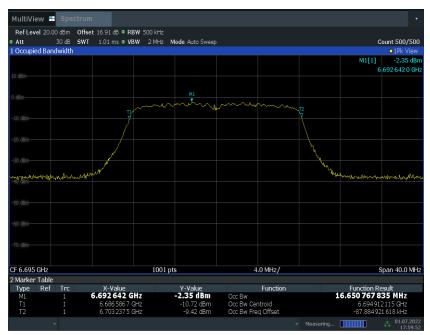
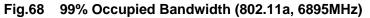


17:48:23 01.07.2022

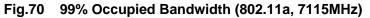


17:59:52 01.07.2022

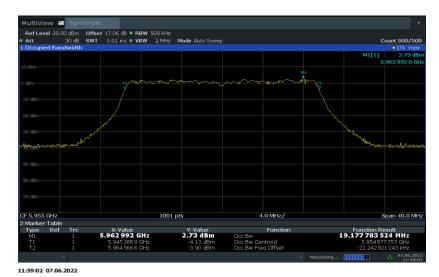




18:13:03 01.07.2022



18:24:07 01.07.2022



12:00:30 07.06.2022



Fig.73 99% Occupied Bandwidth (802.11ax-HE20, 6415MHz)

12:04:14 07.06.2022

Fig.76 99% Occupied Bandwidth (802.11ax-HE20, 6515MHz)

12:07:52 07.06.2022

Fig.79 99% Occupied Bandwidth (802.11ax-HE20, 6855MHz)

12:10:19 07.06.2022

Fig.82 99% Occupied Bandwidth (802.11ax-HE20, 6995MHz)

15:00:45 07.06.2022



Fig.85 99% Occupied Bandwidth (802.11ax-HE40, 6165MHz)

15:04:02 07.06.2022

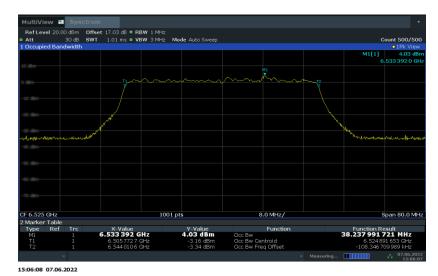


Fig.88 99% Occupied Bandwidth (802.11ax-HE40, 6485MHz)

15:07:15 07.06.2022

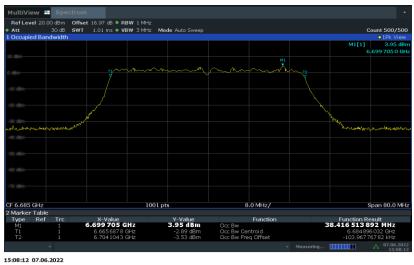
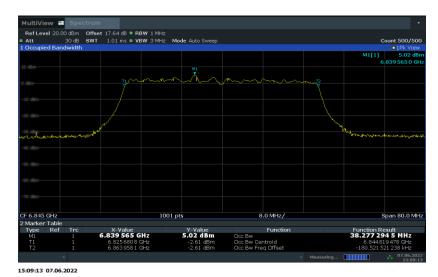



Fig.91 99% Occupied Bandwidth (802.11ax-HE40, 6685MHz)

15:10:13 07.06.2022

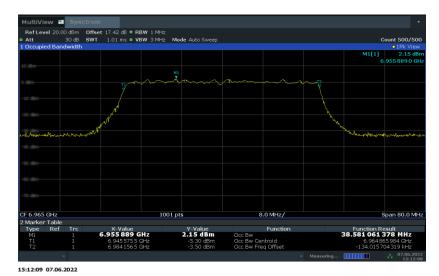


Fig.94 99% Occupied Bandwidth (802.11ax-HE40, 6925MHz)

15:13:05 07.06.2022

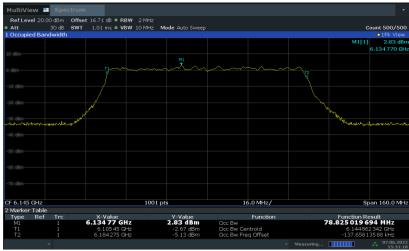


Fig.97 99% Occupied Bandwidth (802. 11ax-HE80, 5985MHz)

