

FCC Measurement/Technical Report on

GRG2501 Giorgio 2.5

FCC ID: RX2GRG2501

IC: 4983A-GRG2501

Test Report Reference: MDE_MAGNET_1610_FCCa

Test Laboratory: 7layers GmbH

Borsigstrasse 11 40880 Ratingen Germany

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1 A	pplied Standards and Test Summary	4
1.1	Applied Standards	4
1.2	FCC-IC Correlation Table	5
1.3	Measurement Summary / Signatures	5
2 A	dministrative Data	9
2.1	Testing Laboratory	9
2.2	Project Data	9
2.3	Applicant Data	9
2.4	Manufacturer Data	10
3 T	est object Data	11
3.1	General EUT Description	11
3.2	EUT Main components	11
3.3	Ancillary Equipment	12
3.4	Auxiliary Equipment	13
3.5	EUT Setups	13
3.6	Operating Modes	14
3.7	Product labelling	14
4 T	est Results	15
4.1	Occupied Bandwidth (20 dB)	15
4.2	Peak Power Output	18
4.3	Spurious RF Conducted Emissions	21
4.4	Transmitter Spurious Radiated Emissions	23
4.5	Band Edge Compliance Conducted	29
4.6	Band Edge Compliance Radiated	32
4.7	Channel Separation	34
4.8	Dwell Time	36
4.9	Number of Hopping Frequencies	38
5 T	est Equipment	40
6 A	ntenna Factors, Cable Loss and Sample Calculations	43
6.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	43
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	44
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	45
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	46
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	47
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	48
7 S	etup Drawings	49

8 Measurement Uncertainties	50
9 Photo Report	50

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-16 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1: (FHSS Equipment)

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.10-2013 is applied.

Note 2: (vehicular equipment)

§ 15.207 Conducted Limits not applicable for vehicular equipment

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 4 of 50

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 1: 5.1 (2)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 1: 5.4 (2)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13/8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 1: 5.1 (4)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 1: 5.1 (2)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 1: 5.1 (4)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 1: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	-

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)	(1)	
Occupied Bandwidth (20 dB)			
The measurement was performed according to ANSI C6	3.10	Final Re	sult
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
Bluetooth EDR 3, high	S01_AA01	Passed	Passed
Bluetooth BDR, high	S01_AA01	Passed	Passed
Bluetooth BDR, low	S01_AA01	Passed	Passed
Bluetooth BDR, mid	S01_AA01	Passed	Passed
Bluetooth EDR 2, mid	S01_AA01	Passed	Passed
Bluetooth EDR 3, mid	S01_AA01	Passed	Passed
Bluetooth EDR 3, low	S01_AA01	Passed	Passed
Bluetooth EDR 2, high	S01_AA01	Passed	Passed
Bluetooth EDR 2, low	S01_AA01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b)	(1)	
Peak Power Output	2.10		

The measurement was performed according to ANSI C63.10			Final Result	
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	FCC	IC	
Bluetooth EDR 2, high, conducted	S01_AA01	Passed	Passed	
Bluetooth EDR 3, low, conducted	S01_AA01	Passed	Passed	
Bluetooth EDR 2, mid, conducted	S01_AA01	Passed	Passed	
Bluetooth EDR 3, mid, conducted	S01_AA01	Passed	Passed	
Bluetooth EDR 2, low, conducted	S01_AA01	Passed	Passed	
Bluetooth BDR, low, conducted	S01_AA01	Passed	Passed	
Bluetooth BDR, mid, conducted	S01_AA01	Passed	Passed	
Bluetooth EDR 3, high, conducted	S01_AA01	Passed	Passed	
Bluetooth BDR, high, conducted	S01_AA01	Passed	Passed	

§ 15.247 (d)

§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63.10 **Final Result OP-Mode** Setup FCC IC Radio Technology, Operating Frequency S01 AA01 Passed Passed Bluetooth EDR 2, low S01_AA01 Passed Passed Bluetooth BDR, mid S01_AA01 Passed Passed Bluetooth BDR, high Bluetooth EDR 3, mid S01_AA01 Passed Passed Bluetooth EDR 2, high S01_AA01 Passed Passed Bluetooth EDR 3, low S01_AA01 Passed Passed Bluetooth EDR 2, mid S01_AA01 Passed Passed

