FCC & IC Certification Test Report For the Etymotic Research, Inc. ER89 Bluetooth Headset

FCC ID: RWT-ER89 IC ID: 6648A-ER89

WLL JOB# 10120/10121 November 30, 2007

Prepared for:

Etymotic Research, Inc. 61 Martin Lane Elk Grove Village, IL 60007

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC & IC Certification Test Report for the

Etymotic Research, Inc.

ER89 Bluetooth Headset

FCC ID: RWT-ER89

IC ID: 6648A-ER89

Novemeber 30, 2007

WLL JOB# 10120/10121

Prepared by: Steve Dovell

Compliance Engineer

Reviewed by: Steven D. Koster

EMC Operations Manager

Abstract

This report has been prepared on behalf of Etymotic Research, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210 of Industry Canada. This Certification Test Report documents the test configuration and test results for an Etymotic Research, Inc. ER89 Bluetooth Headset.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01. as an independent FCC test laboratory.

The Etymotic Research, Inc. ER89 Bluetooth Headset complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210.

Table of Contents

A	bstra	ct	ii
1		Introduction	1
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Contract Information	1
	1.4	Test Dates	1
	1.5	Test and Support Personnel	1
2		Equipment Under Test	2
	2.1	EUT Identification & Description	2
	2.2	Test Configuration	2
	2.3	Support Equipment	3
	2.4	Testing Algorithm	3
	2.5	Test Location	3
	2.6	Measurements	3
	2.	.6.1 References	3
	2.7	Measurement Uncertainty	3
3		Test Equipment	5
4		Test Results	6
	4.1	Dwell Time	
	4.2	RF Power Output: (FCC Part §2.1046)	
	4.3	Occupied Bandwidth: (FCC Part §2.1049)	
	4.4	RF Peak Power Spectral Density (§15.247(e) and RSS-210, Annex 8.2)	
	4.5	Channel Spacing and Number of Hop Channels (FCC Part §15247(a)(1)	
	4.6	Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)	24
	4.7	Radiated Spurious Emissions: (FCC Part §2.1053)	
	4.	.7.1 Test Procedure	
	4.8	AC Powerline Conducted Emissions: (FCC Part §15.207 and RSS-GEN)	58
Li	st of	Tables	
T:	hle	1. Device Summary	2
		2: Test Equipment List	
		3. RF Power Output	
		4. Occupied Bandwidth Results	
		5. RF Power Spectral Density	
		6: Radiated Emission Test Data, Low Frequency Data (<1GHz)	
		7: Radiated Emission Test Data, High Frequency Data, Low Channel (>1GHz)	
		8: Radiated Emission Test Data, High Frequency Data, Mid Channel (>1GHz)	
		9: Radiated Emission Test Data, High Frequency Data, High Channel (>1GHz)	
		10. AC Power line Conducted Emissions	

List of Figures

Figure 2-1: Test Configuration	. 2
Figure 2: Peak Power Low Channel	
Figure 3: Peak Power Mid Channel	
Figure 4: Peak Power High Channel	. 9
Figure 4-5. Occupied Bandwidth, Low Channel	11
Figure 4-6. Occupied Bandwidth, Mid Channel	12
Figure 4-7. Occupied Bandwidth, High Channel	13
Figure 4-8. Power Spectral Density, Low Channel	
Figure 4-8. Power Spectral Density, Mid Channel	16
Figure 4-10. Power Spectral Density, High Channel	17
Figure 4-10. Channel Separation	19
Figure 4-11. Number of Channels, Plot 1, Channels 1-19	20
Figure 4-12. Number of Channels, Plot 2, Channels 19-39	21
Figure 4-13. Number of Channels, Plot 3, Channels 39-59	
Figure 4-14. Number of Channels, Plot 4, Channels 59-79	23
Figure 4-15. Conducted Spurious Emissions, Low Channel 30 - 1000MHz	25
Figure 4-16. Conducted Spurious Emissions, Low Channel 1GHz – 2.4GHz	
Figure 4-17. Conducted Spurious Emissions, Low Channel 2.3GHz – 2.486GHz	27
Figure 4-18. Conducted Spurious Emissions, Low Channel 2.48GHz – 5GHz	28
Figure 4-19. Conducted Spurious Emissions, Low Channel 5 – 10GHz	29
Figure 4-20. Conducted Spurious Emissions, Low Channel 10 - 25GHz	30
Figure 4-21. Conducted Spurious Emissions, Mid Channel 30 - 1000MHz	
Figure 4-22. Conducted Spurious Emissions, Mid Channel 1 – 2.4GHz	32
Figure 4-23. Conducted Spurious Emissions, Mid Channel In-band	
Figure 4-24. Conducted Spurious Emissions, Mid Channel 2.48 –5GHz	34
Figure 4-25. Conducted Spurious Emissions, Mid Channel 5 - 10GHz	35
Figure 4-26. Conducted Spurious Emissions, Mid Channel 10 - 25GHz	36
Figure 4-27. Conducted Spurious Emissions, High Channel 30 - 1000MHz	37
Figure 4-28. Conducted Spurious Emissions, High Channel 1 – 2.4GHz	38
Figure 4-29. Conducted Spurious Emissions, High Channel In-band	39
Figure 4-30. Conducted Spurious Emissions, High Channel 2.48 –5GHz	40
Figure 4-31. Conducted Spurious Emissions, High Channel 5 - 10GHz	41
Figure 4-32. Conducted Spurious Emissions, High Channel 10 - 25GHz	42
Figure 4-33. Conducted Spurious Emissions, Low Channel Band Edge, Non-hopping	43
Figure 4-34. Conducted Spurious Emissions, Low Channel Band Edge, Hopping	44
Figure 4-35. Conducted Spurious Emissions, High Channel Band Edge, Non-hopping	
Figure 4-36. Conducted Spurious Emissions, High Channel Band Edge, Hopping	

1 Introduction

1.1 Compliance Statement

The Etymotic Research, Inc. ER89 Bluetooth Headset complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with FCC Public Notice DA 00-705 and the 2003 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Etymotic Research, Inc.

61 Martin Lane

Elk Grove Village, IL 60007

Quotation Number: 62997

1.4 Test Dates

Testing was performed on the following date(s): November 16 - 20, 2007

1.5 Test and Support Personnel

Washington Laboratories, LTD Steve Dovell

Client Representative Stephen Berger

2 Equipment Under Test

2.1 EUT Identification & Description

The Etymotic Research, Inc. ER89 Bluetooth Headset is a device used to pair to cell phones or other Bluetooth devices and is used to transmit and receive analog signals such as voice or music between the pair.

ITEM	DESCRIPTION	
Manufacturer:	Etymotic Research, Inc.	
FCC ID:	RWT-ER89	
IC ID:	6648A-ER89	
Model:	etyBlu	
IC Rule Parts:	RSS-210	
FCC Rule Part:	15.247	
Frequency Range:	2402-2480MHz	
Maximum Output Power:	2.77mW (4.43dBm)	
Occupied Bandwidth:	944kHz	
Keying:	Automatic	
Type of Information:	Digital Audio	
Number of Channels:	79	
Power Output Level	Fixed	
Antenna Connector	Integral Antenna	
Interface Cables:	None	
Power Source & Voltage:	Battery (rechargeable via USB connection)	

Table 1. Device Summary

2.2 Test Configuration

The ER89 Bluetooth Headset was configured as shown in Figure 1 below.

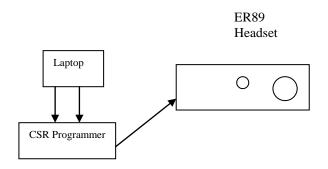


Figure 2-1: Test Configuration

2.3 Support Equipment

Description	Part Number	Serial Number	
HP Laptop	CU337AT#ABA	CN074122HC	
Hp Power supply	SPS-4172200-001ADT	7J07A4	
CRS Programmer	N/A	N/A	

2.4 Testing Algorithm

The ER89 Bluetooth Headset was configured with software supplied by the radio chip manufacturer. It allowed for setting the device for continuous transmit mode with both the hopping and non-hopping modes along with channel selection. Additionally, as the device is portable, the emissions were checked in three orthogonal with the worst case being reported.

Worst case emission levels are provided in the test results data.

2.5 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by A2LA Certificate # 2675.01 as an independent FCC test laboratory.

2.6 Measurements

2.6.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.7 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty =
$$(A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3 \text{ dB}$.

3 Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Test Name:	Conducted Emissions Voltage	Test Date:	11/20/2007
Asset #	Manufacturer/Model	Description	Cal. Due
00069	HP, 85650A	ADAPTER, QP	7/6/2008
00073	HP, 8568B	ANALYZER, SPECTRUM	7/6/2008
00125	SOLAR, 8028-50-TS-24-BNC	LISN	2/1/2008
00126	SOLAR, 8028-50-TS-24-BNC	LISN	2/1/2008
00053	HP, 11947A	LIMITER, TRANSIENT	4/9/2008
Test Name:	Radiated Emissions	Test Date:	11/20/2007
Asset #	Manufacturer/Model	Description	Cal. Due
00069	HP, 85650A	ADAPTER, QP	7/6/2008
00073	HP, 8568B	ANALYZER, SPECTRUM	7/6/2008
00071	HP, 85685A	PRESELECTOR, RF	7/6/2008
00618	HP 8563A	ANALYZER, SPECTRUM	2/9/2008
00004	ARA, DRG-118/A	ANTENNA, DRG, 1-18GHZ	2/2/2008
00007	ARA, LPB-2520	ANTENNA, BICONILOG ANTENNA	6/7/2008
00522	HP, 8449B	PRE-AMPLIFIER, 1-26.5GHZ	7/27/2008

4 Test Results

4.1 Dwell Time

The EUT utilizes a qualified Bluetooth device (reference Parts List) and therefore in order to work properly with other Bluetooth devices and will therefore comply with the dwell time requirements. The following is taken from the FCC common theory of operation for Bluetooth devices.

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows:

Dwell time = time slot length * hop rate / number of hopping channels *30s

Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \mu s * 1600 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

For multi-slot packet the hopping is reduced according to the length of the packet.

Example for a DH5 packet (with a maximum length of five time slots) Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode. This was checked during the Bluetooth Qualification tests. The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

4.2 RF Power Output: (FCC Part §2.1046)

To measure the output power the hopping sequence was stopped while the frequency dwelled on a low, high and middle channel. The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer with a 2MHz resolution bandwidth and a 3MHz video bandwidth. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system and the detector was set to peak.

