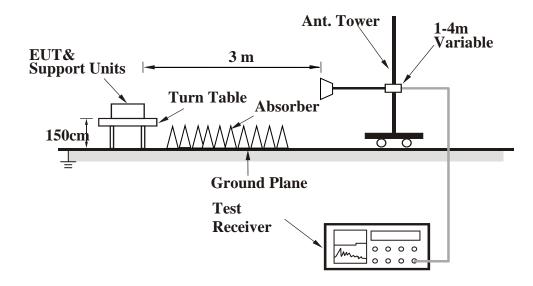

Configuration	Average				
Configuration	RBW	VBW			
Bluetooth	1MHz	1 kHz			

Note:

- The GFSK Duty cycle = (2.725/3.76)*100% = 72.47% <98%, so video bandwidth is 1/2.725= 0.367 kHz. Therefore, VBW configuration is 1 kHz for testing.
- The 8DPSK Duty cycle=(2.725/3.755)*100% =72.57% <98%, so video bandwidth is 1/2.725=0.367
 kHz. Therefore, VBW configuration is 1 kHz for testing.
- Refer to section 9.5 for duty cycle plots.
- d. All modes of operation were investigated (includes all external accessories) and the worst-case emissions are reported.


Test Setup

<Frequency Range 9 kHz ~ 30 MHz>



<Frequency Range 30 MHz ~ 1 GHz >

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the Setup Configurations.

Test Data

Above 1GHz Data

GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 26.5 GHz	

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4804	35.24	3.48	38.72	74	-35.28	Peak		
-	2377.6	34.69	6.69	41.38	54	-12.62	Average		
a)	2402	87.69	6.74	94.43	-	-	Average		
-	2370.6	41.42	6.67	48.09	74	-25.91	Peak		
a)	2402	88.17	6.74	94.91	-	-	Peak		
		Antenna Po	larity & Test	Distance: Ver	rtical at 3 m				
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4804	37.02	3.48	40.5	74	-33.5	Peak		
-	2314	35.64	6.78	42.42	54	-11.58	Average		
@	2402	96.73	6.74	103.47	-	-	Average		
-	2317	42.66	6.76	49.42	74	-24.58	Peak		
@	2402	97.73	6.74	104.47	-	-	Peak		

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 26.5 GHz	

	Antenna Polarity & Test Distance: Horizontal at 3 m							
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)		
*	4882	35.12	3.69	38.81	74	-35.19	Peak	
-	2362.4	34.62	6.66	41.28	54	-12.72	Average	
@	2441	87.71	6.74	94.45	-	-	Average	
-	2494.6	34.97	6.73	41.7	54	-12.3	Average	
-	2366.4	40.96	6.66	47.62	74	-26.38	Peak	
@	2441	88.09	6.74	94.83	-	_	Peak	
-	2489.8	41.05	6.73	47.78	74	-26.22	Peak	
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m			
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)		
*	4882	34.26	3.69	37.95	74	-36.05	Peak	
-	2311.4	35.63	6.78	42.41	54	-11.59	Average	
@	2441	99.63	6.74	106.37	-	-	Average	
-	2490.4	35.52	6.73	42.25	54	-11.75	Average	
-	2337	42.42	6.69	49.11	74	-24.89	Peak	
@	2441	100.27	6.74	107.01	-	-	Peak	
-	2487	42.16	6.73	48.89	74	-25.11	Peak	

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 26.5 GHz	

	Antenna Polarity & Test Distance: Horizontal at 3 m							
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)		
*	4960	36.85	3.65	40.5	74	-33.5	Peak	
a	2480	87.16	6.73	93.89	-	-	Average	
-	2503.8	34.93	6.73	41.66	54	-12.34	Average	
@	2480	88.67	6.73	95.4	-	-	Peak	
-	2490.8	41.74	6.73	48.47	74	-25.53	Peak	
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m			
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)		
*	4960	35.84	3.65	39.49	74	-34.51	Peak	
@	2480	99.17	6.73	105.9	-	-	Average	
-	2487.2	35.19	6.73	41.92	54	-12.08	Average	
a	2480	100.62	6.73	107.35	-	-	Peak	
-	2484	46.69	6.73	53.42	74	-20.58	Peak	