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

47 CFR CHAPTER I FCC PART 15 Subpart C

Page 6 of 50

47 CFR CHAPTER I FCC PART 15 Subpart C	§ 15.247 (d)
S15 247	

Spurious RF Conducted Emissions			
The measurement was performed according to	ANSI C63.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency	-		
Bluetooth EDR 3, high	S01_AA01	Passed	Passed
Bluetooth BDR, low	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Transmitter Spurious Radiated Emissions

The measurement was performed according to ANSI C63.10		Final Re	sult
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	FCC	IC
Bluetooth EDR 2, low, 1 GHz - 8 GHz	S02_AA01	Passed	Passed
Bluetooth BDR, mid, 9 kHz - 30 MHz	S02_AA01	Passed	Passed
Bluetooth BDR, mid, 30 MHz - 1 GHz	S02_AA01	Passed	Passed
Bluetooth BDR, high, 1 GHz - 26 GHz	S02_AA01	Passed	Passed
Bluetooth BDR, high, 30 MHz - 1 GHz	S02_AA01	Passed	Passed
Bluetooth BDR, low, 30 MHz - 1 GHz	S02_AA01	Passed	Passed
Bluetooth EDR 2, mid, 1 GHz - 8 GHz	S02_AA01	Passed	Passed
Bluetooth BDR, low, 1 GHz - 26 GHz	S02_AA01	Passed	Passed
Bluetooth BDR, mid, 1 GHz - 26 GHz	S02_AA01	Passed	Passed
Bluetooth EDR 2, high, 1 GHz - 8 GHz	S02_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

310.247			
Band Edge Compliance Conducted			
The measurement was performed according to ANSI C63.	10	Final Res	sult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge			
Bluetooth EDR 3, hopping, low	S01_AA01	Passed	Passed
Bluetooth EDR 2, low, low	S01_AA01	Passed	Passed
Bluetooth EDR 2, hopping, high	S01_AA01	Passed	Passed
Bluetooth EDR 2, high, high	S01_AA01	Passed	Passed
Bluetooth BDR, hopping, high	S01_AA01	Passed	Passed
Bluetooth BDR, hopping, low	S01_AA01	Passed	Passed
Bluetooth BDR, high	S01_AA01	Passed	Passed
Bluetooth BDR, low, low	S01_AA01	Passed	Passed
Bluetooth EDR 3, low, low	S01_AA01	Passed	Passed
Bluetooth EDR 3, hopping, high	S01_AA01	Passed	Passed
Bluetooth EDR 2, hopping, low	S01_AA01	Passed	Passed
Bluetooth EDR 3, high, high	S01_AA01	Passed	Passed

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 7 of 50

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d)

§15.247
Band Edge Compliance Radiated

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup FCC IC

Radio Technology, Operating Frequency, Band Edge

Bluetooth EDR 2, high, high S02_AA01 Passed Passed Bluetooth BDR, high, high S02_AA01 Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1)

§15.247

Channel Separation

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup FCC IC

Radio Technology

Bluetooth BDR S01_AA01 Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) (iii)

§15.247

Dwell Time

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup FCC IC

Radio Technology

Bluetooth BDR S01_AA01 Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) (iii)

§15.247

Number of Hopping Frequencies

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup FCC IC

Radio Technology

Bluetooth BDR S01_AA01 Passed Passed

N/A: Not applicable N/P: Not performed

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Wolfgang Richter

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

Page 8 of 50

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2017-06-14

2.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Wolfgang Richter

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2017-07-03

Testing Period: 2017-04-26 to 2017-05-09

2.3 APPLICANT DATA

Company Name: Magneti Marelli S.p.A

Address: Viale A. Borletti 61/63

20011 Corbetta

Italy

Contact Person: Ing. Franco Schinco

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 9 of 50

2.4 MANUFACTURER DATA

Company Name: Magneti Marelli France SaS

6, Allée d'Argenson - ZI Nord BP40123 86101, Chatellerault Address:

France

Contact Person: Christian Garnier

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

	-			
Kind of Device product description	Automotive Infotainment System, Head unit with Bluetooth and WLAN radio			
Product name	Giorgio 2.5			
Туре	GRG2501			
Declared EUT data by	Declared EUT data by the supplier			
Voltage Type	DC			
Voltage Level	DC: 9 V - 16 V, tested	at 13.5 V		
Tested Modulation Type	Bluetooth: GFSK Modulation, 1-DHx packets π/4 DQPSK Modulation, 2-DHx packets 8-DPSK Modulation, 3-DHx packets			
General product description	Automotive Infotainment System			
Specific product description for the EUT	Head unit with Bluetooth and WLAN radio, broadcast receiver AM/FM/DAB, GNSS (GPS/GLONASS)			
The EUT provides the following ports:	1 GPS/GLONASS 2 m coaxial cable, AE4 connected 2 BT/WLAN 2 m coaxial cable, AE5 connected 3 Secondary Screen optional port not available 4 Main Video Out 2 m screened cable, AE1 connected 5 USB 1 2 m screened cable, terminated 6 USB 2 2 m screened cable, terminated 7 USB 3 2 m screened cable, terminated 8 FM 2 2 m coaxial cable, AE7 connected 9 AM/FM 1 2 m coaxial cable, AE6 connected 10 DAB 2 m coaxial cable, AE6 connected 11 SDARS optional port not available 12 Ethernet part of 2 m cable harness, terminated 13 40 vias			
Tested data rates	GFSK Modulation, 1-DHx packets π/4 DQPSK Modulation, 2-DHx packets 8-DPSK Modulation, 3-DHx packets			
Special software used for testing	CSR tools			

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 11 of 50

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1091004aa01	Standard sample 1
Sample Parameter	Sample Parameter Value	
Integral Antenna	no, external antenna for BT & WLAN / -2 dBi	
Serial No.	502551761803 S/N 009	
HW Version	ProtoC1.2	
SW Version	Version Linux Kernel	
	Version 4.1.15	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type/Model, HW, SW, S/N)	Description
AE1	Magneti Marelli, Display Giorgio DD952, HW03, SW4.00, 503490001203	Auxiliary Equipment to control the EUT
AE2	-, -, - , -, -	Cable Harness incl. terminations
AE3	ESDA, -, - , -, MM CAN_41	CAN Box
AE4	Askgroup, PN: 1561139060, - , -, -	GNSS Antenna, Shark antenna
AE5	Askgroup, Type: Folded Dipole Antenna,	BT/WLAN antenna with 2 m cable
AE6	Askgroup, Compact printed spiral antenna, PN: 50534820 24516, -, -	AM/FM1 antenna
AE7	Askgroup, Compact printed spiral antenna, PN: 50534820 24516, -, -	FM2/DAB antenna
AE8	Fujitsu Ltd., Lifebook E series E782, -, -, DSCM004672	7layers Laptop RE 02
AE9	Fujitsu Ltd., Model SEB100P2-19.0, -, -, 05335621F	AC Adapter for Laptop RE 02

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A + AE1 to AE9	Used for conducted tests
S02_AA01	EUT A + AE2 to AE7	Used for radiated tests, display replaced by resistor, Laptop (AE8 + AE9) used to setup the required operating mode with connection to the temporary integrated LAN port. They are not connected during testing.

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

2.4 GHz ISM 2400 - 2483.5 MHz low mid high 0 39 78 2402 2441 2480

BT Test Channels: Channel:

Frequency [MHz]

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

4 TEST RESULTS

4.1 OCCUPIED BANDWIDTH (20 DB)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1% to 5 % of the OBW

Video Bandwidth (VBW): 3 x RBW

Span: 2 to 5 times the OBW

Trace: MaxholdSweeps: 2000Sweep time: 8.5 msDetector: Peak

The technology depending measurement parameters can be found in the measurement plot.

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 15 of 50

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report.

Therefore the limit is determined as 1.5 MHz.

4.1.3 TEST PROTOCOL

Ambient 23 °C temperature:

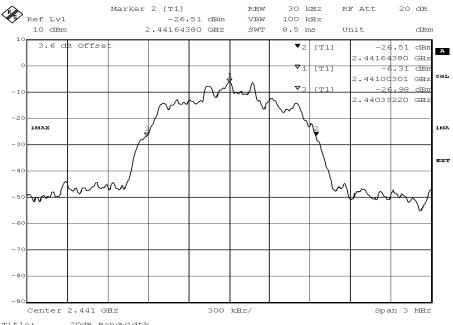
Air Pressure: 1012 hPa Humidity: 35 % BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.052	1.483	0.431
	39	2441	1.052	1.483	0.431
	78	2480	1.046	1.483	0.437

BT π/4 DOPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.228	1.483	0.256
	39	2441	1.222	1.483	0.262
	78	2480	1.222	1.483	0.262

BT 8-DPSK (3-DH1)


Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.246	1.483	0.238
	39	2441	1.252	1.483	0.232
	78	2480	1.246	1.483	0.238