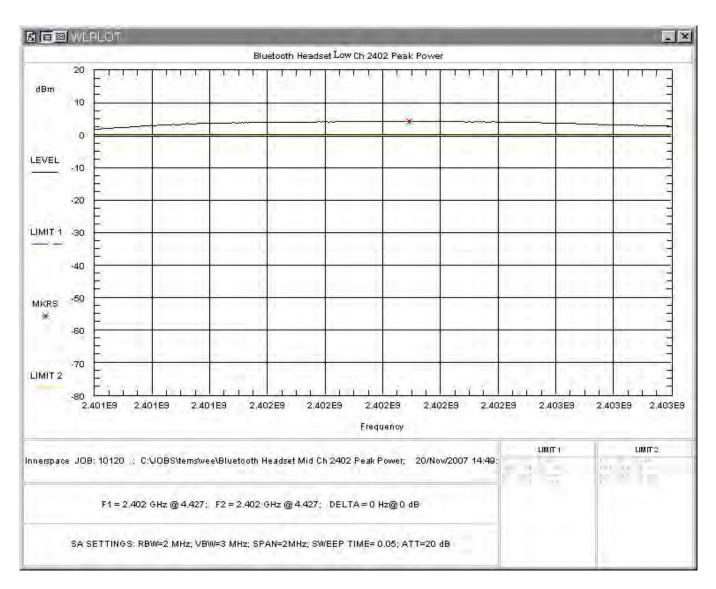


Figure 2: Peak Power Low Channel

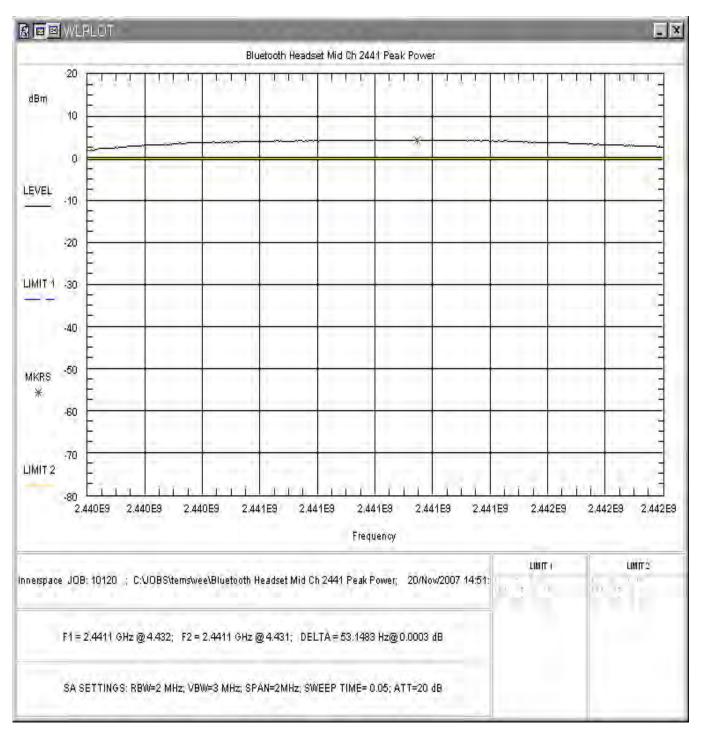


Figure 3: Peak Power Mid Channel

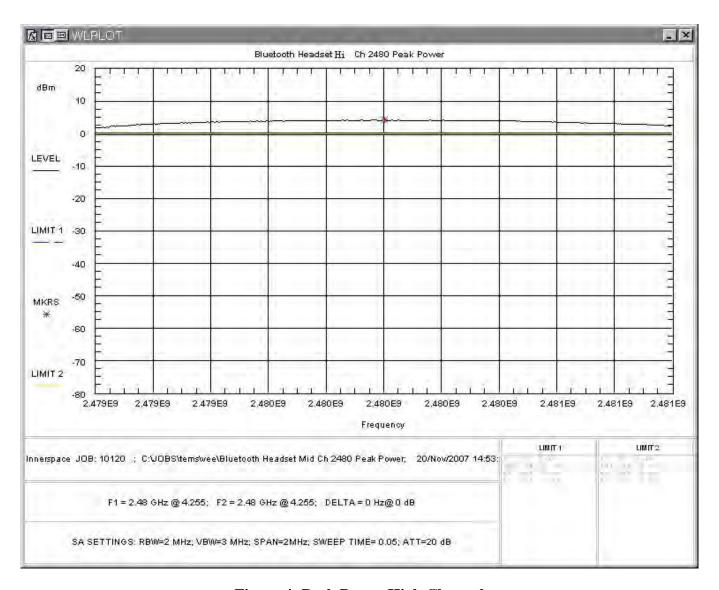


Figure 4: Peak Power High Channel

Table 3. RF Power Output

Frequency	Level	Limit	Pass/Fail
Low Channel 2402MHz	4.43 dBm	30 dBm	Pass
Mid Channel 2441MHz	4.43 dBm	30 dBm	Pass
High Channel 2480MHz	4.26 dBm	30 dBm	Pass

4.3 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

For Frequency Hopping Spread Spectrum Systems, FCC Part 15.247 requires the Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

At full modulation, the occupied bandwidth was measured as shown:

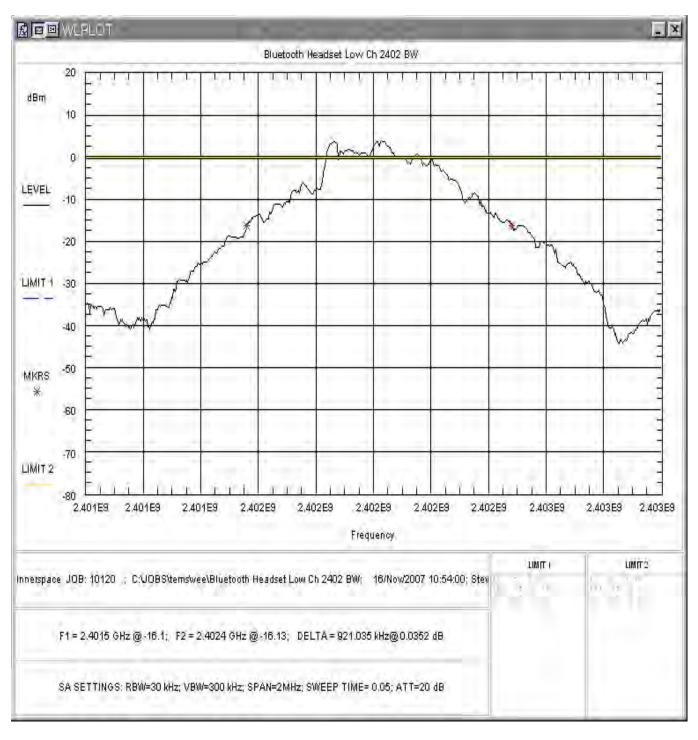


Figure 4-5. Occupied Bandwidth, Low Channel

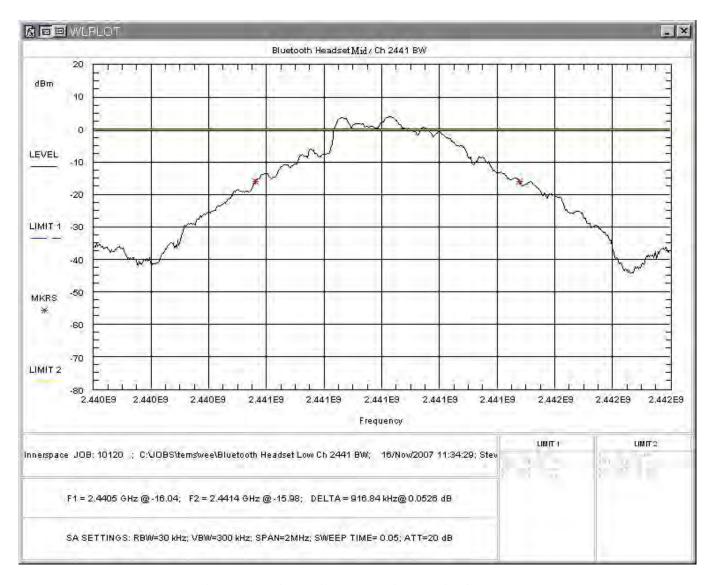


Figure 4-6. Occupied Bandwidth, Mid Channel

Figure 4-7. Occupied Bandwidth, High Channel

Table 4 provides a summary of the Occupied Bandwidth Results.

Table 4. Occupied Bandwidth Results

Frequency	Bandwidth	
Low Channel 2402MHz	921kHz	
Mid Channel 2441MHz	916.8kHz	
High Channel 2480MHz	944kHz	

4.4 RF Peak Power Spectral Density (§15.247(e) and RSS-210, Annex 8.2)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

The highest peak within the transmission was located and measured for the upper and lower channels. Plots of the PSD were taken as shown in Figure 4-8 through Figure 4-10 below. Table 5 provides a summary of the data.

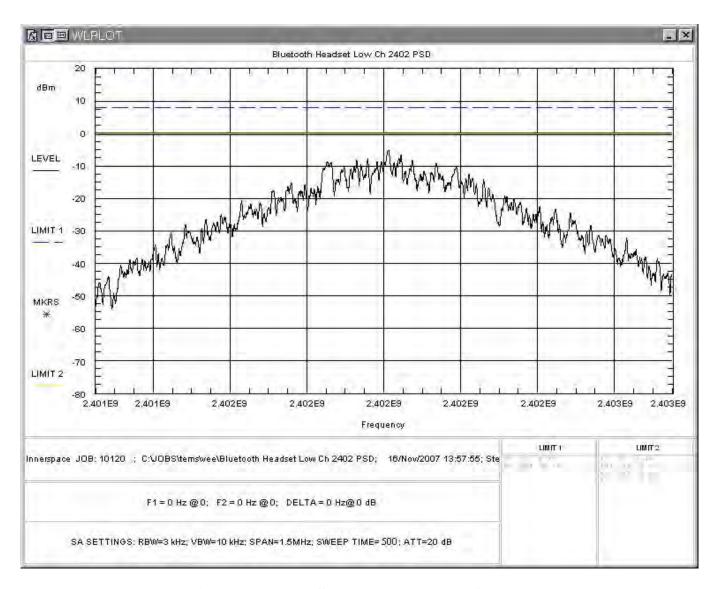


Figure 4-8. Power Spectral Density, Low Channel

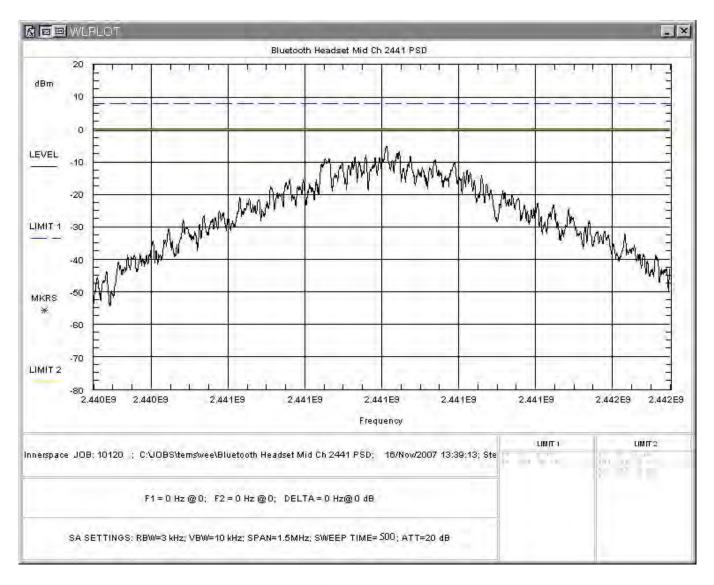


Figure 4-8. Power Spectral Density, Mid Channel

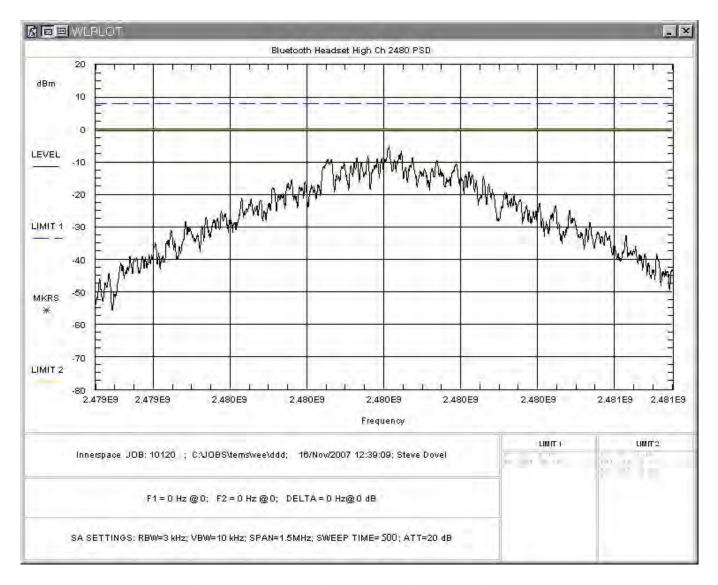


Figure 4-10. Power Spectral Density, High Channel

Table 5. RF Power Spectral Density

Frequency	Level (dBm)	Limit (dBm)	Pass/Fail
2402MHz	-5.07	8	Pass
2440MHz	-5.0	8	Pass
2480MHz	-5.02	8	Pass

4.5 Channel Spacing and Number of Hop Channels (FCC Part §15247(a)(1)

Per the FCC requirements, For Frequency Hopping Spread Spectrum Systems, FCC Part 15.247 requires the Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The output of the ER89 is well under the limit 125 mW specification and therefore the channels must be separated by two-thirds of the 20dB bandwidth. The maximum 20dB bandwidth measured 944 kHz. Therefore the channel spacing must be at least 629.3kHz.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. The spectrum analyzer resolution bandwidth was set to 300 kHz and the video bandwidth was set to 1MHz. The channel spacing of 2 adjacent channels was measured on the spectrum analyzer. The following are plots of the channel spacing and number of hopping channels data. The channel spacing was measured to be 1MHz and the number of channels used is 79.