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

8DPSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 26.5 GHz	

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4804	35.08	3.48	38.56	74	-35.44	Peak		
-	2350.2	34.6	6.63	41.23	54	-12.77	Average		
a	2402	86.35	6.74	93.09	-	-	Average		
-	2352.2	41.04	6.63	47.67	74	-26.33	Peak		
a	2402	90.33	6.74	97.07	-	-	Peak		
		Antenna Po	larity & Test	Distance: Ver	rtical at 3 m				
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4804	36.91	3.48	40.39	74	-33.61	Peak		
-	2365	34.75	6.66	41.41	54	-12.59	Average		
@	2402	95.21	6.74	101.95	-	-	Average		
-	2352.8	41.28	6.63	47.91	74	-26.09	Peak		
@	2402	99.17	6.74	105.91	-	-	Peak		

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 26.5 GHz	

	Antenna Polarity & Test Distance: Horizontal at 3 m							
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)		
*	4882	34.93	3.69	38.62	74	-35.38	Peak	
-	2356.4	34.55	6.64	41.19	54	-12.81	Average	
@	2441	85.87	6.74	92.61	-	-	Average	
-	2490.2	35	6.73	41.73	54	-12.27	Average	
-	2352.4	40.81	6.63	47.44	74	-26.56	Peak	
@	2441	89.82	6.74	96.56	-	-	Peak	
-	2489.4	41.52	6.73	48.25	74	-25.75	Peak	
		Antenna Po	larity & Test	Distance: Ver	rtical at 3 m			
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)		
*	4882	33.74	3.69	37.43	74	-36.57	Peak	
-	2358.4	34.62	6.65	41.27	54	-12.73	Average	
@	2441	96.88	6.74	103.62	-	-	Average	
-	2501.8	34.94	6.73	41.67	54	-12.33	Average	
-	2360.2	41.33	6.65	47.98	74	-26.02	Peak	
a)	2441	100.92	6.74	107.66	-	-	Peak	
-	2505.8	41.57	6.73	48.3	74	-25.7	Peak	

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 26.5 GHz	

Antenna Polarity & Test Distance: Horizontal at 3 m							
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
*	4960	34.75	3.65	38.4	74	-35.6	Peak
a	2480	84.59	6.73	91.32	-	-	Average
-	2503.6	34.95	6.73	41.68	54	-12.32	Average
@	2480	88.18	6.73	94.91	-	-	Peak
-	2500.2	41.03	6.73	47.76	74	-26.24	Peak
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m		
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
*	4960	35.24	3.65	38.89	74	-35.11	Peak
@	2480	96.53	6.73	103.26	-	-	Average
-	2483.6	35.7	6.73	42.43	54	-11.57	Average
@	2480	100.47	6.73	107.2	-	-	Peak
-	2483.6	44.83	6.73	51.56	74	-22.44	Peak

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

9 kHz ~ 30 MHz Data:

For 9 kHz to 30 MHz radiated emission have performed all modes of operation were investigated. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

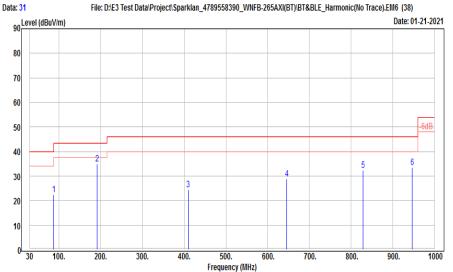
No non-compliance noted:

KDB 414788 D01 OATS and Chamber Correlation Justification

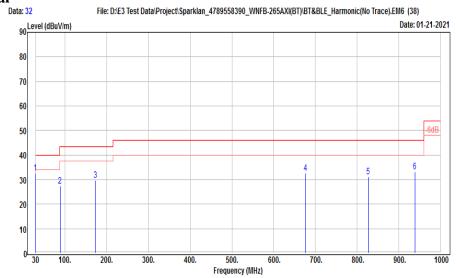
- Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

- OATs and chamber correlation testing had been performed and chamber measured test results is the worst case test result.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.



30 MHz ~ 1 GHz Data


GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	30 MHz ~ 1 GHz	

Horizontal

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000

 Telephone
 :+886-2-7737-3000

 Facsimile (FAX)
 :+886-3-583-7948
 Doc No: 17-EM-F0876 / 5.0

Antenna Polarity & Test Distance: Horizontal at 3 m							
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
-	88.2	40.12	-17.61	22.51	43.5	-20.99	Peak
-	191.99	47.65	-12.79	34.86	43.5	-8.64	Peak
-	410.24	31.31	-6.87	24.44	46	-21.56	Peak
-	645.95	30.22	-1.26	28.96	46	-17.04	Peak
-	828.31	30.78	1.43	32.21	46	-13.79	Peak
-	945.68	29.68	3.87	33.55	46	-12.45	Peak
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m		
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
_	30	44.91	-12.22	32.69	40	-7.31	Peak
_	89.17	45.07	-17.68	27.39	43.5	-16.11	Peak
-	173.56	41.12	-11.47	29.65	43.5	-13.85	Peak
-	676.02	33.69	-1.15	32.54	46	-13.46	Peak
-	826.37	29.75	1.42	31.17	46	-14.83	Peak
-	937.92	29.61	3.55	33.16	46	-12.84	Peak

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. The peak result complies with QP limit, QP result is deemed to comply with QP limit.
- 5. The other emission levels were very low against the limit.