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 16 of 50

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 3, Operating Frequency = mid (S01_AA01)

Title: 20dB Bandwidth
Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):1251.6
Date: 9.MAY.2017 13:13:17

4.1.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

Page 18 of 50

4.2 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.2.1 TEST DESCRIPTION

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1 MHzVideo Bandwidth (VBW): 3 MHz

Trace: MaxholdSweeps: 2000Sweep time: 5 msDetector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

FHSS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

• Resolution Bandwidth (RBW): 3 MHz

• Video Bandwidth (VBW): 3 MHz

Trace: MaxholdSweeps: 2000Sweep time: 5 msDetector: Peak

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

4.2.2 TEST REQUIREMENTS / LIMITS

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

4.2.3 TEST PROTOCOL

Ambient 23 °C

temperature:

Air Pressure: 1012 hPa Humidity: 35 % BT GFSK (1-DH1)

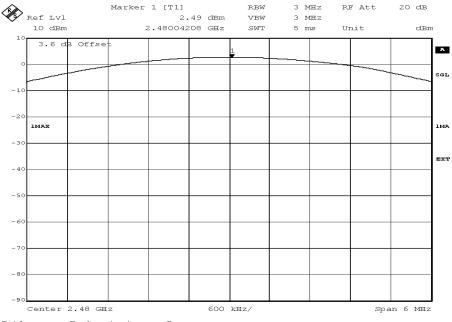
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-3.3	21.0	24.3
	39	2441	0.1	21.0	20.9
	78	2480	2.5	21.0	18.5

BT n/4 DQPSK (2-DH1)

DI 11/4 DQF3K (2-	(בוום				
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-6.4	21.0	27.4
	39	2441	-2.8	21.0	23.8
	78	2480	-0.2	21.0	21.2

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-5.9	21.0	26.9
	39	2441	-2.3	21.0	23.3
	78	2480	0.4	21.0	20.6


Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 19 of 50

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement method = conducted (S01_AA01)

Title: Peak outputpower Power
Comment A: CH T: 2480 MHz
Date: 9.MAY.2017 13:35:14

4.2.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.3 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
 Resolution Bandwidth (RBW): 100 kHz
 Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 2

Sweep Time: 330 sDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

4.3.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.3.3 TEST PROTOCOL

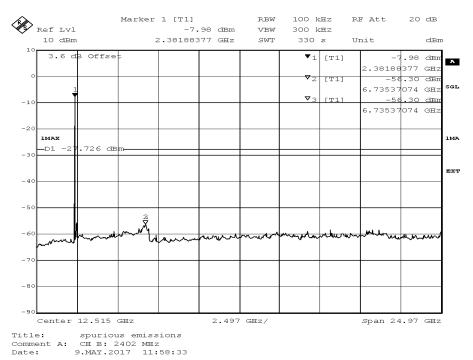
Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 35 %

BT GFSK (1-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	4783.8	-55.8	PEAK	100	-3.7	-23.7	32.1
39	2441	4883.8	-54.2	PEAK	100	-0.1	-20.1	34.1
78	2480	4933.9	-51.8	PEAK	100	2.2	-17.8	34.0

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 21 of 50

BT π/4 DQPSK (2-DH1)


Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	4200.0	-60.0	PEAK	100	-7.9	-27.9	32.2
39	2441	4200.0	-60.0	PEAK	100	-4.4	-24.4	35.6
78	2480	4200.0	-60.0	PEAK	100	-1.6	-21.6	38.4

BT 8-DPSK (3-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	6735.3	-56.3	PEAK	100	-8.0	-28.0	28.3
39	2441	6735.3	-56.3	PEAK	100	-4.3	-24.3	32.0
78	2480	4933.9	-55.9	PEAK	100	-1.8	-21.8	34.1

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 3, Operating Frequency = low (S01_AA01)

4.3.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.4 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.4.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: \pm 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with OP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 1 MHzMeasuring time: 1 s

4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 25 of 50

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

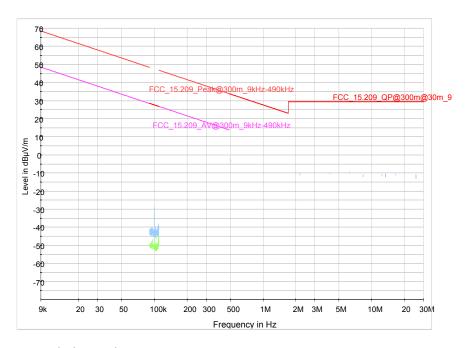
Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.4.3 TEST PROTOCOL