15:32:17 07.06.2022

Fig.100 Occupied 26dB Bandwidth (802. 11ax-HE80, 6465MHz)

15:35:14 07.06.2022

Fig.103 99% Occupied Bandwidth (802. 11ax-HE80, 6705MHz)

15:38:19 07.06.2022

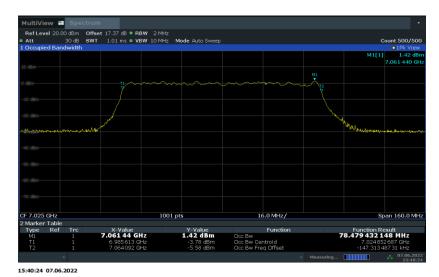


Fig.106 99% Occupied Bandwidth (802. 11ax-HE80, 6945MHz)

15:52:38 07.06.2022


Fig.109 99% Occupied Bandwidth (802. 11ax-HE160, 6185MHz)

15:55:32 07.06.2022



Fig.112 99% Occupied Bandwidth (802. 11ax-HE160, 6665MHz)

15:58:34 07.06.2022

Fig.114 99% Occupied Bandwidth (802. 11ax-HE160 6985MHz)

A.6. Contention Based Protocol

Measurement Limit and Method:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm)1. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

©Copyright. All rights reserved by CTTL.

The measurement is made according to KDB 987594.

Magguramant	Decultor
Measurement	Results:

Band	BW (MHz)	Fre. (MHz)	Incumbent Freq (MHz)	Directional Gain	Path loss	AWGN Signal Level (at Antenna Port) (dBm)	Incum bent Signal Level(Refer to 0dBi Anten na) (dBm)	Detection Number	Detection Rate(%)	Limit (%)
	20	6175	6175	1.72	3	-71.05	-69.77	10	90	90
UNII			6110		3	-70.19	-68.49	10	100	90
Band 5	160	6185	6185	1.30	3	-67.51	-65.81	10	90	90
			6260		3	-70.13	-68.43	10	100	90
	20	6435	6435	0.96	3	-66.86	-64.82	10	90	90
UNII			6430		3	-72.02	-71.14	10	100	90
Band 6	160	6505	6505	2.12	3	-71.11	-70.23	10	90	90
			6580		3	-75.44	-74.56	10	90	90
	20	6855	6855	0.81	3	-69.00	-66.81	10	90	90
UNII			6590		3	-72.23	-69.89	10	100	90
Band 7	160	6665	6665	0.66	3	-70.03	-67.69	10	100	90
			6740		3	-72.28	-69.94	10	100	90
	20	6995	6995	0.46	3	-68.17	-65.63	10	90	90
UNII			6910		3	-67.22	-65.13	10	90	90
Band 8	160	6985	6985	0.91	3	-66.18	-64.09	10	100	90
			7060		3	-67.36	-65.27	10	90	90

Note: Incumbent signal level (dBm) = AWGN Signal power Level (dBm)-Antenna Gain (dBi)+Path loss,

The EUT encounters the incumbent signal that its power level is less than or equal to the detection

Band	BW (MHz)	Fre. (MHz)	Incumbent Freq (MHz)	Path Ioss	Directional Gain	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level(Refer to 0dBi Antenna) (dBm)	Detection Limit	EUT Tx Status
UNII				3		-71.05	-69.77		Ceased
Band	Band 20	6175	6175	0	1.72	75.00	70.70	-62	With
5				3		-75.00	-73.72		beacon

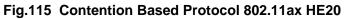
threshold (-62dBm) with reference to 0dBi antenna gain.

©Copyright. All rights reserved by CTTL.