9.8. AC Power Line Conducted Emission

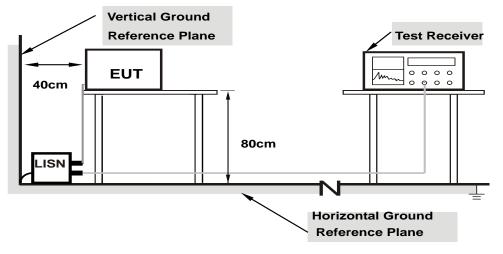
Requirements

Frequency (MHz)	Conducted limit (dBµV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

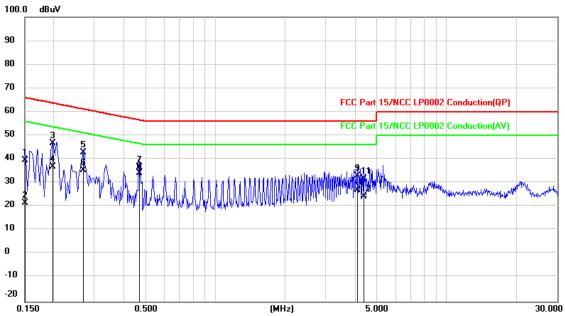
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Test rep	ort No. : 4789558390-US-R3-V0
Page	: 49 of 59
Issued d	ate : Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT

Test Setup

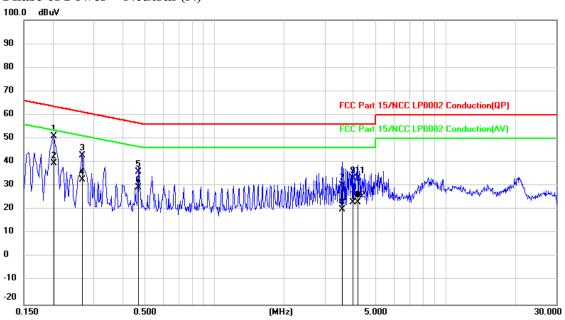
Note: 1.Support units were connected to second LISN.


For the actual test configuration, please refer to the Setup Configurations.

Test Data

GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	150 kHz ~ 30 MHz	

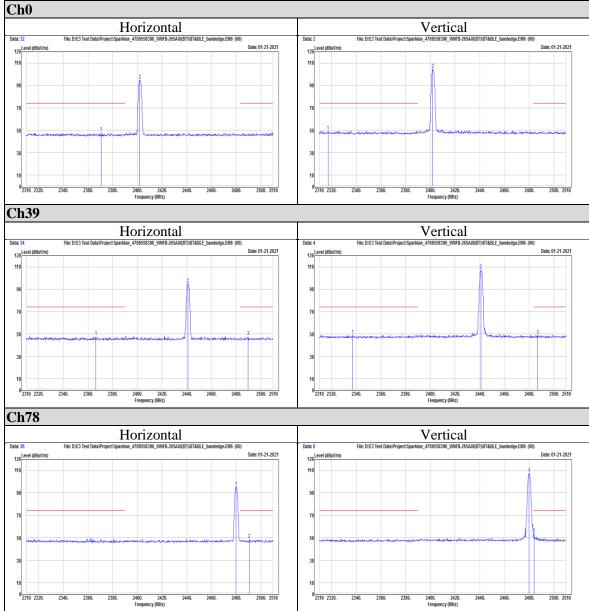

Phase of Power : Line (L)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1500	20.06	19.48	39.54	66.00	-26.46	QP
2	0.1500	1.93	19.48	21.41	56.00	-34.59	AVG
3	0.1980	27.32	19.47	46.79	63.69	-16.90	QP
4	0.1980	17.42	19.47	36.89	53.69	-16.80	AVG
5	0.2700	23.36	19.48	42.84	61.12	-18.28	QP
6	0.2700	15.77	19.48	35.25	51.12	-15.87	AVG
7	0.4700	17.18	19.47	36.65	56.51	-19.86	QP
8	0.4700	14.83	19.47	34.30	46.51	-12.21	AVG
9	4.1020	13.33	19.58	32.91	56.00	-23.09	QP
10	4.1020	7.34	19.58	26.92	46.00	-19.08	AVG
11	4.3740	12.21	19.58	31.79	56.00	-24.21	QP
12	4.3740	4.55	19.58	24.13	46.00	-21.87	AVG

- 1. Result value (dBuV) = Reading value (dBuV) + Correction Factor (dB)
- 2. Margin(dB) = Result value (dBuV) Limit value (dBuV)
- 3. Correction Factor(dB) = Insertion loss(dB) + Cable loss(dB)
- 4. The other emission levels were very low against the limit.

