

FCC Radio Test Report

FCC ID: RWO-RZ090368QCNFA

This report concerns: Class II Permissive Changes

Report No. : BTL-FCCP-6-2212C001

Equipment : Notebook PC

Model Name : RZ09-0482

Brand Name : RAZER

Applicant : Razer Inc.

Address : 9 Pasteur, Suite 100, Irvine, CA92618, USA.

Manufacturer : Razer Inc.

Address : 9 Pasteur, Suite 100, Irvine, CA92618, USA.

Radio Function : RLAN 5 GHz (U-NII 4)

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart E (15.407)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2022/12/19

Date of Test : 2022/12/19 ~ 2023/2/3

Issued Date : 2023/4/24

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by :

Eric Lee, Engineer

Approved by : Jerry Chuang Supervisor

Testing Laboratory 0659

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2212C001 Page 2 of 45 Report Version: R01

CONTENTS

REVISIO	N HISTOF	RY	4
1	SUMMAI	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
1.4	TABLE	OF PARAMETERS OF TEST SOFTWARE SETTING	7
2	GENER/	AL INFORMATION	8
2.1	DESC	RIPTION OF EUT	8
2.2	TEST	MODES	10
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4	SUPP	ORT UNITS	12
3	AC POW	ER LINE CONDUCTED EMISSIONS TEST	13
3.1	LIMIT		13
3.2	TEST	PROCEDURE	13
3.3	DEVIA	ATION FROM TEST STANDARD	13
3.4	TEST	SETUP	14
3.5	TEST	RESULT	14
4	RADIATE	ED EMISSIONS TEST	15
4.1	LIMIT		15
4.2	TEST	PROCEDURE	16
4.3	DEVIA	ATION FROM TEST STANDARD	16
4.4	TEST	SETUP	17
4.5	EUT (PPERATING CONDITIONS	18
4.6	TEST	RESULT – BELOW 30 MHZ	18
4.7	TEST	RESULT – 30 MHZ TO 1 GHZ	18
4.8	TEST	RESULT – ABOVE 1 GHZ	18
5	MAXIMU	M E.I.R.P. TEST	19
5.1	LIMIT		19
5.2	TEST	PROCEDURE	19
5.3	DEVIA	ATION FROM TEST STANDARD	19
5.4	TEST	SETUP	19
5.5	EUT (OPERATING CONDITIONS	19
5.6	TEST	RESULT	19
6	LIST OF	MEASURING EQUIPMENTS	20
7	EUT TES	ST PHOTO	21
8	EUT PHO	OTOS	21
APPEND	OIX A	AC POWER LINE CONDUCTED EMISSIONS	22
APPEND	DIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	27
APPEND	OIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	30
APPEND	DIX D	MAXIMUM E.I.R.P.	40

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2212C001	R00	Original Report.	2023/2/10	Invalid
BTL-FCCP-6-2212C001	R01	Revised report to address TCB's	2023/4/24	Valid
		comments.		

Project No.: 2212C001 Page 4 of 45 Report Version: R01

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.407(b)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.407(e)	6 dB Bandwidth		Pass	
15.407(a)	Maximum E.I.R.P.	APPENDIX D	Pass	
15.407(a)	Power Spectral Density		Pass	
15.203	Antenna Requirement		Pass	
15.407(c)	Automatically Discontinue Transmission		Pass	NOTE (3)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.
- (4) The antenna gain of EUT is smaller than that of the module. So in this report the worst cases of radiated spurious emissions and AC Power Line Conducted Emissions were evaluated and recorded. And evaluated the output power items and recorded in the report. For the test results of all other test items please refer to module test reports.

Project No.: 2212C001 Page 5 of 45 Report Version: R01

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

 ☐ CB08

□ CB11

SR11

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06

□ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

<u> </u>					
Test Site	Measurement Frequency Range	U (dB)			
	0.03 GHz ~ 0.2 GHz	4.17			
	0.2 GHz ~ 1 GHz	4.72			
CB21	1 GHz ~ 6 GHz	5.21			
CBZT	6 GHz ~ 18 GHz	5.51			
	18 GHz ~ 26 GHz	3.69			
	26 GHz ~ 40 GHz	4.23			

C. Conducted test:

<u></u>	
Test Item	U,(dB)
Output power	0.3669

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21°C, 65%	AC 120V/60Hz	Paul Shen
Radiated emissions below 1 GHz	23°C, 59%	AC 120V/60Hz	Mark Wang
Radiated emissions above 1 GHz	23°C, 59%	AC 120V/60Hz	Mark Wang
Maximum E.I.R.P.	22.2°C, 56%	AC 120V/60Hz	Tim Lee

Project No.: 2212C001 Page 6 of 45 Report Version: R01

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	QRCT V4.0			
Mode	5845 MHz	5865 MHz	5885 MHz	Data Rate
IEEE 802.11a	13	13	12.5	6 Mbps
IEEE 802.11ac (VHT20)	13.5	13.5	13	MCS 0
IEEE 802.11ax (HE20)	13.5	13.5	13	MCS 0
Mode	5835 MHz	5875 MHz		Data Rate
IEEE 802.11ac (VHT40)	15.5	16		MCS 0
IEEE 802.11ax (HE40)	16	16.5		MCS 0
Mode	5855 MHz			Data Rate
IEEE 802.11ac (VHT80)	15			MCS 0
IEEE 802.11ax (HE80)	15.5			MCS 0
Mode	5815 MHz			Data Rate
IEEE 802.11ac (VHT160)	14			MCS 0
IEEE 802.11ax (HE160)	14			MCS 0