Page 78 of 161

									signal										
				3		-70.19	-68.49		Ceased										
					•				With										
			6110	3		-75.30	-73.6	-62	beacon										
									signal										
				3		-67.51	-65.81		Ceased										
	100	6185	0405		1.00				With										
	160		0100	6185	3	1.30	-72.09	-70.39	-62	beacon									
									signal										
				3		-70.13	-68.43		Ceased										
			6260					-62	With										
						0200	3		-74.89	-73.19	-02	beacon							
									signal										
				3	0.96	-66.86	-64.82		Ceased										
	20	6435	6435					-62	With										
	20	0400	0433	0400	0433	3		-71.00	-68.96	-02	beacon								
									signal										
														3		-72.02	-71.14		Ceased
												6430					-62	With	
UNII			0400	3		-74.50	-73.62	02	beacon										
Band									signal										
6				3		-71.11	-70.23		Ceased										
·	160	6505	6505	6505	6505	6505	6505	6505	6505	6505	6505	6505		2.12			-62	With	
			0000	3		-75.56	-74.68		beacon										
														_				signal	
				3		-75.44	-74.56	-	Ceased										
			6580					-62	With										
				3		-77.33	-76.45		beacon										
									signal										
				3	0.81	-69.00	-66.81	-	Ceased										
	20	6855	6855					-62	With										
UNII Band 7			3		-73.60	-71.41		beacon											
								signal											
					3		-72.23	-69.89		Ceased									
			6590			70.00	-74.54	-62	With										
				3		-76.88			beacon										
		6665			ŀ				signal										
	160			3	0.66	-70.03	-67.69		Ceased										
			6665				70.44	-62	With										
				3		-74.75	-72.41	-02	beacon										
									signal										
			6740	3	{	-72.28	-69.94	-62	Ceased										
ĺ					3		-77.69	-75.35		With									

Page 79 of 161



									beacon													
									signal													
				3	0.46	-68.17	-65.63		Ceased													
	20	6995	6995					-62	With													
	0995	0995	3		-72.70	-70.16	-02	beacon														
									signal													
		3		3		-67.22	-65.13		Ceased													
			6085	6085	6095	6085	6985	6985	6985) 6985	6910					-62	With					
UNII											160 6985	0310	3		-71.49	-69.4	-02	beacon				
Band																			signal			
8																		3		-66.18	-64.09	
0	160											6985		0.91			-62	With				
	100		0000	3	0.01	-70.23	-68.14	02	beacon													
							signal															
						3		-67.36	-65.27		Ceased											
				7060					-62	With												
			,000	3		-71.23	-69.14	52	beacon													
									signal													

Conclusion: PASS Test graphs as below:

Mode	AWGN Signal Level	ceased transmission
802.11ax20	Fig.115	Fig.116
802.11ax160	Fig.117	Fig.118

	Ref Level 20.00 dBm	• RBW	1 MHz						SGL
Di ditini		SWT 20 s 🗢 VBW	3 MHz						Count 1
dilm	Zero Span								01Pk Clr
	المرمان والمقاوا والمعاولة المارون أوراع	Induction of the second se							
	D dBm								
	0 dBm								
	U asm								
	0 dBm	te esser 1 de la	بالاستانية محمد الم	No. and and and and		and the second states in the second	a haar oo aa haad	a land to the second day of	a contractor and all
	alan ala mandalah kana sabar balan kana sa sa sa batan ka		and the first sector of the first sector s	and a second	and and an			11111111111111111111111111111111111111	
56 175 CHz 100001 ptr									
100001 ptr									
	6 475 011			1000					
				1000	or pts				2.0

Fig.116 Contention Based Protocol 802.11ax HE20 (ceased transmission)

Fig.117 Contention Based Protocol 802.11ax HE160 (Upper edge Threshold Level)

	Spectrum							
Ref Level 20.0		RBW 1						SGL
Att	30 dB 🗢 SWT	20 s 🗢 VBW 3	MHz					Count 1,
Zero Span								01Pk Clr
0 dBm								
and the historical states of	<u>te.</u>						naday.edu	the Hassesson in the second
	<u> (</u>							
30 dBm								
+0 dBm								
i0 dBm	abeth constant to think	un desta a substation abite o	in our free this in our	line odda, on offense offen i diffeter	or writelaw the weather	المرابع والمرابع والمراجع	aliticational	
وغميطتاني عقر يتتريق		and an and a line by a start from a			فأرقة فلز بدينانكم فرخمان أتحريا الغر		and the second secon	n Bantarika arik pilenen
i0 dBm								
6.58 GHz				10000	1 ote			2.0
				10000	JI DUS			2.0

14:50:20 01.08.2022

Fig.118 Contention Based Protocol 802.11ax HE160 (Upper edge ceased transmission)

A.7. In-Band Emissions

Measurement Limit and Method:

1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth

2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:

a) Set the span to encompass the entire 26 dB EBW of the signal.

b) Set RBW = same RBW used for 26 dB EBW measurement.

c) Set VBW \geq 3 X RBW

d) Number of points in sweep \geq [2 X span / RBW].

