

RF Exposure Report

Report No.: SA191030C08A

FCC ID: RX3-WBU053VZ

Test Model: WBU053-VZ

Received Date: Dec. 02, 2019

Date of Evaluation: Dec. 03, 2019

Issued Date: Dec. 05, 2019

Applicant: Hon Hai Precision Industry Co., Ltd.

Address: No.151, Sec. 1, Nankan Rd., Lujhu Dist., Taoyuan County 33859, Taiwan

(R.O.C.)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN

FCC Registration /

788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: SA191030C08A Page No. 1 / 6 Report Format Version: 6.1.1 Reference No.: 191202C15

Table of Contents

Rele	ease Control Record	3
1	Certificate of Conformity	4
	RF Exposure	
2.	.1 Limits for Maximum Permissible Exposure (MPE)	5
2.2	.2 MPE Calculation Formula	5
2.3	.3 Classification	5
2.4	.4 Calculation Result of Maximum Conducted Power	6

Release Control Record

Issue No.	Description	Date Issued
SA191030C08A	Original Release	Dec. 05, 2019

Page No. 3 / 6 Report Format Version: 6.1.1

Report No.: SA191030C08A Reference No.: 191202C15

1 Certificate of Conformity

Product: Wireless Module

Brand: Foxconn

Test Model: WBU053-VZ

Sample Status: Engineering Sample

Applicant: Hon Hai Precision Industry Co., Ltd.

Date of Evaluation: Dec. 03, 2019

Standards: FCC Part 2 (Section 2.1091)

References Test KDB 447498 D01 General RF Exposure Guidance v06

Guidance:

IEEE C95.3 -2002

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : ______, Date: ______, Dec. 05, 2019

Gina Liu / Specialist

Dylan Chiou / Project Engineer

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)			
Limits For General Population / Uncontrolled Exposure							
0.3-1.34	614	1.63	(100)*	30			
1.34-30	824/f	2.19/f	(180/f ²)*	30			
30-300	27.5	0.073	0.2	30			
300-1500			f/1500	30			
1500-100,000			1.0	30			

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

pi = 3.1416

r = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

2.4 Calculation Result of Maximum Conducted Power

Band	Frequency Band (MHz)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
	2412-2462	26.31	3.80	20	0.204	1.00
	5180-5240	16.82	3.89	20	0.023	1.00
WLAN	5260-5320	16.87	3.89	20	0.024	1.00
	5500-5700	16.89	5.99	20	0.039	1.00
	5745-5825	16.81	5.17	20	0.031	1.00

Note:

- 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. 2.4GHz: Directional gain = $10log[(10^{G1/20} + 10^{G2/20} + + 10^{GN/20})^2 / N_{ANT}] = 3.80 dBi.$ 5.0GHz:

For U-NII-1, U-NII-2A Band:

Directional gain = $10\log[(10^{G1/20} + 10^{G2/20} + + 10^{GN/20})^2 / N_{ANT}] = 3.89 dBi$.

For U-NII-2C Band:

Directional gain = $10\log[(10^{G1/20} + 10^{G2/20} + + 10^{GN/20})^2 / N_{ANT}] = 5.99 dBi$.

For U-NII-3 Band:

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + + 10^{GN/20})^2 / N_{ANT}] = 5.17 dBi$.

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4GHz + WLAN 5GHz = 0.204/1 + 0.039/1 = 0.243

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---