Phase of Power : Neutral (N)

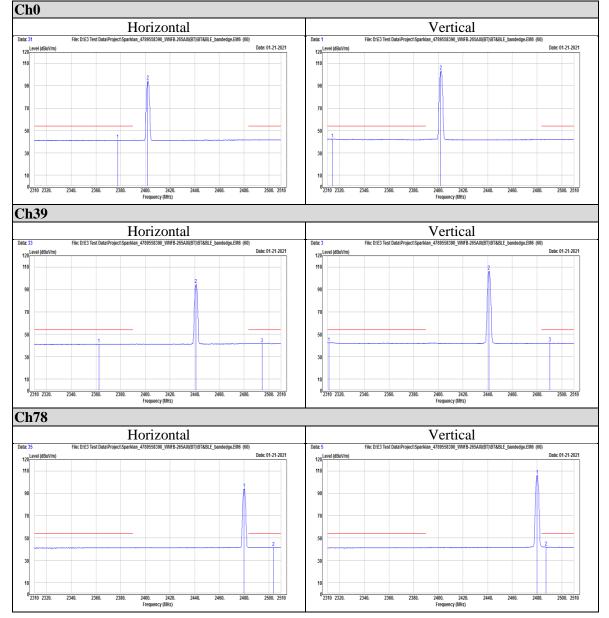
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.2020	31.45	19.48	50.93	63.53	-12.60	QP
2	0.2020	20.09	19.48	39.57	53.53	-13.96	AVG
3	0.2700	23.41	19.48	42.89	61.12	-18.23	QP
4	0.2700	13.05	19.48	32.53	51.12	-18.59	AVG
5	0.4700	16.54	19.47	36.01	56.51	-20.50	QP
6	0.4700	10.03	19.47	29.50	46.51	-17.01	AVG
7	3.5660	10.76	19.57	30.33	56.00	-25.67	QP
8	3.5660	0.59	19.57	20.16	46.00	-25.84	AVG
9	3.9700	13.65	19.57	33.22	56.00	-22.78	QP
10	3.9700	3.54	19.57	23.11	46.00	-22.89	AVG
11	4.1700	13.77	19.58	33.35	56.00	-22.65	QP
12	4.1700	3.57	19.58	23.15	46.00	-22.85	AVG


- 1. Result value (dBuV) = Reading value (dBuV) + Correction Factor (dB)
- 2. Margin(dB) = Result value (dBuV) Limit value (dBuV)
- 3. Correction Factor(dB) = Insertion loss(dB) + Cable loss(dB)
- 4. The other emission levels were very low against the limit.