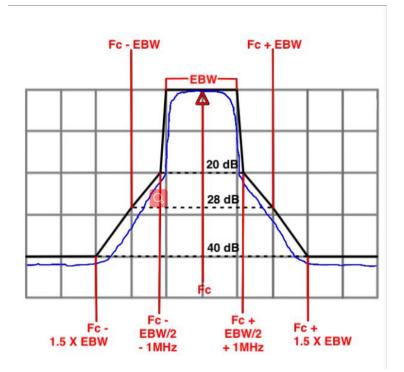
e) Sweep time = auto.

f) Detector = RMS (i.e., power averaging)

g) Trace average at least 100 traces in power averaging (rms) mode.

h) Use the peak search function on the instrument to find the peak of the spectrum.

3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:


a. Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the 26-dB point on either side of the carrier center frequency.)

- b. Suppressed by 28 dB at one channel bandwidth from the channel center.
- c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 4. Adjust the span to encompass the entire mask as necessary.
- 5. Clear trace.
- 6. Trace average at least 100 traces in power averaging (rms) mode.

7. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

Generic Emission Mask

The measurement is made according to KDB 987594.

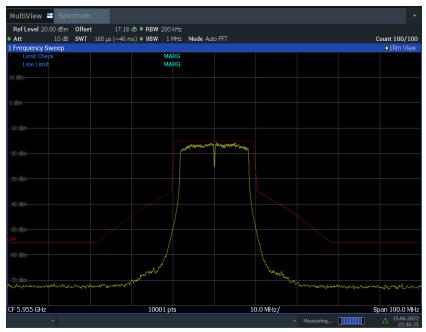
Measurement Results:

Mode	Frequency	Result	conclusion
	5955MHz (Ch1)	Fig.119	Р
	6175MHz (Ch45)	Fig.120	Р
	6415MHz (Ch93)	Fig.121	Р
	6435MHz (Ch97)	Fig.122	Р
902 11 -	6475MHz (Ch105)	Fig.123	Р
802.11a	6515MHz (Ch113)	Fig.124	Р
	6535MHz (Ch117)	Fig.125	Р
	6695MHz (Ch149)	Fig.126	Р
	6855MHz (Ch181)	Fig.127	Р
	6875MHz (Ch185)	Fig.128	Р

			_
	6895MHz (ch189)	Fig.129	Р
	6995MHz (Ch209)	Fig.130	P
	7115MHz (Ch233)	Fig.131	P
	5955MHz (Ch1)	Fig.132	P
	6175MHz (Ch45)	Fig.133	P
	6415MHz (Ch93)	Fig.134	P
	6435MHz (Ch97)	Fig.135	Р
	6475MHz (Ch105)	Fig.136	Р
802.11ax	6515MHz (Ch113)	Fig.137	Р
HE20	6535MHz (Ch117)	Fig.138	Р
(full RU)	6695MHz (Ch149)	Fig.139	Р
	6855MHz (Ch181)	Fig.140	Р
	6875MHz (Ch185)	Fig.141	Р
	6895MHz (ch189)	Fig.142	Р
	6995MHz (Ch209)	Fig.143	Р
	7115MHz (Ch233)	Fig.144	Р
	5965MHz (Ch3)	Fig.145	Р
	6165MHz (Ch43)	Fig.146	Р
	6405MHz (Ch91)	Fig.147	Р
	6445MHz (Ch99)	Fig.148	Р
	6485MHz (Ch107)	Fig.149	Р
802.11ax	6525MHz (Ch115)	Fig.150	Р
HE40	6565MHz (Ch123)	Fig.151	Р
(full RU)	6685MHz (Ch147)	Fig.152	Р
	6845MHz (Ch179)	Fig.153	Р
	6885MHz (Ch187)	Fig.154	Р
	6925MHz (ch195)	Fig.155	Р
	6965MHz (Ch203)	Fig.156	Р
	7085MHz (Ch227)	Fig.157	Р
	5985MHz (Ch7)	Fig.158	Р
	6145MHz (Ch39)	Fig.159	Р
	6385MHz (Ch87)	Fig.160	Р
	6465MHz (Ch103)	Fig.161	P
802.11ax	6545MHz (Ch119)	Fig.162	P
HE80	6625MHz (Ch135)	Fig.163	P
(RU26	6705MHz (Ch151)	Fig.164	P
index0)	6785MHz (Ch167)	Fig.165	P
	6865MHz (Ch183)	Fig.166	P
	6945MHz (Ch199)	Fig.167	P
	7025MHz (Ch215)	Fig.168	P
802.11ax	5985MHz (Ch7)	Fig.169	P
HE80	6145MHz (Ch39)	Fig.170	P
		1.9.170	1 1