22-25 °C Ambient temperature: 1008-1018 hPa Air Pressure: Humidity: 28-35 %

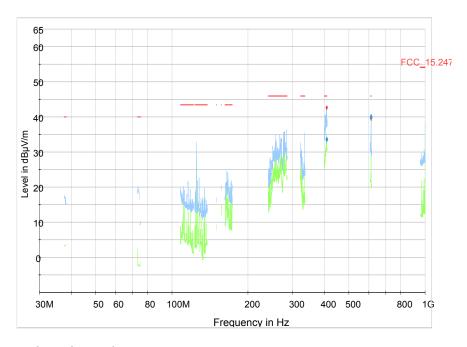
BT GFSK (1-DH1)

Applied duty cycle correction (AV): 0 dB


Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBuV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	408.3	33.6	OP	120	46.0	12.4	RB
0	2402	611.2	40.0	QP	120	46.0	6.0	RB
0	2402	8038.2	41.2	PEAK	1000	74.0	32.8	RB
0	2402	8038.2	30.3	AV	1000	54.0	23.7	RB
0	2402	8193.3	43.0	PEAK	1000	74.0	31.0	RB
0	2402	8193.3	29.7	AV	1000	54.0	24.3	RB
78	2480	1234.1	48.6	PEAK	1000	74.0	25.4	RB
39	2441	408.3	34.5	QP	120	46.0	11.5	RB
39	2441	611.2	39.8	QP	120	46.0	6.2	RB
78	2480	283.2	33.2	QP	120	46.0	12.8	RB
78	2480	408.3	34.6	QP	120	46.0	11.4	RB
78	2480	611.1	36.3	QP	120	46.0	9.7	RB
78	2480	1234.2	37.2	AV	1000	54.0	16.8	RB
78	2480	2484.2	36.6	AV	1000	54.0	17.4	RB
78	2480	2484.2	49.9	PEAK	1000	74.0	24.2	RB
78	2480	8037.8	42.5	PEAK	1000	74.0	31.5	RB
78	2480	8038.2	32.7	AV	1000	54.0	21.3	RB
78	2480	8198.9	28.2	AV	1000	54.0	25.8	RB
78	2480	8198.9	40.9	PEAK	1000	74.0	33.1	RB

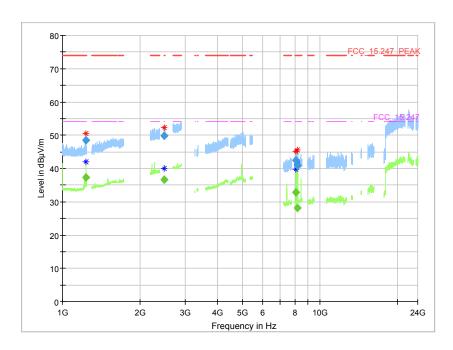
Remark:

- 1. Please see next sub-clause for the measurement plot.
- 2. Highest output power in BDR mode. => In BDR mode measured in restricted bands from 30 MHz up to 26 GHz, => result above 2.48 GHz uncritical (noise floor or > 20 dB margin)
- EDR 2 mode measured therefor only partly from 1 GHz up to 8 GHz, => result uncritical
 EDR 3 mode therefor skipped



4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S02_AA01)

BDR, mid channel


Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S02_AA01)

BDR, low channel

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S02_AA01)

BDR, high channel

4.4.5 TEST EQUIPMENT USED

- Radiated Emissions

4.5 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.5.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

• Frequency Range 2397 MHz - 2403 MHz and 2479 MHz - 2485 MHz

• Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Sweep time: 5 msTrace: Maxhold

4.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 29 of 50

4.5.3 TEST PROTOCOL

Ambient 23

23 °C

temperature: Air Pressure:

1012 hPa

Humidity: BT GFSK (135 %

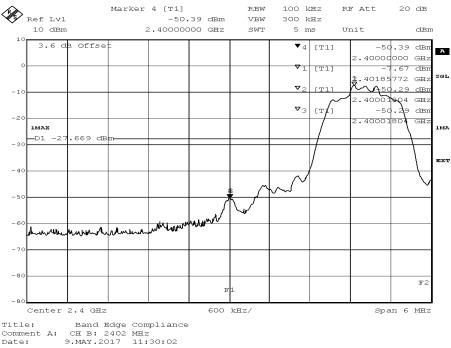
DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-54.0	PEAK	100	-3.6	-23.6	30.5
78	2480	2483.5	-60.7	PEAK	100	2.4	-17.6	43.1
hopping	hopping	2400.0	-54.1	PEAK	100	-2.2	-22.2	31.9
honnina	hopping	2483.5	-61.7	PFAK	100	2.4	-17.6	44.1