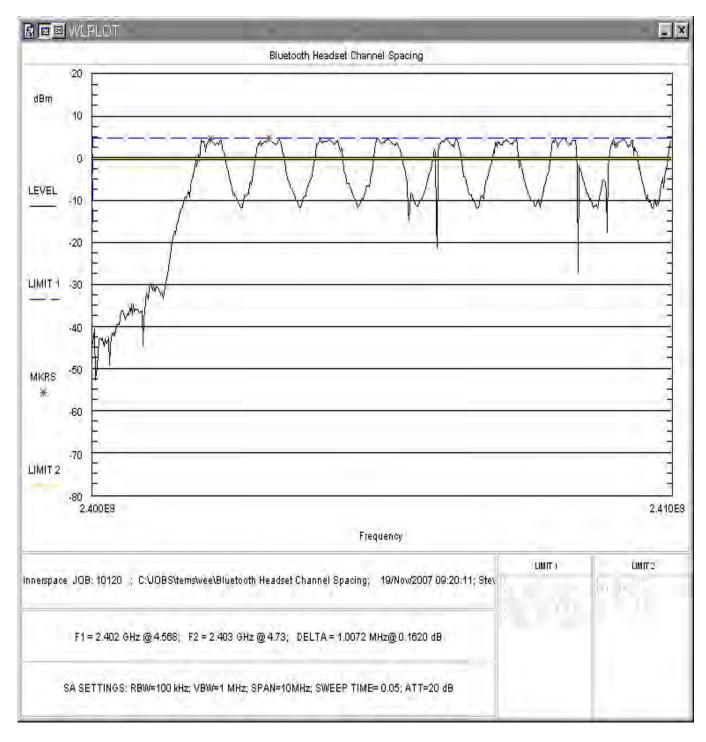


Figure 4-10. Channel Separation

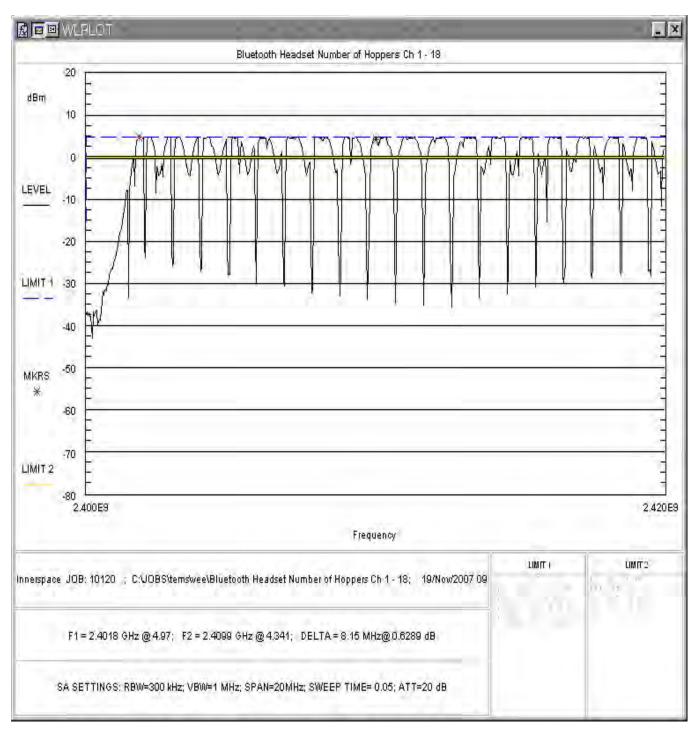


Figure 4-11. Number of Channels, Plot 1, Channels 1-19

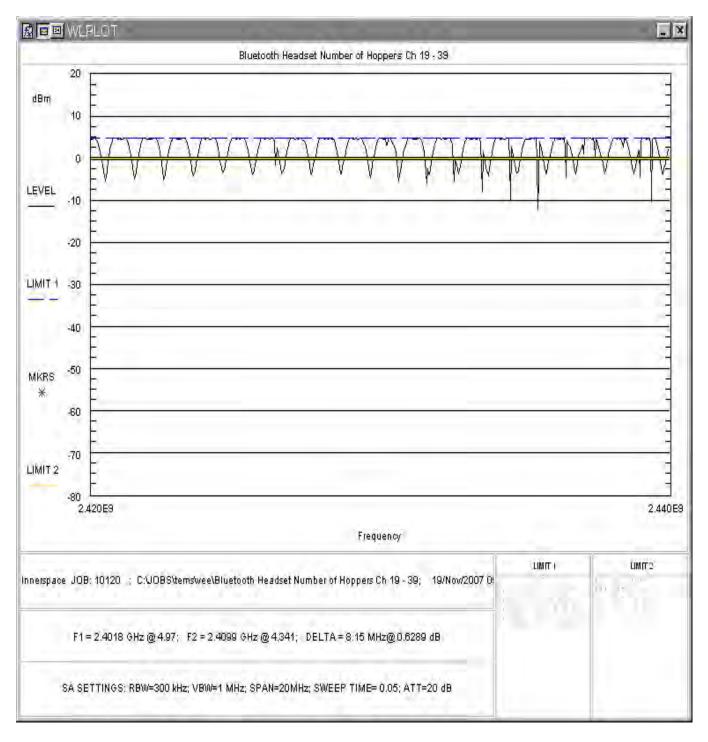


Figure 4-12. Number of Channels, Plot 2, Channels 19-39

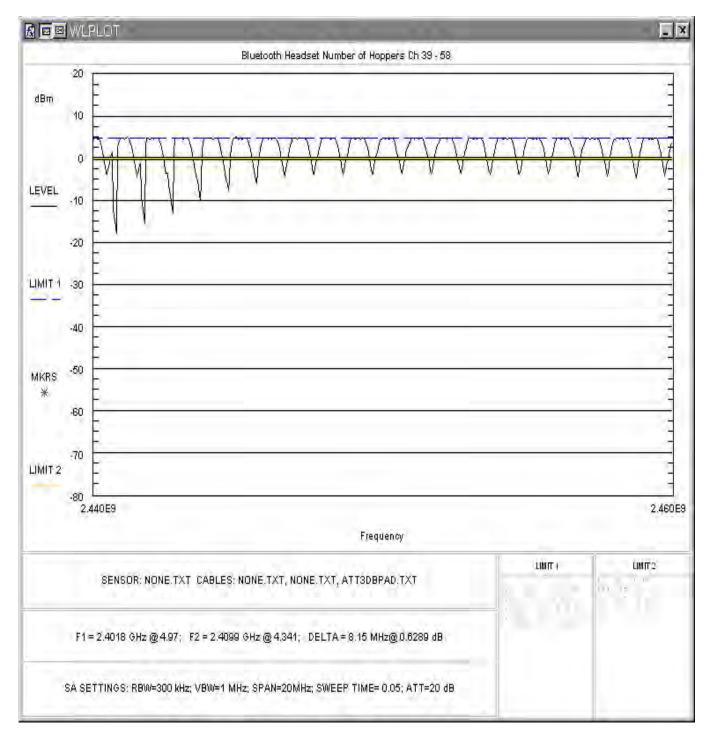


Figure 4-13. Number of Channels, Plot 3, Channels 39-59

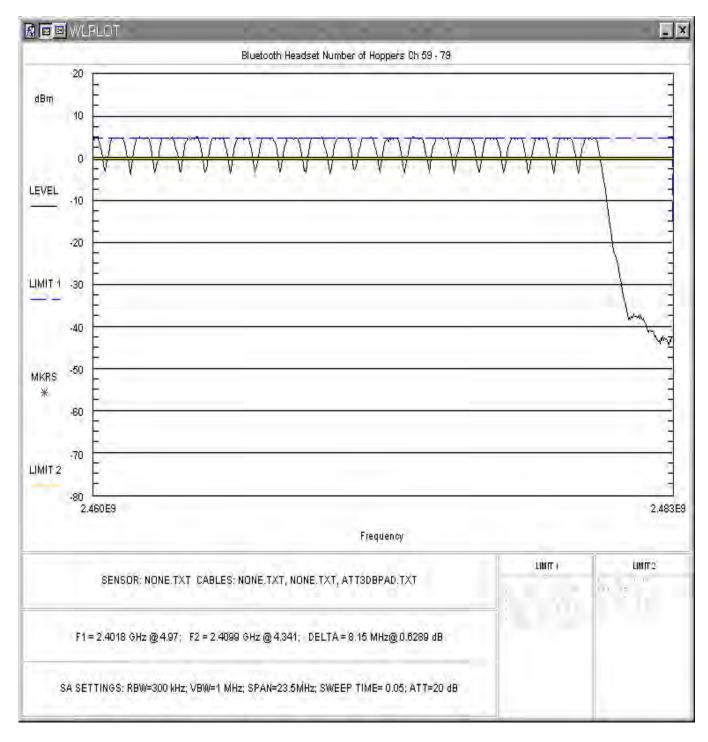


Figure 4-14. Number of Channels, Plot 4, Channels 59-79

4.6 Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)

The EUT must comply with requirements for spurious emissions at antenna terminals. Per §15.247(c) all spurious emissions in any 100 kHz bandwidth outside the frequency band in which the spread spectrum device is operating shall be attenuated 20 dB below the highest power level in a 100 kHz bandwidth within the band containing the highest level of the desired power.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 100 kHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier. Band edge conducted emissions testing was performed with both the hopping activated and while in non-hopping mode.

The following are plots of the conducted spurious emissions data. Bandedge plots are shown in Figure 4-33 through Figure 4-36.

