

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Wireless ADSL 2+ ROUTER
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz Others
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	 Occupational/Controlled exposure (S = 5mW/cm²) General Population/Uncontrolled exposure (S=1mW/cm²)
Antenna diversity	 Single antenna Multiple antennas □ Tx diversity □ Rx diversity □ Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 19.94 dBm (98.63 mW) IEEE 802.11g mode: 19.99 dBm (99.77 mW) draft 802.11n Standard-20 MHz Channel mode: 19.68 dBm (92.90 mW) draft 802.11n Wide-40 MHz Channel mode: 19.87 dBm (97.05 mW)
Antenna gain (Max)	2 dBi (Numeric gain: 1.58)
Evaluation applied	MPE Evaluation SAR Evaluation N/A
Remark:	

1. The maximum output power is <u>19.99dBm (99.77 mW) at 2462MHz (with 1.58 numeric antenna</u> <u>gain</u>.)

2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.

3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where $E = Field$ strength in Volts / meter
 $P = Power$ in Watts
 $G = Numeric$ antenna gain
 $d = Distance$ in meters
 $S = Power$ density in milliwatts / square centimeter

 Γ^2

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 and$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = D$ is tance in cm
 $P = P$ ower in mW
 $G = N$ umeric antenna gain
 $S = P$ ower density in mW/cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

IEEE 802.11b mode:

EUT output power = 98.63 mW Numeric Antenna gain = 1.58 \rightarrow Power density = 0.0310 mW / cm²

IEEE 802.11g mode: EUT output power = 99.77 mW Numeric Antenna gain = 1.58

 \rightarrow Power density = 0.0313 mW/cm²

draft 802.11n Standard-20 MHz Channel mode:

EUT output power =92.90 mW Numeric Antenna gain = 1.58

 \rightarrow Power density = 0.0292 mW/cm²

draft 802.11n Wide-40 MHz Channel mode:

EUT output power = 97.05 mW Numeric Antenna gain = 1.58

 \rightarrow Power density = 0.0305 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)