

9.7 RADIATED SPURIOUS EMISSION

9.7.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

9.7.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

9.7.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

9.7.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings: For Above 1GHz: The EUT was placed on a turn table which is 1.5m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 1 MHzVBW ≥ RBW for peak measurement VBW = 10Hz for Average measurement Sweep = auto Detector function = peak Trace = max hold For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHzVBW > RBW Sweep = auto Detector function = peak Trace = max holdFollow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT. measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak

reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

9.7.5 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature:	24 °C	Test Date:	July 15, 2015
Humidity:	53 %	Test By:	KING KONG
Test mode:	TX Mode	-	

Freq.	Ant.Pol.	Emis Level(d	sion BuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(IVIHZ)	H/V	PK È	ÁV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission below 1GHz (30MHz to 1GHz)

Bluetooth (GFSK, pi/4-DQPSK, 8DPSK) mode have been tested, and the worst result was report as below:

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		43.6584	40.18	-13.14	27.04	40.00	-12.96	QP			
2		84.7020	47.35	-18.56	28.79	40.00	-11.21	QP			
3	*	95.7622	50.94	-14.94	36.00	43.50	-7.50	QP			
4	1	151.0666	51.83	-18.16	33.67	43.50	-9.83	QP			
5	2	290.0172	42.87	-13.20	29.67	46.00	-16.33	QP			
6	3	387.9920	40.78	-9.55	31.23	46.00	-14.77	QP			

*:Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	34.6385	51.94	-14.91	37.03	40.00	-2.97	QP			
2	İ	40.7014	49.38	-12.88	36.50	40.00	-3.50	QP			
3	İ	48.1625	48.41	-14.15	34.26	40.00	-5.74	QP			
4	İ	59.0251	50.68	-15.55	35.13	40.00	-4.87	QP			
5	İ	67.6751	54.68	-17.82	36.86	40.00	-3.14	QP			
6	İ	93.1131	56.28	-15.78	40.50	43.50	-3.00	QP			

*:Maximum data x:Over limit !:over margin

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		41.1320	41.10	-12.91	28.19	40.00	-11.81	QP			
2		93.7685	46.61	-15.54	31.07	43.50	-12.43	QP			
3		159.2251	52.54	-18.67	33.87	43.50	-9.63	QP			
4		297.2241	47.99	-13.66	34.33	46.00	-11.67	QP			
5	*	307.8313	51.82	-13.70	38.12	46.00	-7.88	QP			
6		345.5951	43.21	-11.98	31.23	46.00	-14.77	QP			

*:Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	İ	39.2991	49.28	-13.11	36.17	40.00	-3.83	QP			
2	İ	44.2751	49.52	-13.28	36.24	40.00	-3.76	QP			
3	*	67.2021	54.57	-17.67	36.90	40.00	-3.10	QP			
4	İ	72.0841	54.09	-18.93	35.16	40.00	-4.84	QP			
5	İ	77.0504	54.05	-19.47	34.58	40.00	-5.42	QP			
6	İ	95.4270	53.24	-15.00	38.24	43.50	-5.26	QP			

*:Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		71.5805	47.28	-18.83	28.45	40.00	-11.55	QP			
2		95.0930	45.01	-15.08	29.93	43.50	-13.57	QP			
3		100.9340	45.43	-14.02	31.41	43.50	-12.09	QP			
4	* *	166.6512	51.21	-19.21	32.00	43.50	-11.50	QP			
5	2	291.0360	46.19	-13.27	32.92	46.00	-13.08	QP			
6	3	305.6800	47.71	-13.73	33.98	46.00	-12.02	QP			

*:Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	39.8541	49.74	-12.89	36.85	40.00	-3.15	QP			
2	İ	60.2800	52.40	-15.60	36.80	40.00	-3.20	QP			
3	İ	68.3907	54.44	-18.03	36.41	40.00	-3.59	QP			
4		92.1386	52.72	-16.13	36.59	43.50	-6.91	QP			
5	1	35.0318	54.78	-17.52	37.26	43.50	-6.24	QP			
6	! 4	06.0880	50.29	-9.03	41.26	46.00	-4.74	QP			

*:Maximum data x:Over limit !:over margin

Spurious Emission Above 1GHz (1GHz to 25GHz)

Bluetooth v2.0 /v2.1/v3.0 GFSK mode have been tested, and the worst result was report as below:

Temperature Humidity: Test mode:	: 24℃ 53 % GES	K	Test Date: Test By: Frequency	Jul KIN Ch	y 15, 2015 NG KONG annel 0: 240	2MH 2	
-							
Freq.	Ant.Pol.	Emission L	_evel(dBuV/m)	Limit 3m	dBuV/m)	Over	(dB)
(MHZ)	H/V	PK	AV	PK	AV	PK	AV
9976.00	V	48.36	33.56	74.00	54.00	-25.64	-20.44
14073.00	V	49.31	34.62	74.00	54.00	-24.69	-19.38
16283.00	V	49.91	35.26	74.00	54.00	-24.09	-18.74
10741.00	H	47.54	32.46	74.00	54.00	-26.46	-21.54
13784.00	H	49.30	35.24	74.00	54.00	-24.70	-18.76
15654.00	H	49.90	35.96	74.00	54.00	-24.10	-18.04
Temperature Humidity: Test mode:	∷ 24℃ 53 % GFS	, K	Test Date: Test By: Frequency:	Jul KIN Ch	y 15, 2015 NG KONG annel 39: 244	41MHz	
Erea	Ant Pol	Emission I	evel(dBuV/m)	Limit 3m/	dBu\//m)	Over	(dB)
(MHz)						PK	
11/0/ 00		18.64	33.57	74.00	54.00	-25.36	-20.43
14430.00	V	50.04	35.72	74.00	54.00	23.01	18.28
16470.00	V	51.61	36.24	74.00	54.00	22.01	17.76
10470.00	V	51.01	50.24	74.00	54.00	-22.09	-17.70
12713.00	 L	40.17	35.24	74.00	54.00	24.83	18 76
15300.00		49.17	35.24	74.00	54.00	-24.03	-10.70
17626.00		52.00	26 42	74.00	54.00	-22.14	-10.20
17626.00	Π	55.11	30.42	74.00	54.00	-20.69	-17.30
Temperature Humidity: Test mode:	:: 24℃ 53 % GFS	s K	Test Date: Test By: Frequency:	Jul KIN Ch	y 15, 2015 NG KONG annel 78: 24	80MHz	
Freg.	Ant.Pol.	Emission L	_evel(dBuV/m)	Limit 3m(dBuV/m)	Over	(dB)
(MHz)	H/V	PK	` AV ´	PK	AV	PK	ÂV
11064.00	V	47.47	32.54	74.00	54.00	-26.53	-21.46
13886.00	V	50.79	35.48	74.00	54.00	-23.21	-18.52
17116.00	V	50.80	35.74	74.00	54.00	-23.20	-18.26
10792.00	Н	48.14	33.26	74.00	54.00	-25.86	-20.74
13818.00	Н	50.17	35.36	74.00	54.00	-23.83	-18.64
16402.00	Н	50.64	36.27	74.00	54.00	-23.36	-17.73
) D)		4011)	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All the modulation modes were tested, the data of the worst mode are described in the following table

Test Model Bluetooth v2.0 /v2.1/v3.0 Channel 0: 2480MHz **GFSK** 80.0 dBu¥/m Limit1: 70 60 50 40 would 30 20 10 0.0 2483.500 2485.15 2486.80 2488.45 2490.10 2491.75 2493.40 2495.05 2496.70 2500.00 MHz Site 3m Chamber #3 Polarization: Horizontal Temperature: 24 C Power: AC 120V/60Hz 53 % Limit: (RE)FCC PART 15 CLASS B Humidity: Mode: GFSK TX Channel78 Note: Reading Correct Measure-Antenna Table No. Mk. Freq. Limit Over Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 2483.814 62.75 -23.44 39.31 74.00 -34.69 1 peak 2 * 2483.814 49.68 -23.44 26.24 54.00 -27.76 AVG

Spurious Emission in Restricted Band 2310-2390MHz

*:Maximum data x:Over limit !:over margin

Operator: KK

Spurious Emission in Restricted Band 2310-2390MHz **Test Model** Bluetooth v2.0 /v2.1/v3.0 Channel 0: 2480MHz **GFSK** dBu¥/m 80.0 Limit1: - 24/7 70 60 50 40 medene 30 4 20 10 0.0 2483.500 2485.15 2486.80 2488.45 2490.10 2491.75 2493.40 2495.05 2496.70 2500.00 MHz 24 C Site 3m Chamber #3 Polarization: Vertical Temperature: Limit: (RE)FCC PART 15 CLASS B Power: AC 120V/60Hz Humidity: 53 % Mode: GFSK TX Channel 78 Note: Table Reading Correct Measure-Antenna Limit Over No. Mk. Freq. Level Factor ment Height Degree dB dBuV dBuV/m MHz dBuV/m dB Detector cm degree Comment 2483.995 62.63 -23.43 39.20 74.00 -34.80 1 peak 2 49.18 -23.43 25.75 54.00 -28.25 * 2483.995 AVG *:Maximum data x:Over limit Operator: KK !:over margin

9.8 CONDUCTED EMISSION TEST

9.8.1 Applicable Standard

According to FCC Part 15.207(a)