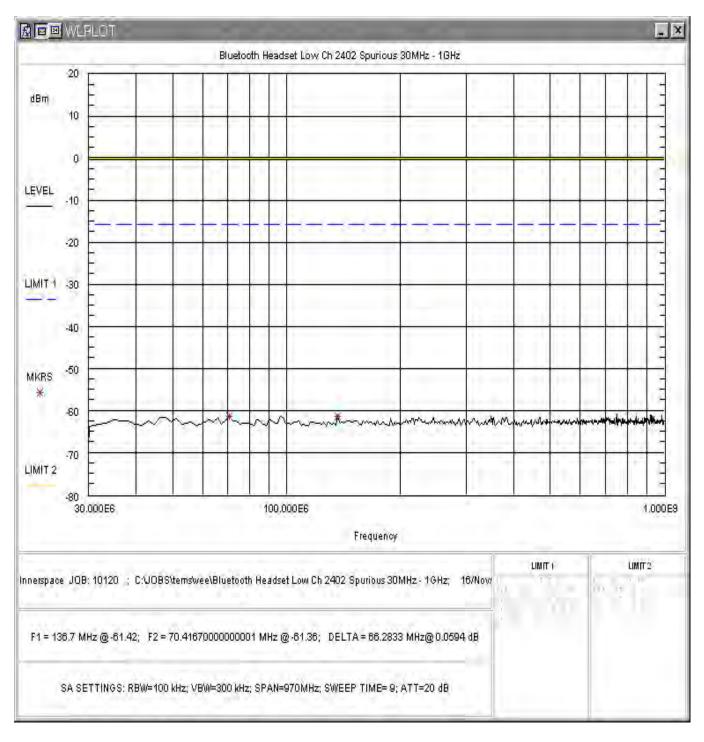


Figure 4-15. Conducted Spurious Emissions, Low Channel 30 - 1000MHz

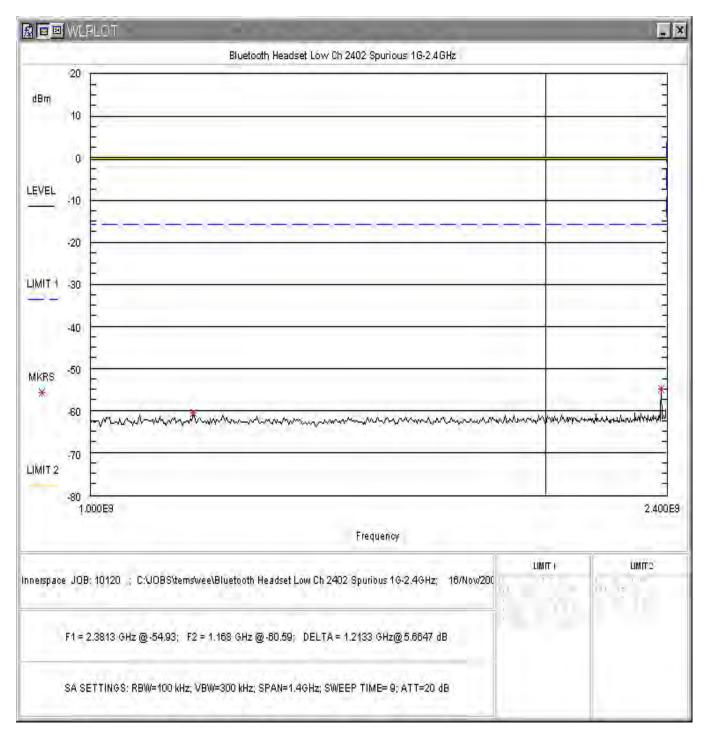


Figure 4-16. Conducted Spurious Emissions, Low Channel 1GHz - 2.4GHz

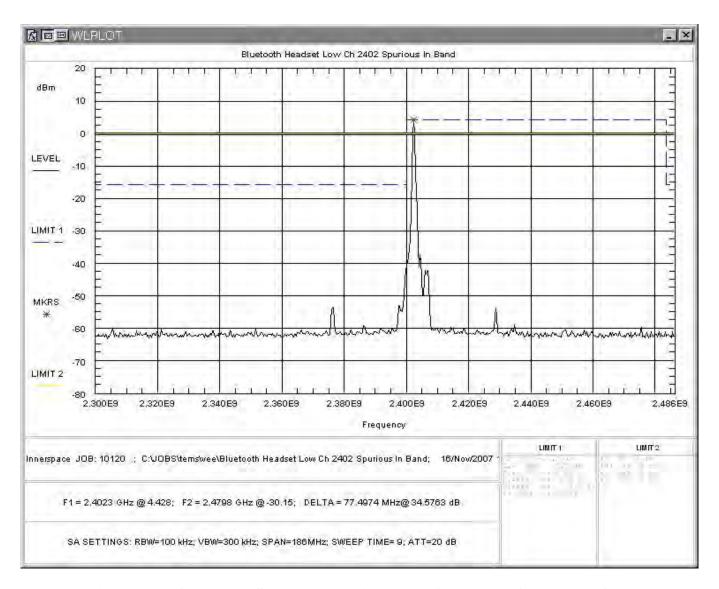


Figure 4-17. Conducted Spurious Emissions, Low Channel 2.3GHz – 2.486GHz

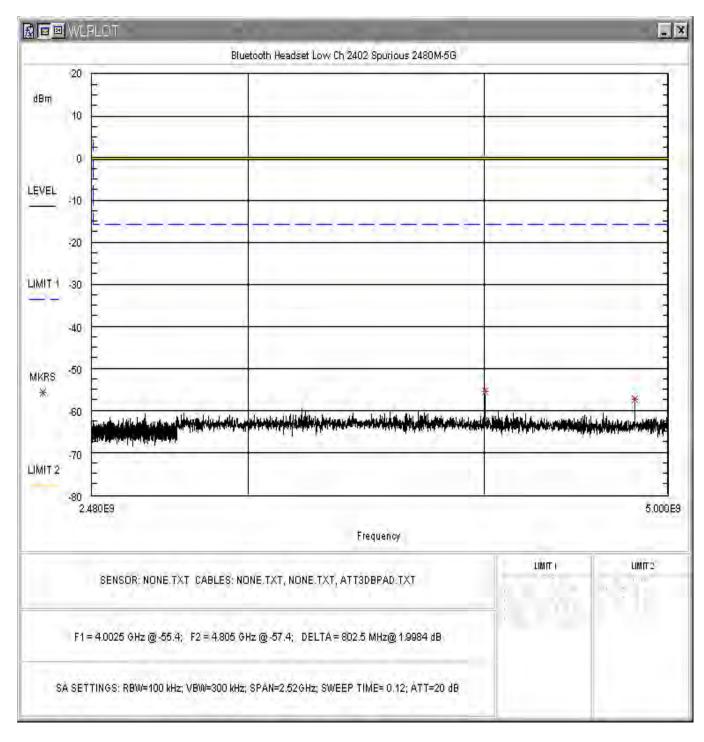


Figure 4-18. Conducted Spurious Emissions, Low Channel 2.48GHz - 5GHz

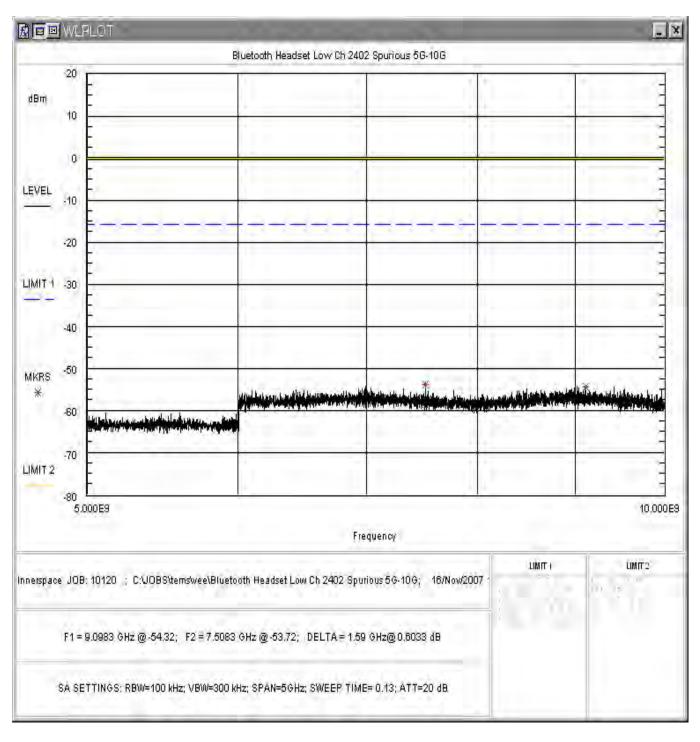


Figure 4-19. Conducted Spurious Emissions, Low Channel 5 – 10GHz

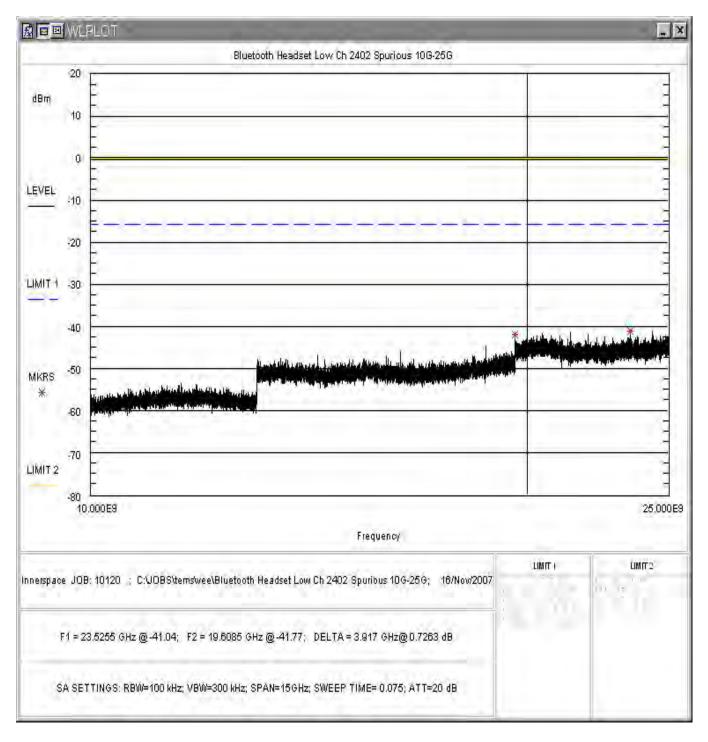


Figure 4-20. Conducted Spurious Emissions, Low Channel 10 - 25GHz

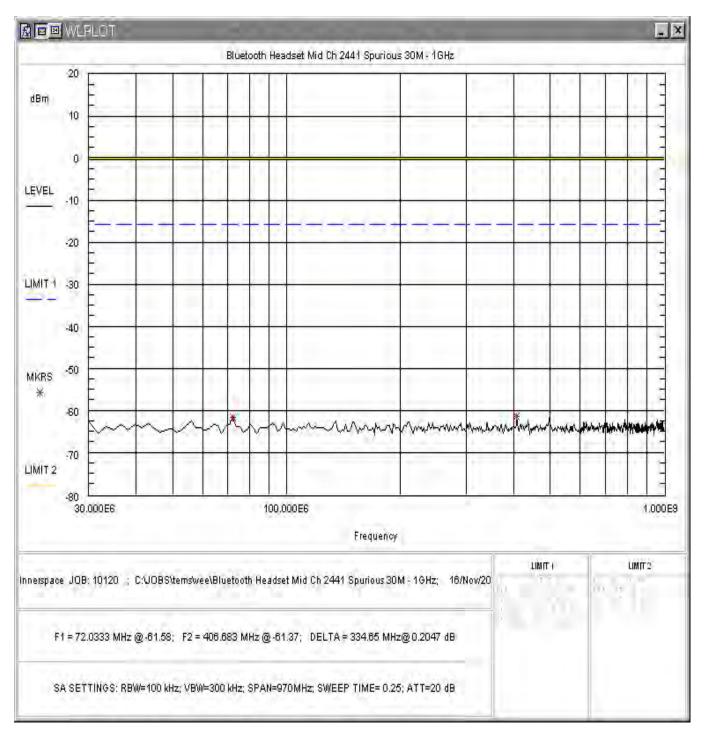


Figure 4-21. Conducted Spurious Emissions, Mid Channel 30 - 1000MHz

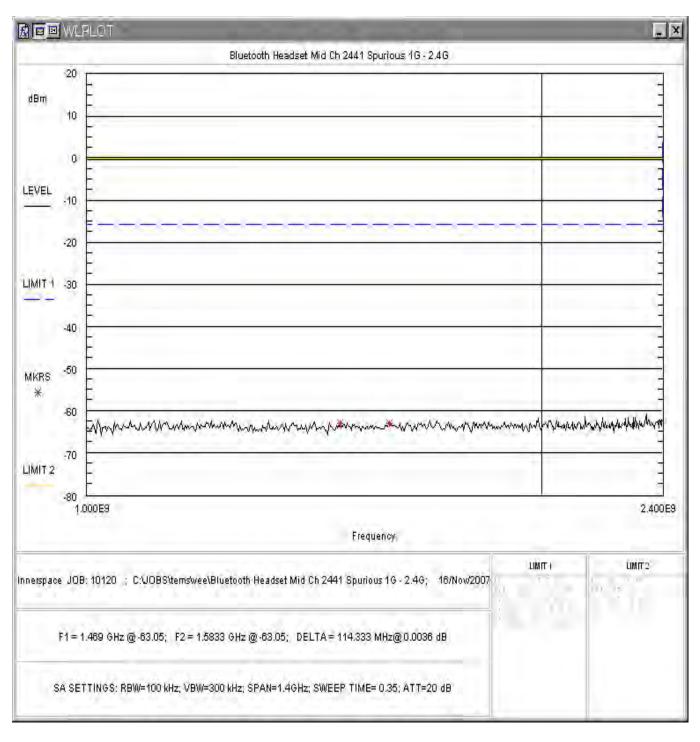


Figure 4-22. Conducted Spurious Emissions, Mid Channel 1 – 2.4GHz

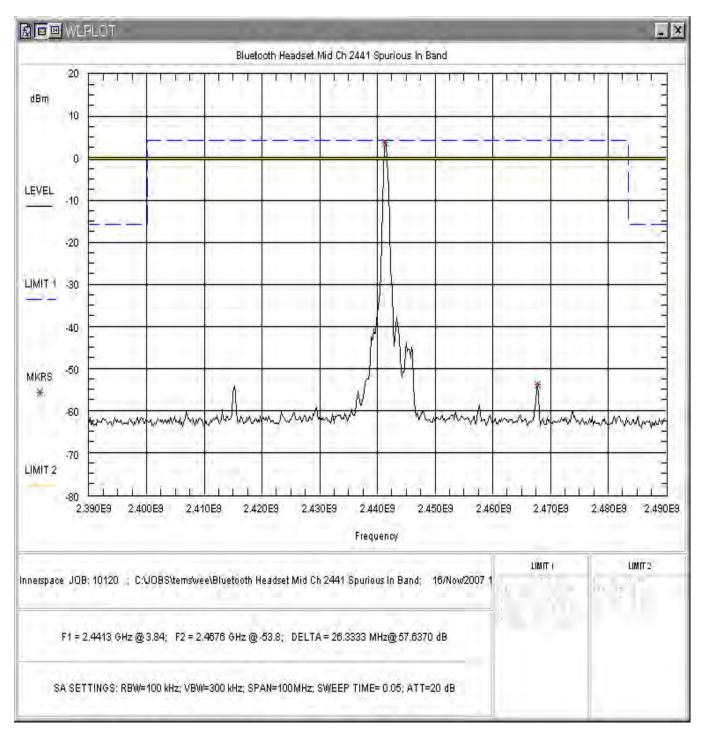


Figure 4-23. Conducted Spurious Emissions, Mid Channel In-band

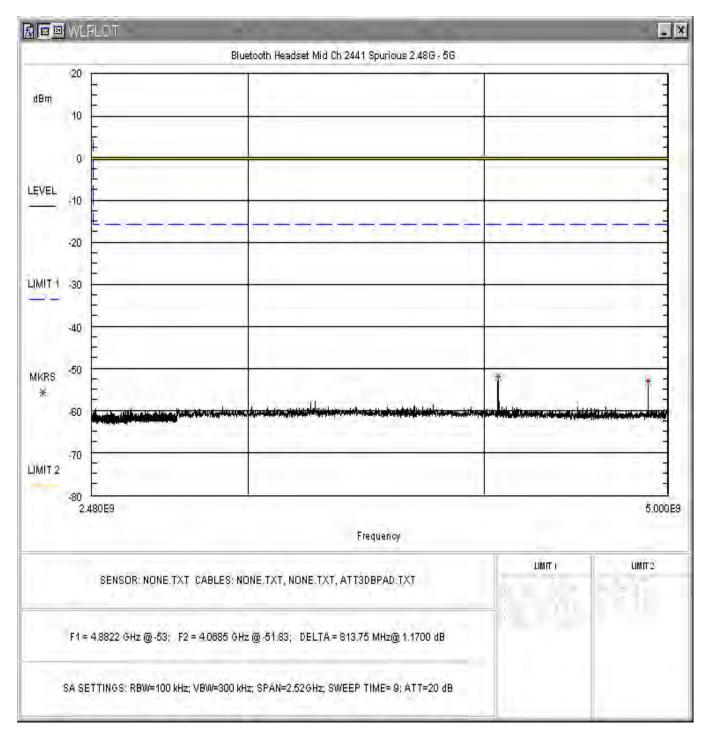


Figure 4-24. Conducted Spurious Emissions, Mid Channel 2.48 -5GHz

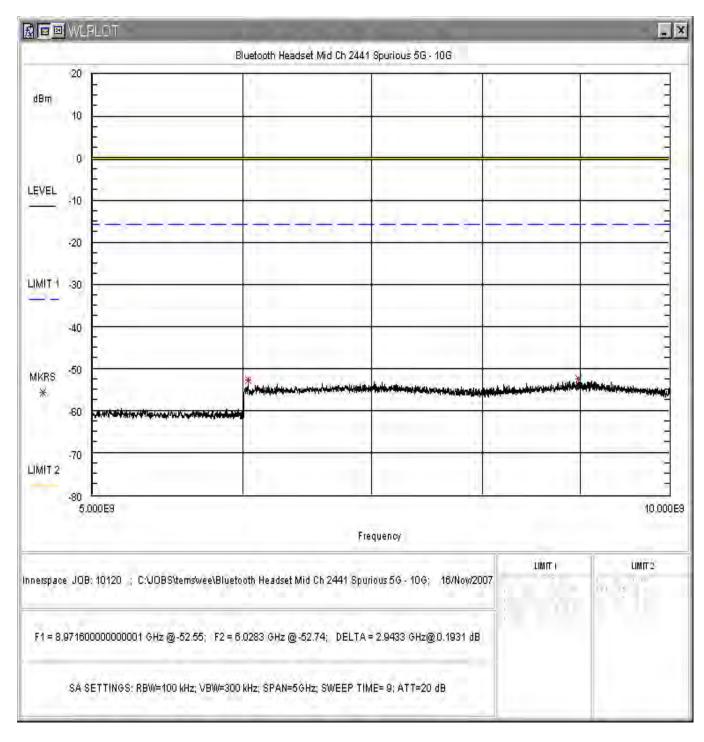


Figure 4-25. Conducted Spurious Emissions, Mid Channel 5 - 10GHz

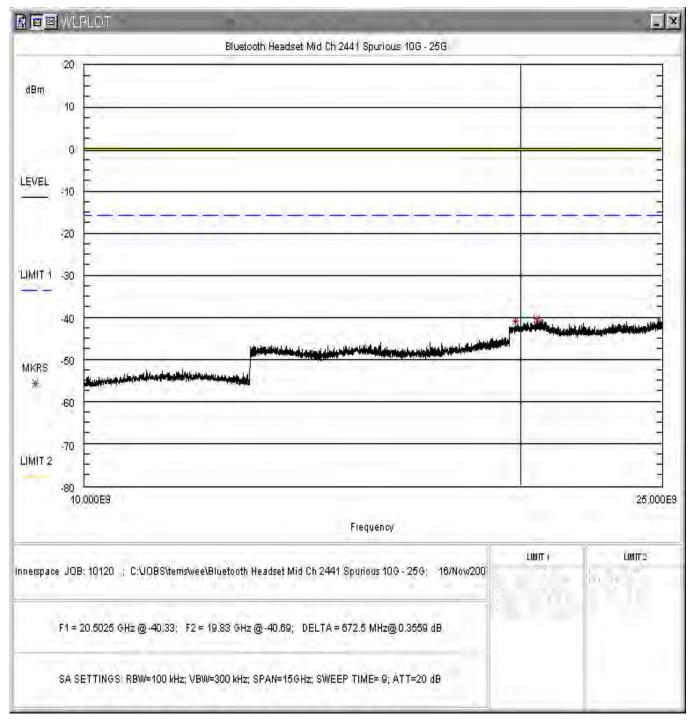


Figure 4-26. Conducted Spurious Emissions, Mid Channel 10 - 25GHz

