

7560 Lindbergh Drive Gaithersburg, Maryland 20879 (301) 216-1500 Fax (301) 216-1590

FCC & Industry Canada Certification Test Report For the Etymotic Research Inc.

ER-892 etyBLU2 Bluetooth Headset

FCC ID: RWT-ER892 IC ID: 6648A-ER892

WLL JOB# **10800** February 27, 2009

Prepared for:

Etymotic Research Inc. 61 Martin Lane Elk Grove Village, IL 60007

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC & Industry Canada Certification Test Report for the Etymotic Research ER-892 etyBLU2 Bluetooth Headset FCC ID: RWT-ER892 IC ID: 6648A-ER892

February 27, 2009 WLL JOB# 10800

Jorffm

Prepared by: James Ritter EMC Compliance Engineer

Sto D. VI

Reviewed by: Steven D. Koster EMC Operations Manager

Abstract

This report has been prepared on behalf of Etymotic Research to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 (7/2008) of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210 of Industry Canada. This Certification Test Report documents the test configuration and test results for a Etymotic Research ER-892 etyBLU2 Bluetooth Headset.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

The Etymotic Research ER-892 etyBLU2 Bluetooth Headset complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210.

Table of Contents

A	bstra	act	ii
1		Introduction	.1
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Test Dates	1
	1.4	Test and Support Personnel	1
	1.5	Abbreviations	2
2		Equipment Under Test	.3
	2.1	EUT Identification & Description	3
	2.2	Test Configuration	3
	2.3	Testing Algorithm	4
	2.4	Test Location	4
	2.5	Measurements	5
	2	.5.1 References	5
	2.6	Measurement Uncertainty	5
3		Test Equipment	.6
4		Test Summary	.7
5		Test Results	.7
	5.1	Time of Occupancy	7
	5.2	RF Power Output: (FCC Part §2.1046)1	0
	5.3	Occupied Bandwidth: (FCC Part §2.1049)	4
	5.4	Channel Spacing and Number of Hop Channels (FCC Part §15247(a)(1)	17
	5.5	RF Peak Power Spectral Density (§15.247(e) and RSS-210, Annex 8.2)	19
	5.6	Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)	22
	5.7	Radiated Spurious Emissions: (FCC Part §2.1053)	51
	5	.7.1 Test Procedure	51
	5.8	Receiver Radiated Spurious Emissions: (RSS-Gen [7.2.3.2])	55
	5	.8.1 Test Procedure	55
	5	.8.2 Test Summary	56
	5.9	Conducted Emissions	57
	5	.9.1 Requirements	57
	5	.9.2 Test Procedure	57
	5	.9.3 Conducted Data Reduction and Reporting	57
	5	.9.4 Test Data	58

List of Tables

Table 1. Device Summary	3
Table 2: Test Equipment List	6
Table 3: Test Summary Table	7
Table 4. RF Power Output	10
Table 5. Occupied Bandwidth Results	17
Table 6 Channel spacing and number of hopping channels summary	17

Table 7. Power Spectral Density Results	
Table 8: Radiated Emission Test Data (Restricted Bands), Transmit @2402MHz	
Table 9: Radiated Emission Test Data (Restricted Bands), Transmit @2441MHz	53
Table 10: Radiated Emission Test Data (Restricted Bands), Transmit @2480MHz	54
Table 11: Radiated Emission Test Data (Receiver)	56
Table 12 AC Power line Conducted Emissions	58