9.8.2 Conformance Limit

Conducted Emission Limit							
Frequency(MHz)	Quasi-peak	Average					
0.15-0.5	66-56	56-46					
0.5-5.0	56	46					
5.0-30.0	60	50					
Note: 1. The lower limit shall apply at t 2. The limit decreases in line w 0.50MHz.	he transition frequencies ith the logarithm of the frequencies	cy in the range of 0.15 to					

9.8.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

9.8.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

9.8.5 Test Results

Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2700	47.70	0.00	47.70	61.12	-13.42	QP	
2		0.2700	34.52	0.00	34.52	51.12	-16.60	AVG	
3	*	0.3700	54.64	0.00	54.64	58.50	-3.86	QP	
4		0.3700	39.06	0.00	39.06	48.50	-9.44	AVG	
5		0.9750	46.55	0.00	46.55	56.00	-9.45	QP	
6		0.9750	30.26	0.00	30.26	46.00	-15.74	AVG	
7		1.3400	48.71	0.00	48.71	56.00	-7.29	QP	
8		1.3400	33.67	0.00	33.67	46.00	-12.33	AVG	
9		7.9500	47.18	0.00	47.18	60.00	-12.82	QP	
10		7.9500	34.48	0.00	34.48	50.00	-15.52	AVG	
11		13.9000	44.39	0.00	44.39	60.00	-15.61	QP	
12		13.9000	31.55	0.00	31.55	50.00	-18.45	AVG	

*:Maximum data x:Over

x:Over limit !:over margin

Comment: Factor build in receiver.

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1556	44.84	0.00	44.84	65.70	-20.86	QP	
	0.1556	30.04	0.00	30.04	55.70	-25.66	AVG	
	0.2000	41.80	0.00	41.80	63.61	-21.81	QP	
	0.2000	28.24	0.00	28.24	53.61	-25.37	AVG	
*	0.3850	48.03	0.00	48.03	58.17	-10.14	QP	
	0.3850	35.12	0.00	35.12	48.17	-13.05	AVG	
	7.8200	42.52	0.00	42.52	60.00	-17.48	QP	
	7.8200	30.00	0.00	30.00	50.00	-20.00	AVG	
	13.1500	43.51	0.00	43.51	60.00	-16.49	QP	
	13.1500	35.43	0.00	35.43	50.00	-14.57	AVG	
	22.0000	43.68	0.00	43.68	60.00	-16.32	QP	
	22.0000	33.41	0.00	33.41	50.00	-16.59	AVG	
	Mk.	Mk. Freq. MHz 0.1556 0.2000 0.2000 * 0.3850 7.8200 7.8200 13.1500 13.1500 22.0000	Reading Level MHz dBuV 0.1556 44.84 0.1556 30.04 0.2000 41.80 0.2000 28.24 * 0.3850 48.03 0.3850 35.12 7.8200 42.52 7.8200 30.00 13.1500 43.51 13.1500 35.43 22.0000 33.41	Reading Level Correct Factor MHz dBuV dB 0.1556 44.84 0.00 0.1556 30.04 0.00 0.2000 41.80 0.00 0.2000 28.24 0.00 * 0.3850 35.12 0.00 7.8200 42.52 0.00 13.1500 43.51 0.00 22.0000 43.68 0.00	Reading Level Correct Factor Measure- ment MHz dBuV dB dBuV 0.1556 44.84 0.00 44.84 0.1556 44.84 0.00 30.04 0.1556 30.04 0.00 30.04 0.2000 41.80 0.00 41.80 0.2000 28.24 0.00 28.24 * 0.3850 48.03 0.00 48.03 0.3850 35.12 0.00 35.12 7.8200 42.52 0.00 42.52 7.8200 30.00 0.00 30.00 13.1500 43.51 0.00 43.51 13.1500 35.43 0.00 35.43 22.0000 43.68 0.00 33.41	Mk. Freq. Reading Level Correct Factor Measure- ment Limit MHz dBuV dB dBuV <t< td=""><td>Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dBuV dB 0.1556 44.84 0.00 44.84 65.70 -20.86 0.1556 30.04 0.00 30.04 55.70 -25.66 0.2000 41.80 0.00 41.80 63.61 -21.81 0.2000 28.24 0.00 28.24 53.61 -25.37 * 0.3850 48.03 0.00 48.03 58.17 -10.14 0.3850 35.12 0.00 35.12 48.17 -13.05 7.8200 42.52 0.00 42.52 60.00 -17.48 7.8200 30.00 0.00 30.00 50.00 -20.00 13.1500 43.51 0.00 43.68 60.00 -16.49 13.1500 35.43 0.00 35.43 50.00 -16.59 22.0000 33.41 0.00</td><td>Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1556 44.84 0.00 44.84 65.70 -20.86 QP 0.1556 30.04 0.00 30.04 55.70 -25.66 AVG 0.2000 41.80 0.00 41.80 63.61 -21.81 QP 0.2000 28.24 0.00 28.24 53.61 -25.37 AVG * 0.3850 48.03 0.00 48.03 58.17 -10.14 QP 0.3850 35.12 0.00 35.12 48.17 -13.05 AVG 7.8200 42.52 0.00 42.52 60.00 -17.48 QP 13.1500 43.51 0.00 43.51 60.00 -16.49 QP 13.1500 35.43 0.00 35.43 50.00 -14.57 AVG 22.0000 <</td></t<>	Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dBuV dB 0.1556 44.84 0.00 44.84 65.70 -20.86 0.1556 30.04 0.00 30.04 55.70 -25.66 0.2000 41.80 0.00 41.80 63.61 -21.81 0.2000 28.24 0.00 28.24 53.61 -25.37 * 0.3850 48.03 0.00 48.03 58.17 -10.14 0.3850 35.12 0.00 35.12 48.17 -13.05 7.8200 42.52 0.00 42.52 60.00 -17.48 7.8200 30.00 0.00 30.00 50.00 -20.00 13.1500 43.51 0.00 43.68 60.00 -16.49 13.1500 35.43 0.00 35.43 50.00 -16.59 22.0000 33.41 0.00	Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1556 44.84 0.00 44.84 65.70 -20.86 QP 0.1556 30.04 0.00 30.04 55.70 -25.66 AVG 0.2000 41.80 0.00 41.80 63.61 -21.81 QP 0.2000 28.24 0.00 28.24 53.61 -25.37 AVG * 0.3850 48.03 0.00 48.03 58.17 -10.14 QP 0.3850 35.12 0.00 35.12 48.17 -13.05 AVG 7.8200 42.52 0.00 42.52 60.00 -17.48 QP 13.1500 43.51 0.00 43.51 60.00 -16.49 QP 13.1500 35.43 0.00 35.43 50.00 -14.57 AVG 22.0000 <