BT π/4 DQPSK (2-DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-50.4	PEAK	100	-7.7	-27.7	22.7
78	2480	2483.5	-62.8	PEAK	100	-1.5	-21.5	41.4
hopping	hopping	2400.0	-50.8	PEAK	100	-6.2	-26.2	24.5
hopping	hopping	2483.5	-60.9	PEAK	100	-1.5	-21.5	39.3

BT 8-DPSK (3-DH1)


Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-51.5	PEAK	100	-7.7	-27.7	23.8
78	2480	2483.5	-63.2	PEAK	100	-1.5	-21.5	41.7
hopping	hopping	2400.0	-50.6	PEAK	100	-6.3	-26.3	24.3
hopping	hopping	2483.5	-60.9	PEAK	100	-1.5	-21.5	39.4

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa

4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Band Edge = low (S01_AA01)

Band Edge conducted EDR2 low channel

4.5.5 TEST EQUIPMENT USED

Regulatory Bluetooth RF Test Solution

4.6 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.6.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.6.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 32 of 50

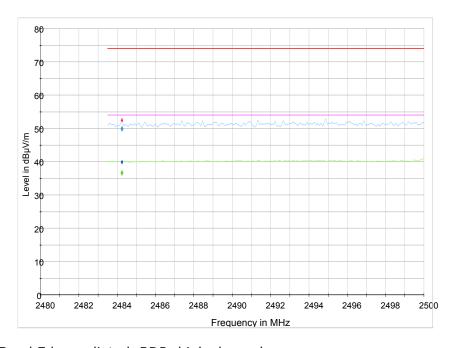
4.6.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 22-25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1008-1018 \ \mbox{hPa} \\ \mbox{Humidity:} & 28-35 \ \mbox{\%} \end{array}$

BT GFSK (1-DH1)

Applied duty cycle correction (AV): 0 dB

, .PP	spired duty of the confection (111). C de							
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
78	2480	2483.5	49.9	PEAK	1000	74.0	24.2	BE
78	2480	2483.5	36.6	AV	1000	54.0	17.4	BE


BT n/4 DQPSK (2-DH1)

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
78	2480	2483.5	49.4	PEAK	1000	74.0	24.6	BE
78	2480	2483.5	36.6	AV	1000	54.0	17.4	BE

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S02_AA01)

Band Edge radiated, BDR, high channel

4.6.5 TEST EQUIPMENT USED

- Radiated Emissions

4.7 CHANNEL SEPARATION

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.7.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Detector: PeakTrace: Maxhold

Span: appr. 3 x OBW

• Centre Frequency: a mid-frequency of the used band

• Resolution Bandwidth (RBW): approx. 3 % of channel spacing

• Video Bandwidth (VBW): 3 x RBW

• Sweep Time: 8.5 ms

• Sweeps: 2000

The technology depending measurement parameters can be found in the measurement plot.

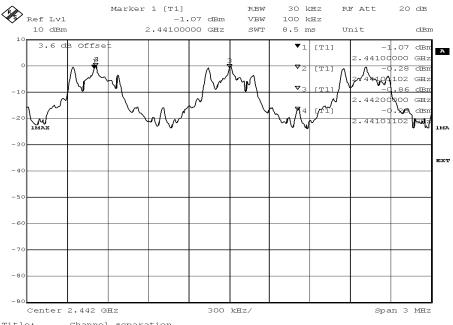
4.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.7.3 TEST PROTOCOL

Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 35 %


Radio Technology	Channel Separation [MHz]	Limit [MHz]	Margin to Limit [MHz]
BT GFSK (1-DH1)	0.989	0.025	0.964

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 34 of 50

4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR (S01_AA01)

Title: Channel separation
Comment A: CE H: Hopping
Date: 9.MAY.2017 14:25:55

4.7.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.8 DWELL TIME

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The dwell time is independent from the modulation pattern. The dwell time is calculated by:

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s

with:

- hop rate = 1600 * 1/s for DH1 packets= $1600 s^{-1}$
- hop rate = 1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$
- hop rate = 1600/5 * 1/s for DH5 packets = 320 s⁻¹
- number of hopping channels = 79
- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

Analyzer settings:

- Center Frequency: mid channel frequency
- Span: Zero spanDetector: Peak
- Detector. Feak
- Trace: Maxhold
- Resolution Bandwidth (RBW): ≤ channel separation
- Trigger: Video

4.8.2 TEST REQUIREMENTS / LIMITS

For the band: 902 – 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 - 5850 MHz

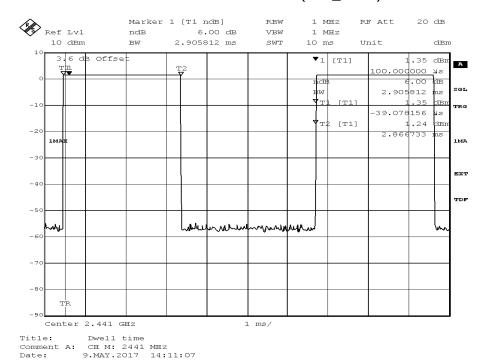
FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 36 of 50

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.


4.8.3 TEST PROTOCOL

Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 35 %

Radio Technology	Time Slot Length [ms]	Dwell Time [ms]	Limit [s]	Margin to Limit [ms]
BT GFSK (1-DH5)	2.910	372.480	0.4	27.520

Remark: Please see next sub-clause for the measurement plot.

4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR (S01_AA01)

4.8.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

4.9 NUMBER OF HOPPING FREQUENCIES

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Detector: PeakTrace: Maxhold

• Centre frequency: 2442 MHz

• Frequency span: Frequency band of operation

 Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is smaller)

• Video Bandwidth (VBW): 3 x RBW

Sweep Time: 21 msSweeps: 2000

The technology depending measurement parameters can be found in the measurement plot.

4.9.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

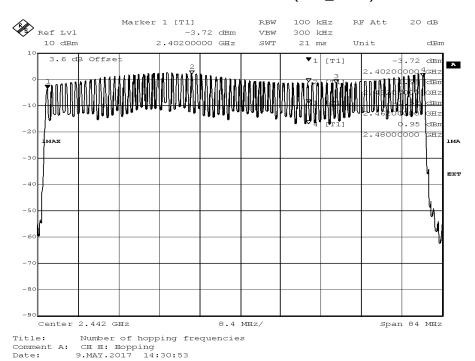
Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

For the band: 2400 - 2483.5 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa Page 38 of 50


4.9.3 TEST PROTOCOL

Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 35 %

Radio Technology	Number of Hopping Frequencies	Limit	Margin to Limit
BT GFSK (1-DH1)	79	15	64

Remark: Please see next sub-clause for the measurement plot.

4.9.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR (S01_AA01)

4.9.5 TEST EQUIPMENT USED

- Regulatory Bluetooth RF Test Solution

5 TEST EQUIPMENT

1 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2016-09	2017-09
1.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.3	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none		
1.4	HL 562	biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
1.5	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
1.6	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	_		
1.7	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB		
1.8	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.9	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.10	FSW 43		Rohde & Schwarz	103779	2016-12	2018-12
1.11	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
1.12	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.13	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.14	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.15	JS4-00102600- 42-5A		Miteq	619368		
1.16	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.17	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.18	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.19	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
1.20	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2014-11	2017-11

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		-			Calibration	Due
1.21	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.22	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
1.23	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.24	AS 620 P	Antenna mast	HD GmbH	620/37		
1.25	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.26	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
1.27	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.28	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
1.29	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

2 Regulatory Bluetooth RF Test Solution Regulatory Bluetooth RF Tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	
2.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2016-09	2017-09
2.2	EX520	Digital Multimeter 12 (Multimeter)	Extech Instruments Corp	05157876	2016-02	2018-02
2.3	NRV Z1 A	Power Sensor	Rohde & Schwarz	832279/013	2016-09	2017-09
2.4	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13985	2017-04	2019-04
2.5	SMP03	Signal Generator 2 GHz - 27 GHz	Rohde & Schwarz	833680/003	2016-10	2019-10
2.6	TOCT Switching Unit		7layers, Inc.	040107		
2.7	KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2016-03	2018-03
2.8	ADU 200 Relay Box 7	used for automated testing (EMMI) only	Ontrak Control Systems Inc	A04380		
2.9	СВТ		Rohde & Schwarz	100302	2017-02	2018-02
2.10	NRVD	Powermeter	Rohde & Schwarz	832025/059	2016-08	2017-08
2.11	FSIQ26	Signal Analyser	Rohde & Schwarz	832695/007	2016-09	2018-09
2.12	SMP02	Signal Generator SMP	Rohde & Schwarz	833286/0014	2016-05	2019-05
2.13	SMIQ03B		Rohde & Schwarz	832870/017	2016-06	2019-06
2.14	СВТ	Bluetooth Tester	Rohde & Schwarz	100589	2015-01	2018-01
2.15	NGSM 32/10	Power Supply	Rohde & Schwarz	2725	2015-06	2017-06