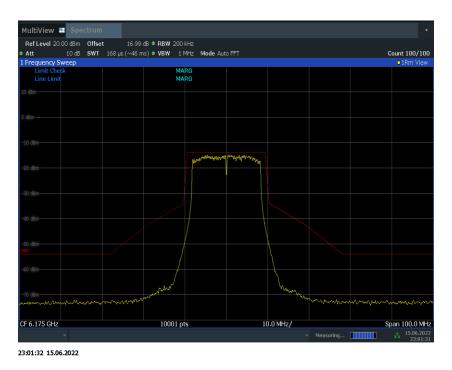
©Copyright. All rights reserved by CTTL.

Page 84 of 161

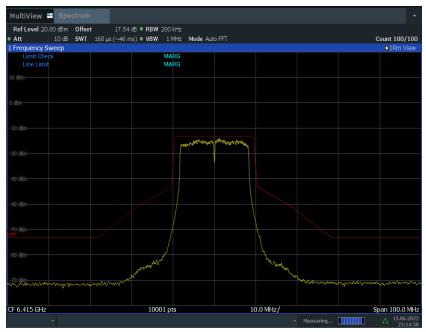

(full RU)	6385MHz (Ch87)	Fig.171	Р
	6465MHz (Ch103)	Fig.172	Р
	6545MHz (Ch119)	Fig.173	Р
	6625MHz (Ch135)	Fig.174	Р
	6705MHz (Ch151)	Fig.175	Р
	6785MHz (Ch167)	Fig.176	Р
	6865MHz (Ch183)	Fig.177	Р
	6945MHz (Ch199)	Fig.178	Р
	7025MHz (Ch215)	Fig.179	Р
	6025MHz (Ch15)	Fig.180	Р
000 44	6185MHz (Ch47)	Fig.181	Р
802.11ax	6345MHz (Ch79)	Fig.182	Р
HE160	6505MHz (Ch111)	Fig.183	Р
(RU26 index0)	6665MHz (Ch143)	Fig.184	Р
index0)	6825MHz (Ch175)	Fig.185	Р
	6985MHz (Ch207)	Fig.186	Р
	6025MHz (Ch15)	Fig.187	Р
	6185MHz (Ch47)	Fig.188	Р
802.11ax	6345MHz (Ch79)	Fig.189	Р
HE160	6505MHz (Ch111)	Fig.190	Р
(full RU)	6665MHz (Ch143)	Fig.191	Р
	6825MHz (Ch175)	Fig.192	Р
	6985MHz (Ch207)	Fig.193	Р

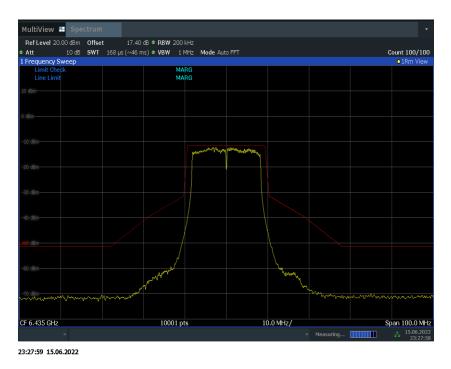
Note: All Antenna are tested, only Ant4 result have been reported.