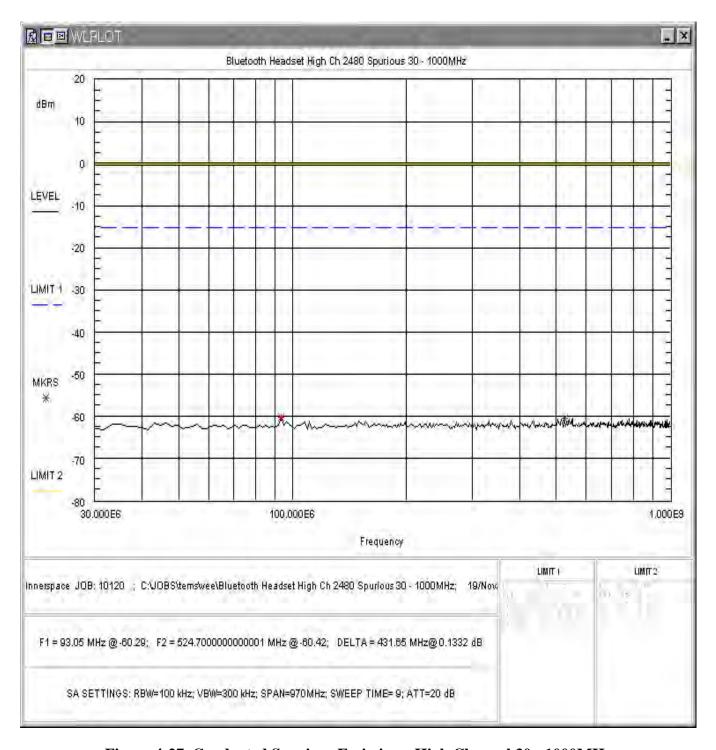


Figure 4-27. Conducted Spurious Emissions, High Channel 30 - 1000MHz

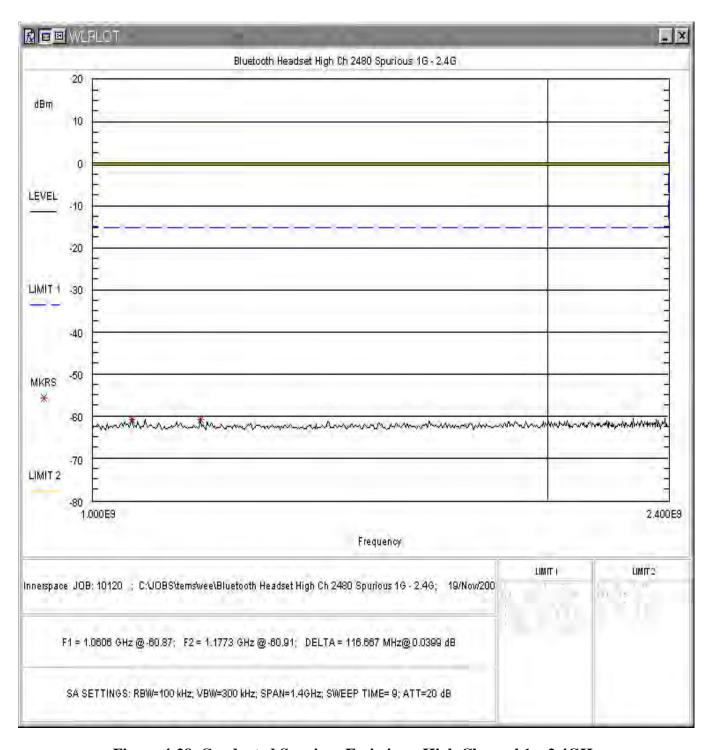


Figure 4-28. Conducted Spurious Emissions, High Channel 1 – 2.4GHz

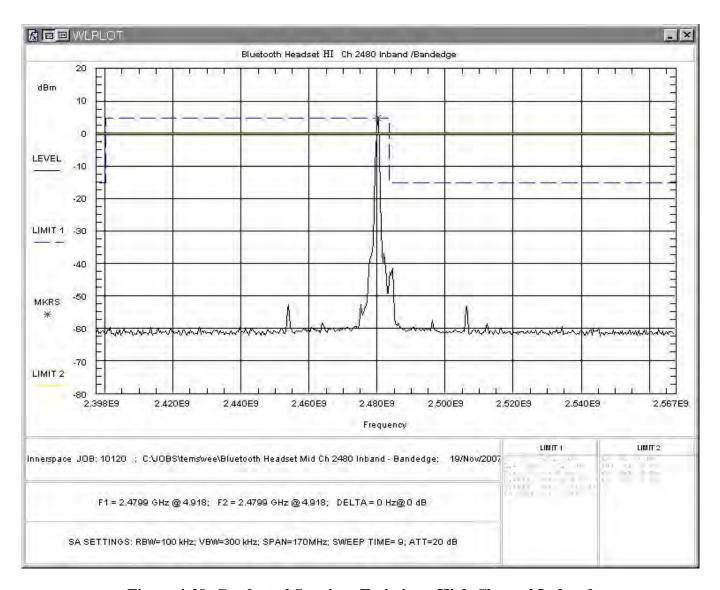


Figure 4-29. Conducted Spurious Emissions, High Channel In-band

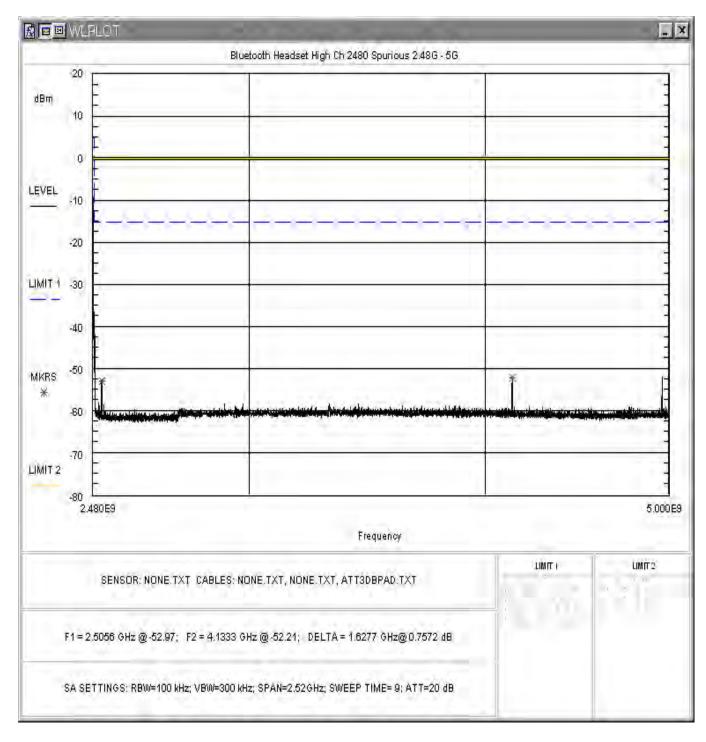


Figure 4-30. Conducted Spurious Emissions, High Channel 2.48 -5GHz

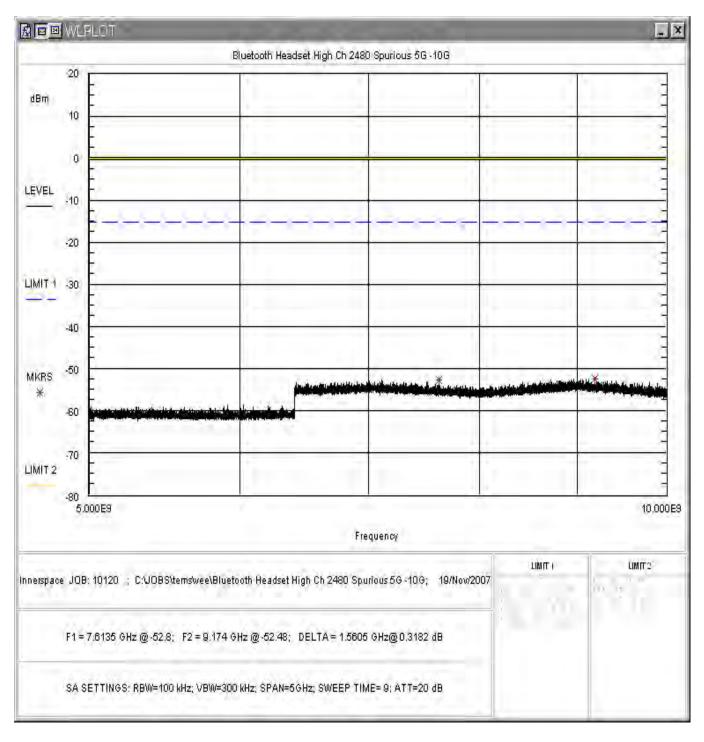


Figure 4-31. Conducted Spurious Emissions, High Channel 5 - 10GHz

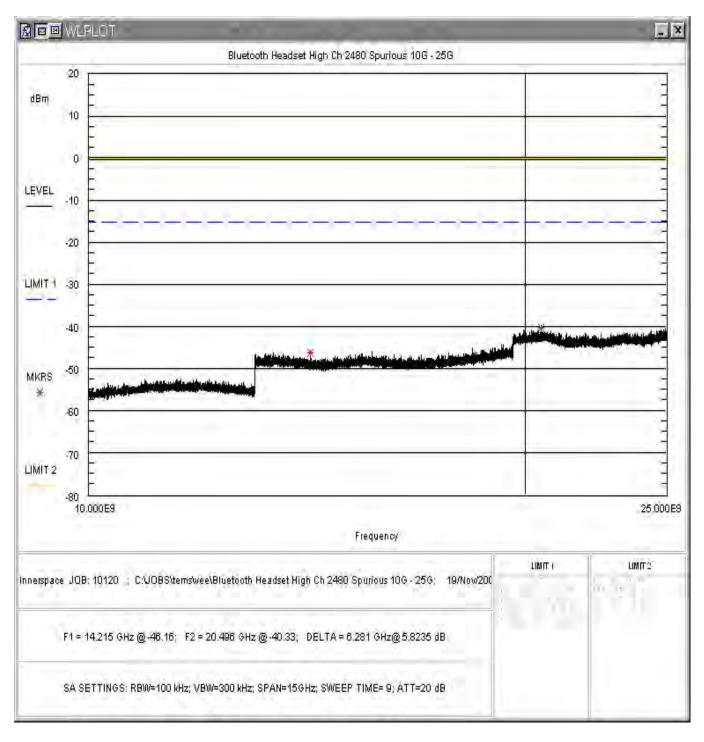


Figure 4-32. Conducted Spurious Emissions, High Channel 10 - 25GHz

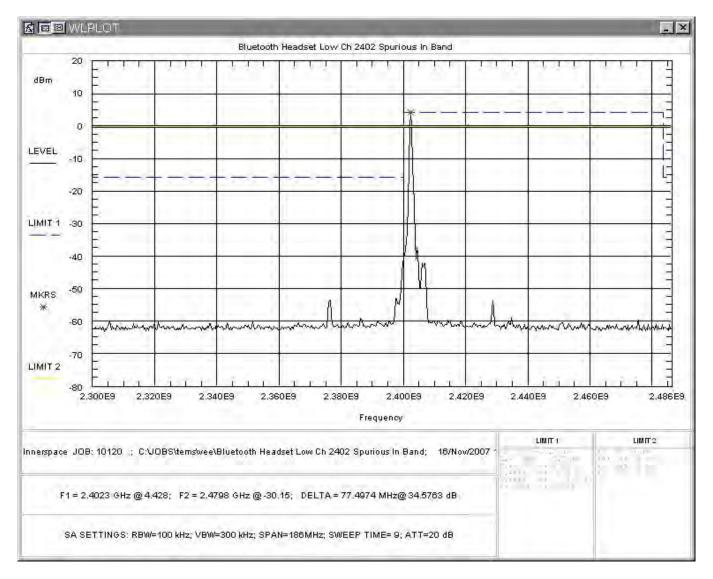


Figure 4-33. Conducted Spurious Emissions, Low Channel Band Edge, Non-hopping

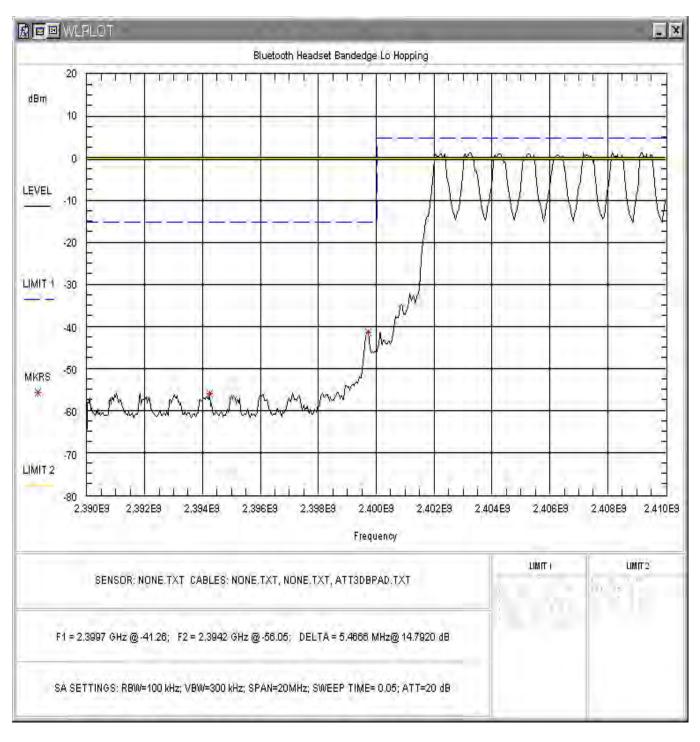


Figure 4-34. Conducted Spurious Emissions, Low Channel Band Edge, Hopping

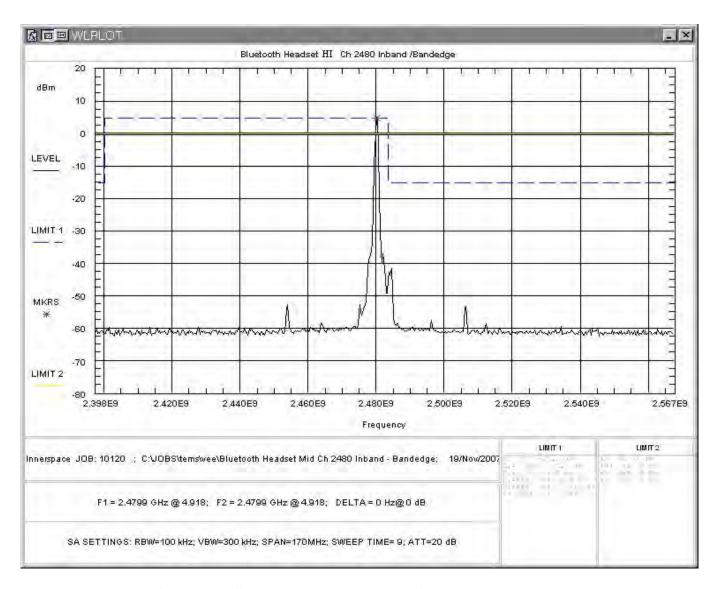


Figure 4-35. Conducted Spurious Emissions, High Channel Band Edge, Non-hopping

Figure 4-36. Conducted Spurious Emissions, High Channel Band Edge, Hopping

4.7 Radiated Spurious Emissions: (FCC Part §2.1053)

The EUT must comply with the requirements for radiated spurious emissions that fall within the restricted bands. These emissions must meet the limits specified in §15.209 and §15.35(b) for peak measurements.

4.7.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2003. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
30MHz-1000 MHz	120kHz	>100 kHz
>1000 MHz	1 MHz	<30 Hz (Avg.)
		1MHz (Peak)

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. It was verified that the peak-to-average ratio did not exceed 20dB.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20 dB. Also, as described in FCC DA 00-705 if the dwell time per channel of the hopping signal is less than 100 ms then the average reading may be further adjusted by the duty cycle correction factor. No duty cycle correction was applied to the measurements

The following is a sample calculation used in the data tables for calculating the final field strength of spurious emissions and comparing these levels to the specified limits.

Sample Calculation:

Electric Field (Corr Level): EdB μ V/m = VdB μ V + AFdB/m + CCdB - GdB

To convert to linear units: $E\mu V/m = antilog (EdB\mu V/m/20)$

Data are supplied in the following tables. Testing was performed to 25GHz. No emissions were detected above the 3rd harmonic. Emissions below 1GHz are the same for all channels. All detected emissions are reported in the following tables. Both peak and average measurements are listed.