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	 11.1
24	11.1
26	11.2
28	11.2
30	11.3

,
cable
loss
(incl. 10
dB
atten-
uator)
dB
10.0
10.2
10.3
10.3
10.4
10.4
10.4
10.5
10.5
10.6
10.6
10.7
10.7
10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

U.Z AN		Q3 111 112
	Δ.	
Frequency	AF HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.003		-79.6
0.015	20.45	-79.6
0.013	20.37 20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

2 (9 KHZ	(9 KHZ - 30 MHZ)						
cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)	
dB	dB	dB	dB	dB	m	m	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-80	300	3	
0.1	0.1	0.1	0.1	-40	30	3	
0.1	0.1	0.1	0.1	-40	30	3	
0.1	0.1	0.1	0.1	-40	30	3	
0.1	0.1	0.1	0.1	-40	30	3	
0.1	0.1	0.1	0.1	-40	30	3	
0.1	0.1	0.1	0.1	-40	30	3	
0.2	0.1	0.1	0.1	-40	30	3	
0.2	0.1	0.1	0.1	-40	30	3	
0.2	0.1	0.1	0.1	-40	30	3	
0.2	0.1	0.1	0.1	-40	30	3	
0.2	0.1	0.2	0.1	-40	30	3	
0.2	0.1	0.2	0.1	-40	30	3	
0.2	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.2	0.1	-40	30	3	
0.3	0.1	0.3	0.1	-40	30	3	
0.4	0.1	0.3	0.1	-40	30	3	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$(d_{Limit} = 3 m)$					
_	AF R&S	C			
Frequency	HL562	Corr.			
MHz	dB (1/m)	dB			
30	18.6	0.6			
50	6.0	0.9			
100	9.7	1.2			
150	7.9	1.6			
200	7.6	1.9			
250	9.5	2.1			
300	11.0	2.3			
350	12.4	2.6			
400	13.6	2.9			
450	14.7	3.1			
500	15.6	3.2			
550	16.3	3.5			
600	17.2	3.5			
650	18.1	3.6			
700	18.5	3.6			
750	19.1	4.1			
800	19.6	4.1			
850	20.1	4.4			
900	20.8	4.7			
950	21.1	4.8			
1000	21.6	4.9			

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(d _{Limit}	=	10	m)
C GLIMIT	_		

(d _{Limit} = 10 i	m)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

	,			
cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

		<u> </u>		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

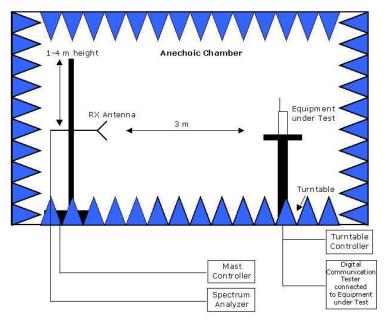
cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-15.6	3	0.5
4.4				-15.6	3	0.5
4.5				-15.6	3	0.5
4.6				-15.6	3	0.5
4.7				-15.6	3	0.5
4.7				-15.6	3	0.5
4.8				-15.6	3	0.5
4.9				-15.6	3	0.5
5.0				-15.6	3	0.5
5.1				-15.6	3	0.5
5.1				-15.6	3	0.5
5.2				-15.6	3	0.5
5.3				-15.6	3	0.5
5.4				-15.6	3	0.5
5.5				-15.6	3	0.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

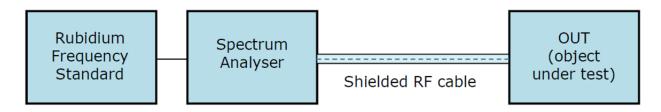
U = Receiver reading

AF = Antenna factor


Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



7 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.

TEST REPORT REFERENCE: MDE_MAGNET_1610_FCCa