List of Figures

Figure 2-1 Test Configuration	4
Figure 5-1. Single Hop Dwell Time	8
Figure 5-2. Dwell time per channel over 31.6 Seconds	9
Figure 5-3. Close-up of Dwell time per channel over 1 Second	. 10
Figure 5-4. RF Peak Power, Low Channel	11
Figure 5-5. RF Peak Power, Mid Channel	.12
Figure 5-6. RF Peak Power, High Channel	13
Figure 5-7. Occupied Bandwidth, Low Channel	14
Figure 5-8. Occupied Bandwidth, Mid Channel	15
Figure 5-9. Occupied Bandwidth, High Channel	16
Figure 5-10, Channel Spacing	18
Figure 5-11, Number of Channels	. 19
Figure 5-12 Power Spectral Density, Low Channel	20
Figure 5-13 Power Spectral Density, Center Channel	21
Figure 5-14 Power Spectral Density, High Channel	. 22
Figure 5-15 Lower Band Edge Plot, Low Channel	23
Figure 5-16 Lower Band Edge Plot, Hopping Mode	. 24
Figure 5-17 Upper Band Edge Plot, High Channel	25
Figure 5-18 Upper Band Edge Plot, Hopping Mode	26
Figure 5-19. Conducted Spurious Emissions, Low Channel 30 - 1000MHz	27
Figure 5-20. Conducted Spurious Emissions, Low Channel 1 – 2.395GHz	28
Figure 5-21. Conducted Spurious Emissions, Low Channel 2.395 – 2.488GHz	29
Figure 5-22. Conducted Spurious Emissions, Low Channel 2.488 - 5GHz	. 30
Figure 5-23. Conducted Spurious Emissions, Low Channel 5-10GHz	31
Figure 5-24. Conducted Spurious Emissions, Low Channel 10-15GHz	32
Figure 5-25. Conducted Spurious Emissions, Low Channel 15-20GHz	33
Figure 5-26. Conducted Spurious Emissions, Low Channel 20-25GHz	34
Figure 5-27. Conducted Spurious Emissions, Mid Channel 30 - 1000MHz	35
Figure 5-28. Conducted Spurious Emissions, Mid Channel 1 – 2.395GHz	36
Figure 5-29. Conducted Spurious Emissions, Mid Channel 2.395 – 2.488GHz	37
Figure 5-30. Conducted Spurious Emissions, Mid Channel 2.488 - 5GHz	38
Figure 5-31. Conducted Spurious Emissions, Mid Channel 5 - 10GHz	39
Figure 5-32. Conducted Spurious Emissions, Mid Channel 10-15GHz	40
Figure 5-33. Conducted Spurious Emissions, Mid Channel 15-20GHz	41
Figure 5-34. Conducted Spurious Emissions, Mid Channel 20-25GHz	42

Figure 5-35. Conducted Spurious Emissions, High Channel 30 - 1000MHz	43
Figure 5-36. Conducted Spurious Emissions, High Channel 1 – 2.395GHz	44
Figure 5-37. Conducted Spurious Emissions, High Channel 2.395 – 2.488GHz	45
Figure 5-38. Conducted Spurious Emissions, High Channel 2.488 - 5GHz	46
Figure 5-39. Conducted Spurious Emissions, High Channel 5 - 10GHz	47
Figure 5-40. Conducted Spurious Emissions, High Channel 10 - 15GHz	48
Figure 5-41. Conducted Spurious Emissions, High Channel 15-20GHz	49
Figure 5-42. Conducted Spurious Emissions, High Channel 20-25GHz	50

1 Introduction

1.1 Compliance Statement

The Etymotic Research ER-892 etyBLU2 Bluetooth Headset complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 (7/2008) and Industry Canada RSS-210 issue 7.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with "FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems".

Contract Information

Customer:	TEM Consulting LP 140 River Road Georgetown, TX 78628
On Behalf of:	Etymotic Research 61 Martin Lane Elk Grove Village, IL 60007
Purchase Order Number:	1026
Quotation Number:	64560
1.3 Test Dates	
Testing was performed on the following date(s):	2/19/09-2/26/09
1.4 Test and Support Personnel	
Washington Laboratories, LTD	James Ritter
Client Representative	Stephen Berger