*:Maximum data x:Over limit

!:over margin

Comment: Factor build in receiver.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.3800	52.64	0.00	52.64	58.28	-5.64	QP	
2	0.3800	37.29	0.00	37.29	48.28	-10.99	AVG	
3	0.4100	51.20	0.00	51.20	57.65	-6.45	QP	
4	0.4100	37.27	0.00	37.27	47.65	-10.38	AVG	
5	0.5350	50.12	0.00	50.12	56.00	-5.88	QP	
6	0.5350	31.69	0.00	31.69	46.00	-14.31	AVG	
7	0.7950	50.14	0.00	50.14	56.00	-5.86	QP	
8	0.7950	34.58	0.00	34.58	46.00	-11.42	AVG	
9	1.0881	47.72	0.00	47.72	56.00	-8.28	QP	
10	1.0881	29.80	0.00	29.80	46.00	-16.20	AVG	
11	1.4300	48.68	0.00	48.68	56.00	-7.32	QP	
12	1.4300	31.07	0.00	31.07	46.00	-14.93	AVG	

*:Maximum data x:O

x:Over limit !:over margin

Comment: Factor build in receiver.


```
Note:
```

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1600	49.30	0.00	49.30	65.46	-16.16	QP	
2	0.1600	31.96	0.00	31.96	55.46	-23.50	AVG	
3	0.2000	47.05	0.00	47.05	63.61	-16.56	QP	
4	0.2000	29.23	0.00	29.23	53.61	-24.38	AVG	
5	0.2600	46.89	0.00	46.89	61.43	-14.54	QP	
6	0.2600	32.48	0.00	32.48	51.43	-18.95	AVG	
7 *	0.3850	49.36	0.00	49.36	58.17	-8.81	QP	
8	0.3850	34.71	0.00	34.71	48.17	-13.46	AVG	
9	0.8100	43.37	0.00	43.37	56.00	-12.63	QP	
10	0.8100	27.66	0.00	27.66	46.00	-18.34	AVG	
11	8.1200	44.16	0.00	44.16	60.00	-15.84	QP	
12	8.1200	31.19	0.00	31.19	50.00	-18.81	AVG	

*:Maximum data x:Over l

x:Over limit !:over margin

Comment: Factor build in receiver.

9.9 ANTENNA APPLICATION

9.9.1 Antenna Requirement

	1					
Standard	Requirement					
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.					

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.9.2 Result

The EUT'S antenna is PCB antenna, and the antenna can't be replaced by the user, which in accordance to section 15.203, please refer to the internal photos. The antenna's gain is 1dBi and meets the requirement.

END OF REPORT