Conclusion: PASS Test graphs as below:

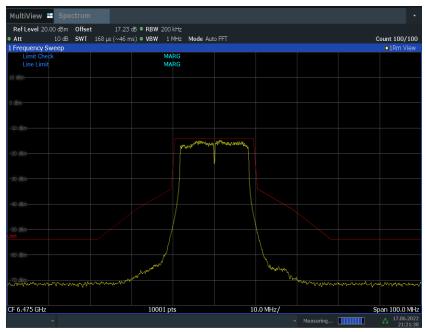


22:46:36 15.06.2022

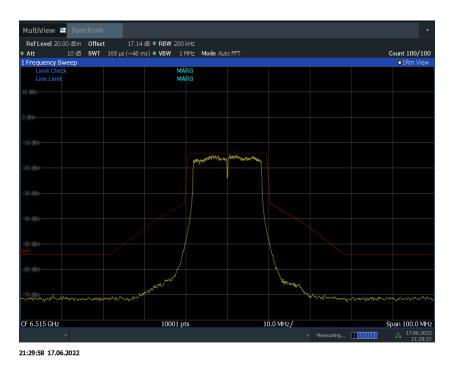


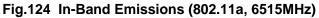


23:14:59 15.06.2022

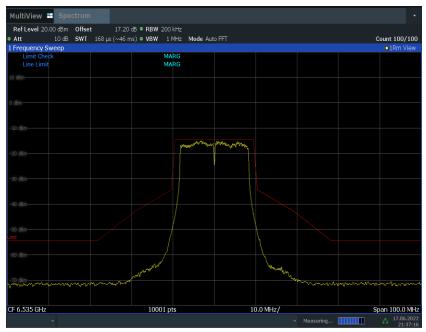




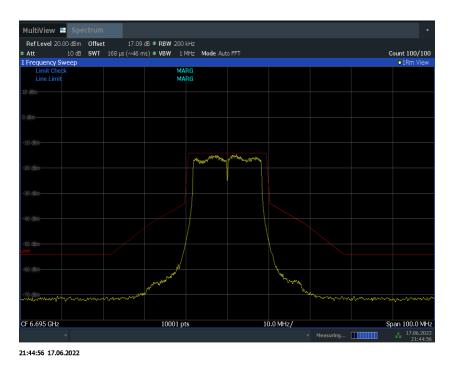




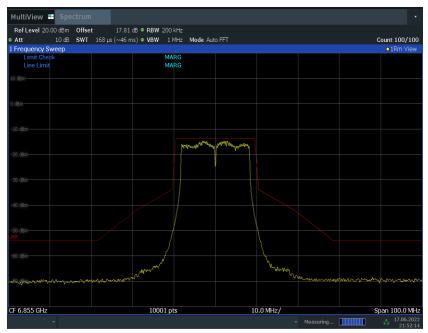
21:21:31 17.06.2022

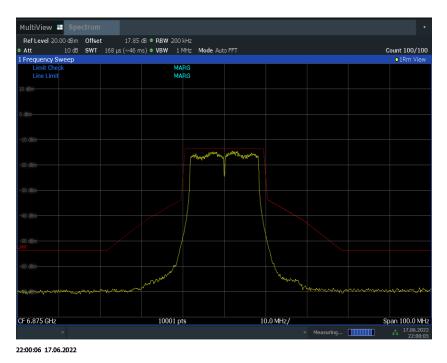




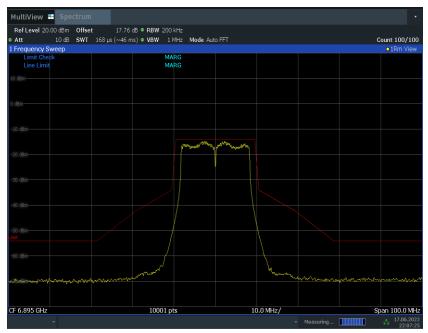


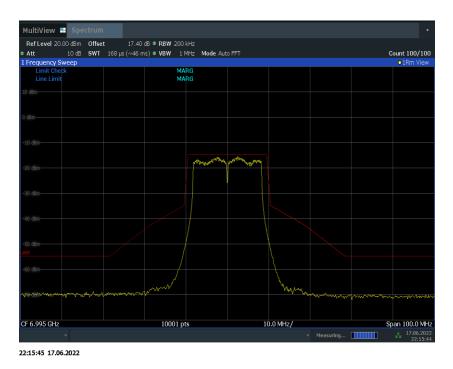
21:37:17 17.06.2022



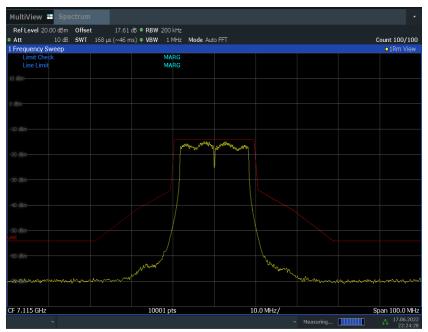


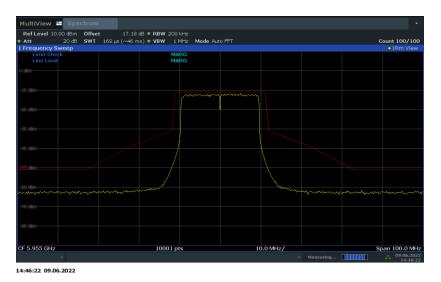