1.5 Abbreviations

Α	Ampere	
ac	alternating current	
AM	Amplitude Modulation	
Amps	Amperes	
b/s	bits per second	
BW	BandWidth	
CE	Conducted Emission	
cm	Centimeter	
CW	Continuous Wave	
dB	decibel	
dc	direct current	
EMI	Electromagnetic Interference	
EUT Equipment Under Test		
FM Frequency Modulation		
G giga - prefix for 10 ⁹ multiplier		
Hz	Hertz	
IF	Intermediate Frequency	
k	kilo - prefix for 10 ³ multiplier	
LISN	Line Impedance Stabilization Network	
Μ	M ega - prefix for 10^6 multiplier	
m	Meter	
μ	m icro - prefix for 10^{-6} multiplier	
NB Narrowband		
QP Quasi-Peak		
RE	Radiated Emissions	
RF	Radio Frequency	
rms	root-mean-square	
SN	Serial Number	
S/A	Spectrum Analyzer	
V	Volt	

2 Equipment Under Test

2.1 EUT Identification & Description

The Etymotic Research ER-892 etyBLU2 Bluetooth Headset is a device used to pair to cell phones or other Bluetooth devices and is used to transmit and receive analog signals such as voice or music between the pair.

ITEM	DESCRIPTION	
Manufacturer:	Etymotic Research	
FCC ID:	RWT-ER892	
IC:	6648A-ER892	
Model:	ER-892 etyBLU2 Bluetooth Headset	
FCC Rule Parts:	§15.247	
Industry Canada:	RSS210	
Frequency Range:	2402-2480MHz	
Maximum Output Power:	3.29mW (5.18dBm) Conducted at antenna port	
Modulation:	GFSK	
Occupied Bandwidth:	911.4kHz	
Keying:	Automatic, Manual	
Type of Information:	Digital Audio	
Number of Channels:	79	
Power Output Level	Fixed	
Antenna Connector	Integral Antenna	
Antenna Type	Folded Monopole	
Antenna Gain	1.832dBi	
Interface Cables:	None	
Power Source & Voltage:	Battery (rechargeable via USB connection)	
Emission Designator	911K4FXD	
Receiver Spurious (worst Case)	50.3 µV/m @ 3 meters	

 Table 1. Device Summary

2.2 Test Configuration

The ER-892 etyBLU2 Bluetooth Headset was controlled from a support laptop PC through a customer provided interface board. This interface board connected into the EUT via soldered on temporary communications cables. For conducted tests a temporary antenna connector replaced the onboard integral antenna.

Figure 2-1 Test Configuration

2.3 Testing Algorithm

The ER89 Bluetooth Headset was configured with software supplied by the radio chip manufacturer. It allowed for setting the device for continuous transmit mode with both the hopping and non-hopping modes along with channel selection. Additionally, as the device is portable, the emissions were checked in three orthogonal with the worst case being reported.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

KDB558074: "Measurement of Digital Transmission Systems operating under Section 15.247." (Used for Power Spectral Density Tests)

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty =
$$(A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 4.55 \text{ dB}.$

3 Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Typical Equipment List

Test Name:	Conducted Emissions Voltage	Test Date:	02/26/2009
Asset #	Manufacturer/Model	Description	Cal. Due
125	Solar, 8028-50-TS-24-BNC	LISN	07/01/2009
126	Solar, 8028-50-TS-24-BNC	LISN	07/01/2009
53	HP, 11947A	Limiter, Transient	04/09/2009
68	HP, 85650A	Adapter, QP	07/07/2009
72	HP, 8568B	Analyzer, Spectrum	07/03/2009
70	HP, 85685A	Preselector, RF w/opt 8ZE	07/07/2009
Test Name:	Radiated Emissions	Test Date:	02/26/2009
Asset #	Manufacturer/Model	Description	Cal. Due
382	Sunol, JB1	Antenna, Biconlog	01/27/2010
4	ARA, DRG-118/A	Antenna, DRG, 1-18GHz	02/06/2011
68	HP, 85650A	Adapter, QP	07/07/2009
72	HP, 8568B	Analyzer, Spectrum	07/03/2009
70	HP, 85685A	Preselector, RF w/opt 8ZE	07/07/2009
528	Agilent, E4446A	Analyzer, Spectrum	04/24/2009
66	HP, 8449B	Pre-Amplifier, RF. 1-26.5GHz	07/15/2009
Test Name:	Bench Emissions	Test Date:	02/26/2009
Asset #	Manufacturer/Model	Description	Cal. Due
474	HP, 8563E	Analyzer, Spectrum	02/03/2011

4 Test Summary

The Table Below shows the results of testing for compliance with a Frequency Hopping (Hybrid) System in accordance with FCC Part 15.247:2008 and RSS210e issue 7. Full results are shown in section 5.