Table 6: Radiated Emission Test Data, Low Frequency Data (<1GHz)

Frequency (MHz)	Polarity H/V	Azimuth Degree	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin (dB)
X										
33.380	V	0.0	1.0	7.8	18.1	0.4	26.3	20.7	100.0	-13.7
51.980	V	90.0	1.0	9.0	13.7	0.8	23.6	15.0	100.0	-16.4
65.515	V	300.0	1.0	8.9	9.0	1.0	18.9	8.8	100.0	-21.1
228.849	V	90.0	1.5	5.6	12.6	2.3	20.5	10.6	200.0	-25.5
295.560	V	180.0	1.5	2.3	14.3	2.6	19.2	9.2	200.0	-26.8
573.230	V	0.0	2.0	9.0	18.6	3.5	31.2	36.1	200.0	-14.9
Y										
33.380	V	0.0	1.0	9.5	18.1	0.4	28.0	25.2	100.0	-12.0
51.980	V	90.0	1.0	6.4	13.7	0.8	21.0	11.2	100.0	-19.0
65.515	V	180.0	1.0	4.0	9.0	1.0	14.0	5.0	100.0	-26.0
83.232	V	345.0	2.8	7.8	7.6	1.2	16.6	6.8	100.0	-23.4
228.849	v	180.0	1.5	4.9	12.6	2.3	19.8	9.8	200.0	-26.2
287.550	V	180.0	1.0	18.2	14.6	2.6	35.4	58.6	200.0	-10.7
573.230	v	200.0	1.0	7.7	18.6	3.5	29.9	31.1	200.0	-16.2
Z										
33.370	V	0.0	1.0	7.7	18.1	0.4	26.2	20.4	100.0	-13.8
49.850	v	280.0	1.0	13.3	14.6	0.8	28.7	27.2	100.0	-11.3
85.800	V	90.0	1.0	7.9	7.9	1.3	17.1	7.2	100.0	-22.9
110.870	V	250.0	2.7	5.9	11.2	1.5	18.6	8.5	150.0	-24.9
228.849	v	0.0	1.5	5.7	12.6	2.3	20.6	10.8	200.0	-25.4
287.550	v	0.0	1.0	18.0	14.6	2.6	35.2	57.2	200.0	-10.9
573.230	v	0.0	1.0	7.9	18.6	3.5	30.1	31.8	200.0	-16.0
X										
37.875	Н	120.0	2.8	8.7	17.9	0.5	27.1	22.7	100.0	-12.9
49.875	H	40.0	2.8	8.4	14.6	0.8	23.8	15.5	100.0	-16.2
65.740	Н	270.0	3.5	12.6	8.9	1.0	22.6	13.4	100.0	-17.4
83.220	Н	60.0	4.0	18.0	7.6	1.2	26.8	21.9	100.0	-13.2
143.692	H	120.0	4.0	9.6	9.5	1.8	20.9	11.1	150.0	-22.6
287.544	Н	0.0	4.0	18.5	14.6	2.6	35.7	60.6	200.0	-10.4
Y										
37.875	Н	120.0	3.0	10.9	17.9	0.5	29.3	29.2	100.0	-10.7
49.875	H	90.0	4.0	11.8	14.6	0.8	27.2	22.9	100.0	-12.8
65.740	H	180.0	4.0	9.5	8.9	1.0	19.5	9.4	100.0	-20.5
83.220	H	270.0	4.0	18.2	7.6	1.0	27.0	22.4	100.0	-13.0
143.692	H	0.0	3.3	18.2	9.5	1.8	29.5	30.0	150.0	-14.0
287.544	Н	340.0	4.0	21.0	14.6	2.6	38.2	80.8	200.0	-7.9
Z										
<u>Z</u> 37.875	Н	0.0	4.0	11.2	17.9	0.5	29.6	30.2	100.0	-10.4
49.864	H	270.0	4.0	10.5	14.6	0.3	25.9	19.7	100.0	-10.4

65.740	Н	270.0	4.0	11.0	8.9	1.0	21.0	11.2	100.0	-19.0
83.243	Н	0.0	2.5	14.9	7.6	1.2	23.7	15.3	100.0	-16.3
143.692	Н	180.0	2.0	15.0	9.5	1.8	26.3	20.7	150.0	-17.2
287.544	Н	90.0	2.0	19.2	14.6	2.6	36.4	65.7	200.0	-9.7

Table 7: Radiated Emission Test Data, High Frequency Data, Low Channel (>1GHz)

140	ic / i itut	iiuicu		OII I COU	Dutu, I	11811 1	eque	ncy Data,	<u> </u>	dillici (T GILL)	
Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (μV/m)	Margin (dB)	Notes
X												
1192.500	V	260.0	1.0	50.5	25.5	1.0	39.0	37.9	78.7	5000.0	-36.1	Peak
1192.500	V	260.0	1.0	39.7	25.5	1.0	39.0	27.1	22.7	500.0	-26.9	Avg
1300.000	V	300.0	1.0	49.5	25.9	1.1	38.9	37.6	76.0	5000.0	-36.4	Peak
1300.000	V	300.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	V	300.0	1.0	52.3	26.3	1.2	38.8	41.0	112.4	5000.0	-33.0	Peak
1400.000	V	300.0	1.0	44.7	26.3	1.2	38.8	33.4	46.9	500.0	-20.6	Avg
4804.000	V	340.0	1.0	69.9	32.5	2.0	37.2	67.2	2289.6	5000.0	-6.8	Peak
4804.000	V	340.0	1.0	46.0	32.5	2.0	37.2	43.3	146.1	500.0	-10.7	Avg
Y												
1192.500	V	270.0	1.0	50.2	25.5	1.0	39.0	37.6	76.1	5000.0	-36.4	Peak
1192.500	V	270.0	1.0	41.5	25.5	1.0	39.0	28.9	27.9	500.0	-25.1	Avg
1300.000	V	0.0	1.0	49.3	25.9	1.1	38.9	37.4	74.3	5000.0	-36.6	Peak
1300.000	V	0.0	1.0	40.5	25.9	1.1	38.9	28.6	27.0	500.0	-25.4	Avg
1400.000	V	10.0	1.0	48.7	26.3	1.2	38.8	37.4	74.3	5000.0	-36.6	Peak
1400.000	V	10.0	1.0	38.8	26.3	1.2	38.8	27.5	23.8	500.0	-26.5	Avg
4804.000	V	270.0	1.0	65.2	32.5	2.0	37.2	62.5	1332.8	5000.0	-11.5	Peak
4804.000	V	270.0	1.0	44.2	32.5	2.0	37.2	41.5	118.8	500.0	-12.5	Avg
Z												
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	V	260.0	1.0	40.3	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	Avg
1300.000	V	0.0	1.0	48.5	25.9	1.1	38.9	36.6	67.8	5000.0	-37.4	Peak
1300.000	V	0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	V	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4804.000	V	90.0	1.0	67.3	32.5	2.0	37.2	64.6	1697.3	5000.0	-9.4	Peak
4804.000	V	90.0	1.0	44.7	32.5	2.0	37.2	42.0	125.8	500.0	-12.0	Avg
X												
1192.500	Н	270.0	1.0	49.0	25.5	1.0	39.0	36.4	66.2	5000.0	-37.6	Peak
1192.500	Н	270.0	1.0	40.2	25.5	1.0	39.0	27.6	24.1	500.0	-26.4	Avg
1300.000	Н	80.0	1.0	48.8	25.9	1.1	38.9	36.9	70.1	5000.0	-37.1	Peak
1300.000	Н	80.0	1.0	38.5	25.9	1.1	38.9	26.6	21.4	500.0	-27.4	Avg
1400.000	Н	0.0	1.0	50.3	26.3	1.2	38.8	39.0	89.3	5000.0	-35.0	Peak
1400.000	Н	0.0	1.0	39.7	26.3	1.2	38.8	28.4	26.4	500.0	-25.6	Avg
4804.000	Н	260.0	1.0	63.2	32.5	2.0	37.2	60.5	1058.7	5000.0	-13.5	Peak
4804.000	Н	260.0	1.0	43.5	32.5	2.0	37.2	40.8	109.6	500.0	-13.2	Avg
Y												
1192.500	Н	0.0	1.0	50.3	25.5	1.0	39.0	37.7	76.9	5000.0	-36.3	Peak
1192.500	Н	0.0	1.0	40.5	25.5	1.0	39.0	27.9	24.9	500.0	-26.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin (dB)	Notes
1300.000	Н	0.0	1.0	42.2	25.9	1.1	38.9	30.3	32.8	500.0	-23.7	Avg
1400.000	Н	0.0	1.0	49.0	26.3	1.2	38.8	37.7	76.9	5000.0	-36.3	Peak
1400.000	Н	0.0	1.0	38.5	26.3	1.2	38.8	27.2	23.0	500.0	-26.8	Avg
4804.000	Н	120.0	1.0	66.2	32.5	2.0	37.2	63.5	1495.4	5000.0	-10.5	Peak
4804.000	Н	120.0	1.0	44.3	32.5	2.0	37.2	41.6	120.2	500.0	-12.4	Avg
Z												
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4804.000	Н	100.0	1.0	66.2	32.5	2.0	37.2	63.5	1495.4	5000.0	-10.5	Peak
4804.000	Н	100.0	1.0	44.5	32.5	2.0	37.2	41.8	123.0	500.0	-12.2	Avg

Table 8: Radiated Emission Test Data, High Frequency Data, Mid Channel (>1GHz)

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin (dB)	Notes
X												
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	V	260.0	1.0	40.3	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	Avg
1300.000	V	0.0	1.0	48.5	25.9	1.1	38.9	36.6	67.8	5000.0	-37.4	Peak
1300.000	V	0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	V	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4882.000	V	270.0	1.0	68.5	32.6	2.0	37.2	65.9	1976.5	5000.0	-8.1	Peak
4882.000	V	270.0	1.0	41.0	32.6	2.0	37.2	38.4	83.3	500.0	-15.6	Avg
7323.000	V	0.0	1.0	44.8	37.1	3.3	37.6	47.6	241.2	5000.0	-26.3	Peak
7323.000	V	0.0	1.0	32.8	37.1	3.3	37.6	35.6	60.6	500.0	-18.3	Avg
12205.000	V	0.0	1.0	42.8	40.0	4.2	37.5	49.5	298.0	5000.0	-24.5	Peak
12205.000	V	0.0	1.0	32.8	40.0	4.2	37.5	39.5	94.2	500.0	-14.5	Avg
Y						1						
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	v	260.0	1.0	49.8	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	
							38.9					Avg
1300.000	V V	0.0	1.0	48.5	25.9	1.1		36.6	67.8	5000.0	-37.4	Peak
1300.000		0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	V	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4882.000	V	180.0	1.0	64.2	32.6	2.0	37.2	61.6	1204.8	5000.0	-12.4	Peak
4882.000	V	180.0	1.0	39.2	32.6	2.0	37.2	36.6	67.7	500.0	-17.4	Avg
7323.000	V	0.0	1.0	44.8	37.1	3.3	37.6	47.6	241.2	5000.0	-26.3	Peak
7323.000	V	0.0	1.0	32.8	37.1	3.3	37.6	35.6	60.6	500.0	-18.3	Avg
12205.000	V	0.0	1.0	42.8	40.0	4.2	37.5	49.5	298.0	5000.0	-24.5	Peak
12205.000	V	0.0	1.0	32.8	40.0	4.2	37.5	39.5	94.2	500.0	-14.5	Avg
Z												
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	V	260.0	1.0	40.3	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	Avg
1300.000	V	0.0	1.0	48.5	25.9	1.1	38.9	36.6	67.8	5000.0	-37.4	Peak
1300.000	V	0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	v	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4882.000	V											

