

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

Test Report Serial No:
RFI/SARE2/RP49249JD01A

Supersedes Test Report Serial No:
RFI/SARE1/RP49249JD01A

**This Test Report Is Issued Under The Authority
Of Michael Derby, Wireless Radio Performance
Group Leader:**

pp Brian Watson

Tested By: Richelieu Quoi

Checked By: Brian Watson

Report Copy No: PDF01

Issue Date: 18 July 2007

Test Dates: 08 June 2007

The Bluetooth® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by RFI Global Services Ltd. is under license. Other trademarks and trade names are those of their respective owners.

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

RFI GLOBAL SERVICES LTD

Test Report

Serial No: RFI/SARE2/RP49249JD01A

Page: 2 of 56

Issue Date: 18 July 2007

**Test of: Wiz4com Technologies SAS
CT9A9W**

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

This page has been left intentionally blank.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

Table of Contents

1. Customer Information	4
2. Equipment Under Test (EUT).....	5
3. Test Specification, Methods and Procedures	8
4. Deviations from the Test Specification	9
5. Operation and Configuration of the EUT during Testing	10
6. Summary of Test Results.....	12
7. Measurements, Examinations and Derived Results.....	13
8. Measurement Uncertainty.....	18
Appendix 1. Test Equipment Used.....	22
Appendix 2. Measurement Methods	25
Appendix 3. SAR Distribution Scans	27
Appendix 4. Photographs	38
Appendix 5. Validation of System	52
Appendix 6. Simulated Tissues.....	53
Appendix 7. DASY4 System Details.....	54

**Test of: Wiz4com Technologies SAS
CT9A9W**

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

1. Customer Information

Company Name:	Wiz4com Technologies SAS
Address:	9 Rue Maurice Trintignant Le Mans Cedex 9 72093 France
Contact Name:	Mr K Ben Ali

**Test of: Wiz4com Technologies SAS
CT9A9W**

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

2. Equipment Under Test (EUT)

The following information (with the exception of the date of receipt) has been supplied by the customer:

2.1. Description of EUT

The equipment under test is a Tri-Band GSM and *Bluetooth* mobile station.

The device is tested at PCS1900 and GPRS1900 band.

2.2. Identification of Equipment Under Test (EUT)

Description:	Tri-Band Mobile Station
Brand Name:	Philips
Model Name or Number:	Xenium CT9A9W
Serial Number:	VY010719200145
IMEI Number:	358233000053673
IMEISV:	87
FCC ID Number:	RXXCT9A9W
Country of Manufacture:	France
Date of Receipt:	07 June 2007

2.3. Modifications Incorporated in the EUT

During the course of testing the EUT was not modified.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

2.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	Rechargeable Batteries
Brand Name:	Philips
Type:	AB0920AWM
Serial Number1:	XW010000260
Serial Number2:	XW010000150
Cable Length and Type:	Not Applicable
Connected to Port	4 Pin Power Supply Contact

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	GSM Communication Test Set
Brand Name:	Anritsu
Model Name or Number:	MT8820A
Serial Number:	6K00000647
Cable Length and Type:	1.5m, Utiflex
Connected to Port:	RF (Input / Output) Air Link

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

2.6. Additional Information Related to Testing

Equipment Category	PCS1900 / GPRS1900		
Type of Unit	Portable (Standalone battery powered device)		
Intended Operating Environment:	Within GSM coverage		
Transmitter Maximum Output Power Characteristics:	30 dBm		
Transmitter Maximum Output Power Measured:	23.3 dBm		
Transmitter Frequency Range:	1850 MHz to 1910 MHz		
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
Modulation(s):	217 Hz		
Modulation Scheme (Crest Factor):	8		
Antenna Type:	Internal		
Antenna Length:	Unknown		
Number of Antenna Positions:	1 Fixed		
Power Supply Requirement:	Internal Battery Supply 3.7 V / 920mAh		
Battery Type(s):	Li-ion		

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.

Reference:	IEEE Std 1528 - 2003
Title:	IEEE Recommendation Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
Purpose of Test:	The purpose of this recommended practice is to provide a protocol for the measurement of the peak spatial- average SAR in an anatomical model of the human head of users of wireless handsets intended to be operated while held next to the ear. It provides users with standardized and accepted protocols and test procedures, measurement and validation techniques, and means for estimating the overall uncertainty in order to produce valid and repeatable data. Specific SAR limit values are not included because these are given in other documents, e.g., IEEE Std C95.1TM-1999.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

EN 62209-1: 2006

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

4. Deviations from the Test Specification

There were no deviations from the test specification.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

PCS1900 Call Allocated Mode
GPRS1900 Data Allocated Mode

The reason for choosing this configuration was that it has been defined by the customer as being typical of normal use and likely to be worst case.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

Standalone battery powered in the Head and Body worn configuration without a carrying case.