21:52:14 17.06.2022



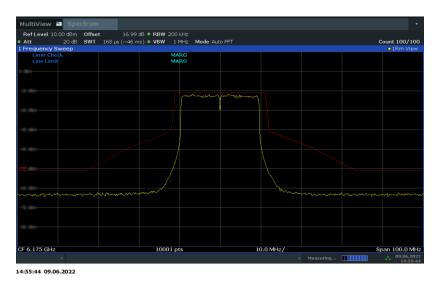


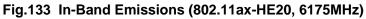
22:07:26 17.06.2022

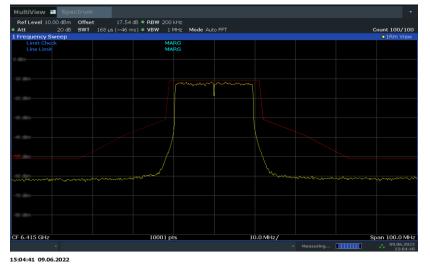


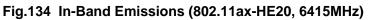


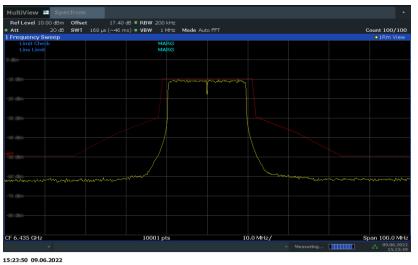
22:24:28 17.06.2022

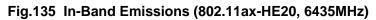




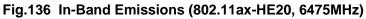


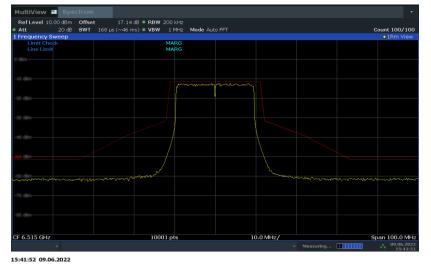


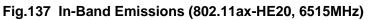


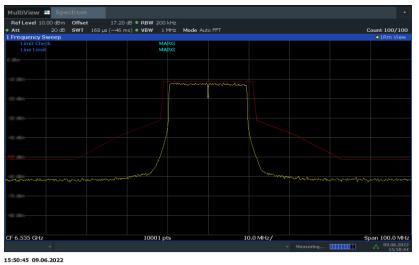
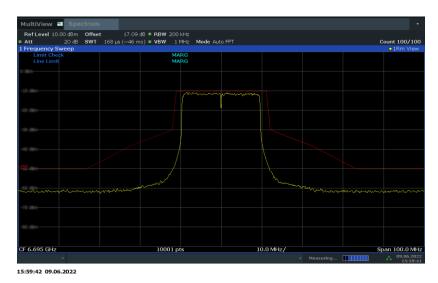
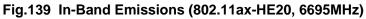