Appendix I Radiated Band Edge Measurement

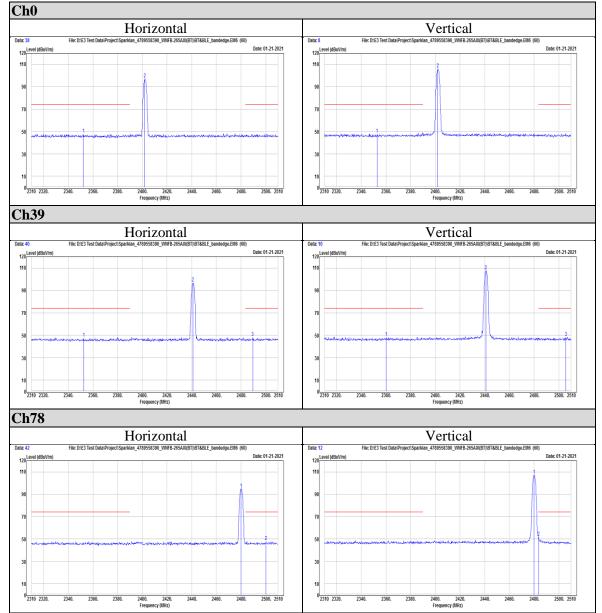
GFSK

Peak



Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 5.0

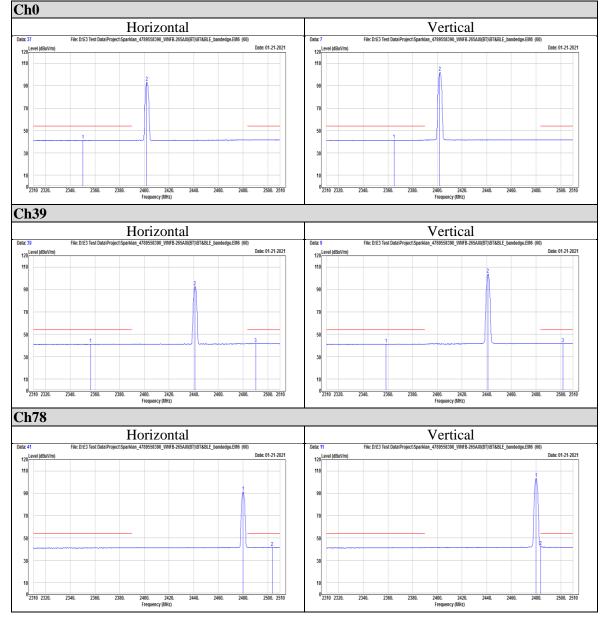
Test report No.	: 4789558390-US-R3-V0
Page	: 55 of 59
Issued date	: Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT


Average

Page : Issued date :	: 4789558390-US-R3-V0 : 56 of 59 : Feb. 22, 2021 : RYK-WNFB265AXIBT
-------------------------	--

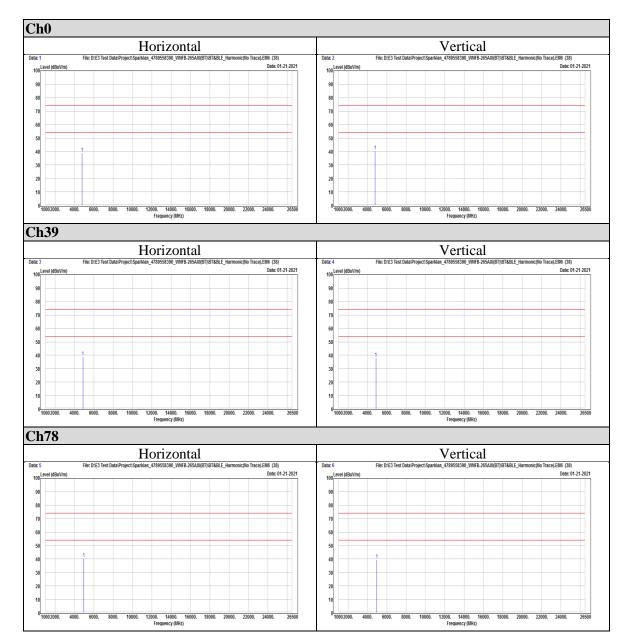
8DPSK

Peak



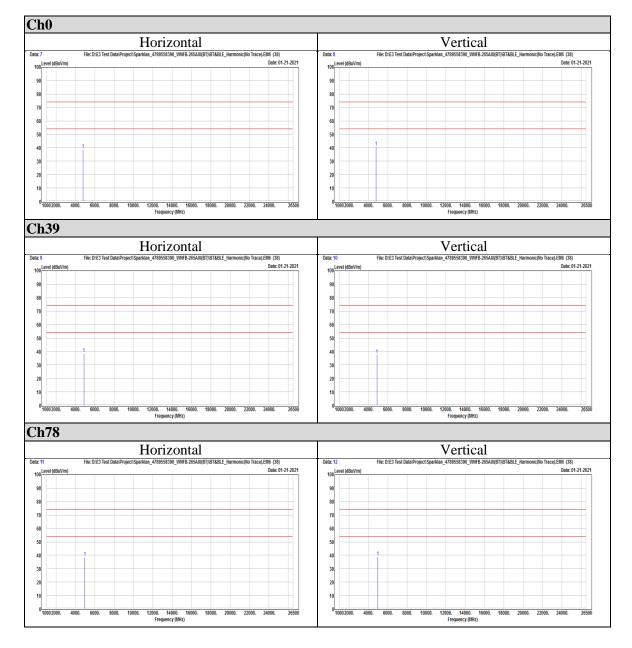
Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 5.0

Test report No.	: 4789558390-US-R3-V0
Page	: 57 of 59
Issued date	: Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT


Average

Appendix II Radiated Spurious Emission Measurement

GFSK



Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 5.0

Test report No.	: 4789558390-US-R3-V0
Page	: 59 of 59
Issued date	: Feb. 22, 2021
FCC ID	: RYK-WNFB265AXIBT

8DPSK

-END-

Doc No: 17-EM-F0876 / 5.0