Head Configuration

- a) The handset was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the handset was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the handset was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the handset was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater than 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

**Test of: Wiz4com Technologies SAS
CT9A9W**

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

6. Summary of Test Results

Test Name	Specification Reference	Compliancy Status
Specific Absorption Rate (SAR) PCS1900 – Head Configuration	OET Bulletin 65 Supplement C: 2001	Complied
Specific Absorption Rate (SAR) PCS1900 – Body Configuration	OET Bulletin 65 Supplement C: 2001	Complied
Specific Absorption Rate (SAR) GPRS1900 – Body Configuration	OET Bulletin 65 Supplement C: 2001	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of
RFI Global Services Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ, UK.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

7.2. Test Results

7.2.1. Specific Absorption Rate – PCS1900 – Head Configuration

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.614

Environmental Conditions:

Temperature Variation in Lab (°C):	24 to 24
Temperature Variation in Liquid (°C):	23.0 to 23.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch	Left	660	0.464	1.600	1.136	-	Complied
Tilt	Left	660	0.098	1.600	1.502	-	Complied
Touch	Right	660	0.552	1.600	1.048	-	Complied
Tilt	Right	660	0.101	1.600	1.499	-	Complied
Touch	Right	512	0.614	1.600	0.986	-	Complied
Touch	Right	810	0.598	1.600	1.002	-	Complied

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

7.2.2. Specific Absorption Rate – PCS1900 – Body Configuration

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.119

Environmental Conditions:

Temperature Variation in Lab (°C):	34 to 34
Temperature Variation in Liquid (°C):	23.0 to 23.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	660	0.119	1.600	1.481	1	Complied

Note(s):

1. SAR measurement was performed with the EUT at a separation distance of 15 mm from the 'SAM' phantom flat section.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

7.2.3. Specific Absorption Rate - GPRS1900 – Body Configuration

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.382

Environmental Conditions:

Temperature Variation in Lab (°C):	24 to 24
Temperature Variation in Liquid (°C):	23.0 to 23.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	660	0.382	1.600	1.218	1	Complied
Rear of EUT Facing Phantom	Flat (SAM)	660	0.278	1.600	1.322	1	Complied

Note(s):

1. SAR measurement was performed with the EUT at a separation distance of 15 mm from the 'SAM' phantom flat section.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

7.2.4. EIRP Measurement – PCS 1900

Channel	Frequency (MHz)	TX Power before Test (dBm)
Low	1850.2	23.2
Middle	1879.8	23.1
High	1909.8	23.3

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate Uncertainty at 1900 MHz Head 1g, PCS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528	95%	±18.44%
Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, PCS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528	95%	±18.30%
Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, GPRS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528	95%	±18.30%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

Measurement Uncertainty (Continued)

8.1. PCS1900 – Head Configuration

**Specific Absorption Rate Uncertainty at 1900 MHz Head 1g, PCS Modulation Scheme
calculated in accordance with IEC 62209-1 & IEEE 1528**

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (1g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.370	4.370	normal (k=1)	1.0000	0.6400	2.797	2.797	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.450	4.450	normal (k=1)	1.0000	0.6000	2.670	2.670	5
	Combined standard uncertainty			t-distribution			9.41	9.41	>300
	Expanded uncertainty			k = 1.96			18.44	18.44	>300

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

Measurement Uncertainty (Continued)

8.2. PCS1900 – Body Configuration

**Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, PCS Modulation Scheme
calculated in accordance with IEC 62209-1 & IEEE 1528**

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (1g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.170	4.170	normal (k=1)	1.0000	0.6400	2.669	2.669	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.230	4.230	normal (k=1)	1.0000	0.6000	2.538	2.538	5
	Combined standard uncertainty			t-distribution			9.34	9.34	>400
	Expanded uncertainty			k = 1.96			18.30	18.30	>400

Test of: Wiz4com Technologies SAS
CT9A9W

To: OET Bulletin 65 Supplement C:2001-01 / IEEE Std 1528 - 2003

Measurement Uncertainty (Continued)

8.3. GPRS1900 – Body Configuration

**Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, GPRS Modulation
 Scheme calculated in accordance with IEC 62209-1 & IEEE 1528**

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (1g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.170	4.170	normal (k=1)	1.0000	0.6400	2.669	2.669	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.230	4.230	normal (k=1)	1.0000	0.6000	2.538	2.538	5
	Combined standard uncertainty			t-distribution			9.34	9.34	>400
	Expanded uncertainty			k = 1.96			18.30	18.30	>400