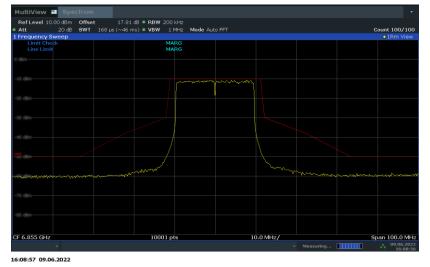


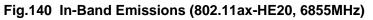


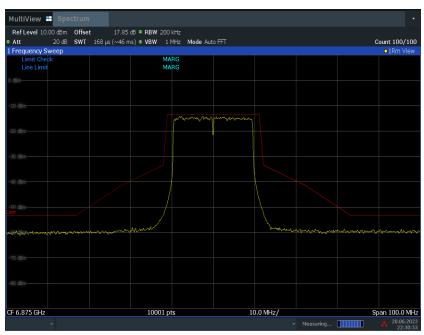


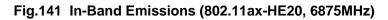


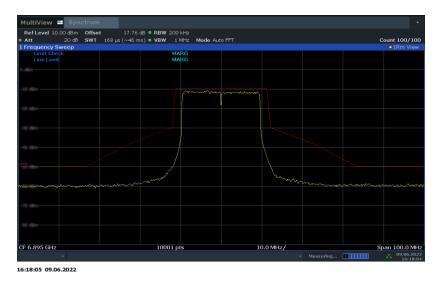




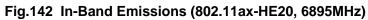

Fig.138 In-Band Emissions (802.11ax-HE20, 6535MHz)



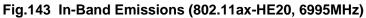


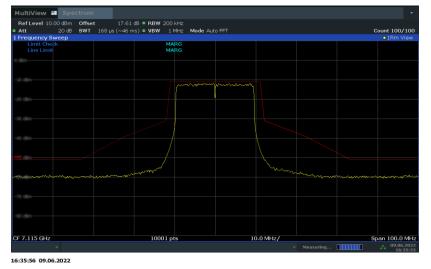




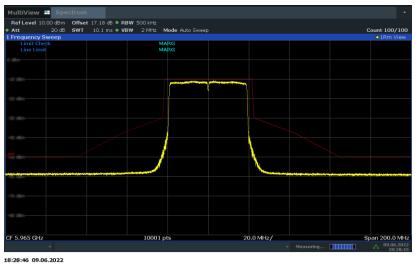
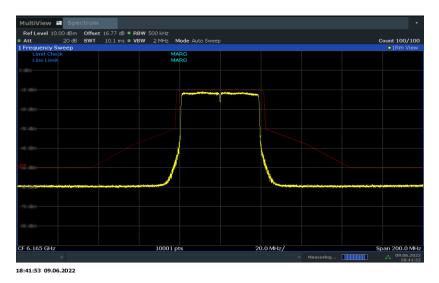


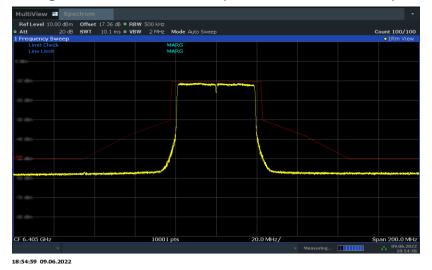
22:30:54 20.06.2022

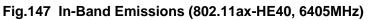







Fig.145 In-Band Emissions (802.11ax-HE40, 5965MHz)



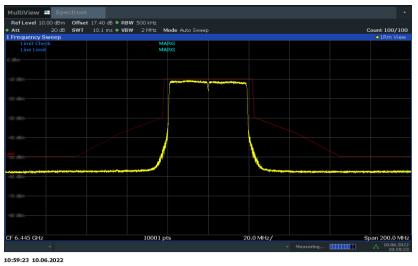


Fig.148 In-Band Emissions (802.11ax-HE40, 6445MHz)