TX Test Summary						
(Frequency Hopping Spread Spectrum)						
FCC Rule PartIC Rule PartDescriptionResult						
15.247 (a)(1)(iii)	RSS-210 [A8. 1]	20dB Bandwidth	Pass			
15.247 (b)(1)	RSS-210 [A8.4 (2)]	Transmit Output Power	Pass			
15.247 (a)(1)	RSS-210 [A8.1 (2)]	Channel Separation	Pass			
15.247 (a)(1)(iii)	RSS-210 [A8. 1 (4)]	Number of Channels >15	Pass			
15.247 (a)(1)(iii)	RSS-210 [A8. 1 (4)]	Time of Occupancy	Pass			
15.247 (e)	RSS-210 [A8. 2 (b)]	Power Spectral Density	Pass			
15.247 (d)	RSS-210 [A8. 5]	Occupied BW / Out-of-	Pass			
		Band Emissions (Band				
		Edge @ 20dB below)				
15.205	RSS-210 [A8. 5]	General Field Strength	Pass			
15.209		Limits (Restricted Bands				
		& RE Limits)				
	RX/Digital Test Summary					
	(Frequency Hopping	Spread Spectrum)				
FCC Rule Part	Description	Result				
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions	Pass			
15.209	RSS-Gen [7.2.3.2]	General Field Strength	Pass			
		Limits (Restricted Bands				
		& RE Limits)				

Table 3: Test Summary Tab	le
---------------------------	----

5 Test Results

5.1 Time of Occupancy

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

The following plots show that each channel on time is 440uSec per hop with 0.153Sec total On time per 31.6Sec.

TEM Consulting, Job 10800. FCC Pt15.247 etyBLU2 Bluetooth Headset Dwell time for a single Hop Measured = 440 uSec Per Hop

Figure 5-1. Single Hop Dwell Time

TEM Consulting, Job 10800. FCC Pt15.247 etyBLU2 Bluetooth Headset FCC Pt15.247 Time of Occupancy Limit= 0.4 Sec per 0.4 Sec per 31.6Sec

Figure 5-2. Dwell time per channel over 31.6 Seconds

TEM Consulting, Job 10800. FCC Pt15.247 etvBLU2 Bluetooth Headset FCC Pt15.247 Time of Occupancy Limit= 0.4 Sec per 0.4 seconds times the number of channels=0.4 per (0.4 * 79)=0.4Sec per 31.6Sec Plot shows 11 transmissions in a 1 second period = 11*31.6(seconds required)* 440uSec (on time of each pulse)= 0.153Sec On time Per 31.6 Seconds

Figure 5-3. Close-up of Dwell time per channel over 1 Second

5.2 **RF Power Output:** (FCC Part §2.1046)

To measure the output power the hopping sequence was stopped while the frequency dwelled on a low, high and middle channel. The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

Frequency	Level	Limit	Pass/Fail
Low Channel: 2402MHz	4.85 dBm	30 dBm	Pass
Mid Channel: 2441MHz	5.18 dBm	30 dBm	Pass
High Channel: 2480MHz	4.35 dBm	30 dBm	Pass

Table 4	. RF	Power	Output
---------	------	-------	--------

Figure 5-4. RF Peak Power, Low Channel

Figure 5-5. RF Peak Power, Mid Channel

Figure 5-6. RF Peak Power, High Channel

5.3 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

At full modulation, the occupied bandwidth was measured as shown:

Figure 5-7. Occupied Bandwidth, Low Channel