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (μV/m)	Margin (dB)	Notes
4882.000	V											
7323.000	V	0.0	1.0	44.8	37.1	3.3	37.6	47.6	241.2	5000.0	-26.3	Peak
7323.000	V	0.0	1.0	32.8	37.1	3.3	37.6	35.6	60.6	500.0	-18.3	Avg
12205.000	V	0.0	1.0	42.8	40.0	4.2	37.5	49.5	298.0	5000.0	-24.5	Peak
12205.000	V	0.0	1.0	32.8	40.0	4.2	37.5	39.5	94.2	500.0	-14.5	Avg
X												
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4882.000	Н	250.0	1.0	63.7	32.6	2.0	37.2	61.1	1137.4	5000.0	-12.9	Peak
4882.000	Н	250.0	1.0	39.2	32.6	2.0	37.2	36.6	67.7	500.0	-17.4	Avg
7323.000	Н	0.0	1.0	43.8	37.1	3.3	37.6	46.6	214.9	500.0	-7.3	Peak
7323.000	Н	0.0	1.0	32.8	37.1	3.3	37.6	35.6	60.6	500.0	-18.3	Avg
12205.000	Н	0.0	1.0	42.8	40.0	4.2	37.5	49.5	298.0	500.0	-4.5	Peak
12205.000	Н	0.0	1.0	32.8	40.0	4.2	37.5	39.5	94.2	500.0	-14.5	Avg
Y												
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4882.000	Н	0.0	1.0	59.8	32.6	2.0	37.2	57.2	725.9	5000.0	-16.8	Peak
4882.000	Н	0.0	1.0	37.2	32.6	2.0	37.2	34.6	53.8	500.0	-19.4	Avg
7323.000	Н	0.0	1.0	43.8	37.1	3.3	37.6	46.6	214.9	500.0	-7.3	Peak
7323.000	Н	0.0	1.0	32.8	37.1	3.3	37.6	35.6	60.6	500.0	-18.3	Avg
12205.000	Н	0.0	1.0	42.8	40.0	4.2	37.5	49.5	298.0	500.0	-4.5	Peak
12205.000	Н	0.0	1.0	32.8	40.0	4.2	37.5	39.5	94.2	500.0	-14.5	Avg
Z												
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (μV/m)	Margin (dB)	Notes
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4882.000	Н	350.0	1.0	67.5	32.6	2.0	37.2	64.9	1761.6	5000.0	-9.1	Peak
4882.000	Н	350.0	1.0	43.7	32.6	2.0	37.2	41.1	113.7	500.0	-12.9	Avg
7323.000	Н	0.0	1.0	43.8	37.1	3.3	37.6	46.6	214.9	500.0	-7.3	Peak
7323.000	Н	0.0	1.0	32.8	37.1	3.3	37.6	35.6	60.6	500.0	-18.3	Avg
12205.000	Н	0.0	1.0	42.8	40.0	4.2	37.5	49.5	298.0	500.0	-4.5	Peak
12205.000	Н	0.0	1.0	32.8	40.0	4.2	37.5	39.5	94.2	500.0	-14.5	Avg

Table 9: Radiated Emission Test Data, High Frequency Data, High Channel (>1GHz)

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (μV/m)	Margin (dB)	Notes
X												
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	V	260.0	1.0	40.3	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	Avg
1300.000	V	0.0	1.0	48.5	25.9	1.1	38.9	36.6	67.8	5000.0	-37.4	Peak
1300.000	V	0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	V	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4960.000	V	260.0	1.0	64.7	32.7	2.0	37.2	62.2	1294.0	5000.0	-11.7	Peak
4960.000	V	260.0	1.0	38.0	32.7	2.0	37.2	35.5	59.8	500.0	-18.4	Avg
7440.000	V	0.0	1.0	44.8	37.1	3.6	37.6	48.0	250.6	5000.0	-26.0	Peak
7440.000	V	0.0	1.0	32.8	37.1	3.6	37.6	36.0	62.9	500.0	-18.0	Avg
12400.000	V	0.0	1.0	44.0	40.0	4.5	37.1	51.4	372.2	5000.0	-22.6	Peak
12400.000	V	0.0	1.0	33.5	40.0	4.5	37.1	40.9	111.1	500.0	-13.1	Avg
Y												
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	V	260.0	1.0	40.3	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	Avg
1300.000	V	0.0	1.0	48.5	25.9	1.1	38.9	36.6	67.8	5000.0	-37.4	Peak
1300.000	V	0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	V	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4960.000	V	10.0	1.0	62.0	32.7	2.0	37.2	59.5	948.3	5000.0	-14.4	Peak
4960.000	V	10.0	1.0	38.3	32.7	2.0	37.2	35.8	61.9	500.0	-18.1	Avg
7440.000	V	0.0	1.0	44.8	37.1	3.6	37.6	48.0	250.6	5000.0	-26.0	Peak
7440.000	V	0.0	1.0	32.8	37.1	3.6	37.6	36.0	62.9	500.0	-18.0	Avg
12400.000	V	0.0	1.0	44.0	40.0	4.5	37.1	51.4	372.2	5000.0	-22.6	Peak
12400.000	V	0.0	1.0	33.5	40.0	4.5	37.1	40.9	111.1	500.0	-13.1	Avg
Z									<u> </u>			
1192.500	V	260.0	1.0	49.8	25.5	1.0	39.0	37.2	72.6	5000.0	-36.8	Peak
1192.500	V	260.0	1.0	40.3	25.5	1.0	39.0	27.7	24.3	500.0	-26.3	Avg
1300.000	v	0.0	1.0	48.5	25.9	1.1	38.9	36.6	67.8	5000.0	-37.4	Peak
1300.000	v	0.0	1.0	39.2	25.9	1.1	38.9	27.3	23.2	500.0	-26.7	Avg
1400.000	V	0.0	1.0	47.8	26.3	1.2	38.8	36.5	67.0	5000.0	-37.5	Peak
1400.000	V	0.0	1.0	39.3	26.3	1.2	38.8	28.0	25.2	500.0	-26.0	Avg
4960.000	v	225.0	1.0	63.8	32.7	2.0	37.2	61.3	1166.6	5000.0	-12.6	Peak

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (μV/m)	Margin (dB)	Notes
4960.000	V	225.0	1.0	39.0	32.7	2.0	37.2	36.5	67.1	500.0	-17.4	Avg
7440.000	V	0.0	1.0	44.8	37.1	3.6	37.6	48.0	250.6	5000.0	-26.0	Peak
7440.000	V	0.0	1.0	32.8	37.1	3.6	37.6	36.0	62.9	500.0	-18.0	Avg
12400.000	V	0.0	1.0	44.0	40.0	4.5	37.1	51.4	372.2	5000.0	-22.6	Peak
12400.000	V	0.0	1.0	33.5	40.0	4.5	37.1	40.9	111.1	500.0	-13.1	Avg
X												
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4960.000	Н	345.0	1.0	58.2	32.7	2.0	37.2	55.7	612.3	5000.0	-18.2	Peak
4960.000	Н	345.0	1.0	35.7	32.7	2.0	37.2	33.2	45.9	500.0	-20.7	Avg
7440.000	Н	0.0	1.0	43.8	37.1	3.6	37.6	47.0	223.3	500.0	-7.0	Peak
7440.000	Н	0.0	1.0	32.8	37.1	3.6	37.6	36.0	62.9	500.0	-18.0	Avg
12400.000	Н	0.0	1.0	44.0	40.0	4.5	37.1	51.4	372.2	500.0	-2.6	Peak
12400.000	Н	0.0	1.0	33.5	40.0	4.5	37.1	40.9	111.1	500.0	-13.1	Avg
Y												
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4960.000	Н	180.0	1.0	58.5	32.7	2.0	37.2	56.0	633.8	5000.0	-17.9	Peak
4960.000	Н	180.0	1.0	37.0	32.7	2.0	37.2	34.5	53.3	500.0	-19.4	Avg
7440.000	Н	0.0	1.0	43.8	37.1	3.6	37.6	47.0	223.3	500.0	-7.0	Peak
7440.000	Н	0.0	1.0	32.8	37.1	3.6	37.6	36.0	62.9	500.0	-18.0	Avg
12400.000	Н	0.0	1.0	44.0	40.0	4.5	37.1	51.4	372.2	500.0	-2.6	Peak
12400.000	Н	0.0	1.0	33.5	40.0	4.5	37.1	40.9	111.1	500.0	-13.1	Avg
Z	<u> </u>											
1192.500	Н	300.0	1.0	51.0	25.5	1.0	39.0	38.4	83.4	5000.0	-35.6	Peak
1192.500	Н	300.0	1.0	42.5	25.5	1.0	39.0	29.9	31.3	500.0	-24.1	Avg
1300.000	Н	0.0	1.0	50.7	25.9	1.1	38.9	38.8	87.3	5000.0	-35.2	Peak

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin (dB)	Notes
1300.000	Н	0.0	1.0	40.0	25.9	1.1	38.9	28.1	25.5	500.0	-25.9	Avg
1400.000	Н	0.0	1.0	50.0	26.3	1.2	38.8	38.7	86.3	5000.0	-35.3	Peak
1400.000	Н	0.0	1.0	40.8	26.3	1.2	38.8	29.5	29.9	500.0	-24.5	Avg
4960.000	Н	270.0	1.0	61.3	32.7	2.0	37.2	58.8	874.9	5000.0	-15.1	Peak
4960.000	Н	270.0	1.0	38.0	32.7	2.0	37.2	35.5	59.8	500.0	-18.4	Avg
7440.000	Н	0.0	1.0	43.8	37.1	3.6	37.6	47.0	223.3	500.0	-7.0	Peak
7440.000	Н	0.0	1.0	32.8	37.1	3.6	37.6	36.0	62.9	500.0	-18.0	Avg
12400.000	Н	0.0	1.0	44.0	40.0	4.5	37.1	51.4	372.2	500.0	-2.6	Peak
12400.000	Н	0.0	1.0	33.5	40.0	4.5	37.1	40.9	111.1	500.0	-13.1	Avg

4.8 AC Powerline Conducted Emissions: (FCC Part §15.207 and RSS-GEN)

The EUT is battery operated and the battery is charged via the USB port of a PC. When in the charging mode, normal operation is halted until the charging adapter is removed. AC conducted testing was performed on the EUT by connecting the charging port of the EUT to a Laptop computer USB port. The Laptop was then connected to the LISN and measurements were taken at the AC input of the Laptop power supply.

The EUT was placed on an 80 cm high 1 x 1.5 m non-conductive table above a ground plane. Power to the EUT was provided through a Solar Corporation 50 Ω /50 μ H Line Impedance Stabilization Network bonded to a 3 x 2 meter ground plane. The LISN has its AC input supplied from a filtered AC power source. Power and data cables were moved about to obtain maximum emissions.

The 50Ω output of the LISN was connected to the input of the spectrum analyzer and the emissions in the frequency range of 150 kHz to 30 MHz were measured. The detector function was set to quasi-peak, peak, or average as appropriate, and the resolution bandwidth during testing was at least 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth for peak measurements.

Data is recorded in the following table.

Table 10. AC Power line Conducted Emissions

LINE 1 - NEUTRAL

Frequency (MHz)	Level QP (dBµV)	Cable Loss (dB)	LISN Corr (dB)	Limit QP (dBµV)	Level Corr (dBµV)	Margin QP (dB)	Level AVG (dBµV)	Cable Loss (dB)	Level Corr (dBµV)	Limit AVG (dBµV)	Margin AVG (dB)
0.151	28.1	10.2	0.8	65.9	39.1	-26.9	28.1	10.2	39.1	55.9	-16.9
0.394	18.5	10.4	0.3	58.0	29.3	-28.7	18.5	10.4	29.3	48.0	-18.7
0.428	13.7	10.5	0.3	57.3	24.5	-32.8	13.7	10.5	24.5	47.3	-22.8
13.250	9.9	11.4	1.9	60.0	23.2	-36.8	9.9	11.4	23.2	50.0	-26.8
17.970	8.6	11.2	2.8	60.0	22.6	-37.4	8.6	11.2	22.6	50.0	-27.4
23.400	9.4	11.8	4.0	60.0	25.2	-34.8	9.4	11.8	25.2	50.0	-24.8

LINE 2 - PHASE

Frequency (MHz)	Level QP (dBµV)	Cable Loss (dB)	LISN Corr (dB)	Limit QP (dBµV)	Level Corr (dBµV)	Margin QP (dB)	Level AVG (dBµV)	Cable Loss (dB)	Level Corr (dBµV)	Limit AVG (dBµV)	Margin AVG (dB)
0.151	27.9	10.2	0.4	65.9	38.5	-27.4	27.9	10.2	38.5	55.9	-17.4
0.388	18.9	10.4	0.2	58.1	29.5	-28.6	18.9	10.4	29.5	48.1	-18.6
0.515	12.1	10.5	0.2	56.0	22.8	-33.2	12.1	10.5	22.8	46.0	-23.2
6.060	8.9	11.3	1.2	60.0	21.4	-38.6	8.9	11.3	21.4	50.0	-28.6
16.960	9.2	11.3	3.5	60.0	24.0	-36.0	9.2	11.3	24.0	50.0	-26.0
29.190	9.2	12.7	6.2	60.0	28.0	-32.0	9.2	12.7	28.0	50.0	-22.0