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook PC
Model Name	RZ09-0482
Brand Name	RAZER
Model Difference	N/A
	#1 DC voltage supplied from AC adapter.
Power Source	#2 Supplied from battery.
	Model: RC30-0482
	#1 I/P: 100-240V~3.6A 50/60Hz
Power Rating	O/P: 19.5V===11.8A
	#2 DC 15.4V, 4422mAh, 68.1Wh
Products Covered	1* POWER Adapter: RC30-024801
Operation Band	5850 MHz to 5895 MHz
Operation Frequency	5845 MHz to 5885 MHz
Modulation Technology	IEEE 802.11a/n/ac: OFDM
Wiodulation rechilology	IEEE 802.11ax: OFDMA
	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps
Transfer Rate	IEEE 802.11n: up to 300 Mbps
Transfer reace	IEEE 802.11ac: up to 1733.4 Mbps
	IEEE 802.11ax: up to 2402 Mbps
	IEEE 802.11a: 19.50 dBm (0.0379W)
	IEEE 802.11ac (VHT20): 19.66 dBm (0.0925 W)
	IEEE 802.11ac (VHT40): 21.89 dBm (0.1544 W)
M 5100	IEEE 802.11ac (VHT80): 21.10 dBm (0.1289 W)
Maximum E.I.R.P.	IEEE 802.11ac (VHT160): 20.07 dBm (0.1015 W)
	IEEE 802.11ax (HE20): 19.94 dBm (0.0985 W)
	IEEE 802.11ax (HE40): 21.80 dBm (0.1512 W)
	IEEE 802.11ax (HE80): 21.21 dBm (0.1321 W)
To at Mandal	IEEE 802.11ax (HE160): 20.09 dBm (0.1020 W)
Test Model	RZ09-0482
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

IEEE 802.11a IEEE 802.11n (HT40) IEEE 802.11n (HT40) IEEE 802.11ac (VHT40) IEEE 802.11ac (VHT40) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE80) IEEE 802.11ax (HE160) IEEE 802.11ac (VHT80) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT80) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT80) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT80) IEEE 802.11ac (VHT160) IEEE 802.11ac (VHT80) IEEE 8									
*169 5845 *167 5835 *171 5855 *163 5815 173 5865 175 5875	IEEE 802.11n (HT20) IEEE 802.11ac (VHT20)		IEEE 802.1	1ac (VHT40)					
173 5865 175 5875		Channel		Channel		Channel		Channel	Frequency (MHz)
		*169	5845	*167	5835	*171	5855	*163	5815
177 5885		173	5865	175	5875				
		177	5885						

Note: * U-NII 3 & U-NII 4 span channels

Project No.: 2212C001 Page 8 of 45 Report Version: R01

(3) Table for Filed Antenna:

Ant.	Manufacturer	P/N	Туре	Connector	Gain (dBi)
1	Amphenol	BY5973-15-001-C	PIFA	N/A	3.70
2	Amphenol	BY5962-15-002-C	PIFA	N/A	3.72

Note:

- 1) This EUT supports MIMO 2X2, any transmit signals are uncorrelated with each other, so Directional gain= 10log[(10^{G1/10}+10^{G2/10}+...10^{GN/10})/N]dBi, that is Directional gain=10log[(10^{3.70/10}+10^{3.72/10})/2]dBi= 3.71.
- 2) Ant.1 refers to main antenna, Ant.2 refers to aux antenna.
- 3) The AUX antenna connector of the module connected to the MAIN antenna of the EUT and the MAIN antenna connector of the module connected to the AUX antenna of the EUT.
- (4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

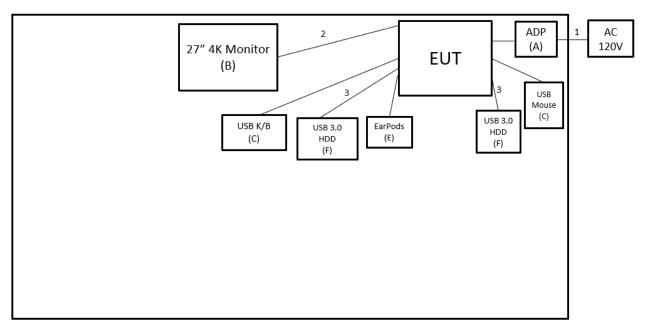
Project No.: 2212C001 Page 9 of 45 Report Version: R01

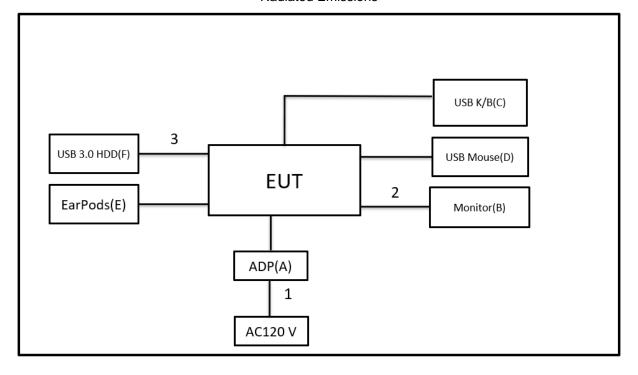
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11ax (HE160)	163	-
	TX Mode_IEEE 802.11a	169	
	TX Mode_IEEE 802.11ac (VHT80)	171	Bandedge
Transmitter Radiated Emissions	TX Mode_IEEE 802.11ax (HE160)	163	
(above 1GHz)	TX Mode_IEEE 802.11a	169	
	TX Mode_IEEE 802.11ac (VHT80)	171	Harmonic
	TX Mode_IEEE 802.11ax (HE160)	163	
	TX Mode_IEEE 802.11a TX Mode_IEEE 802.11ac (VHT20) TX Mode_IEEE 802.11ax (HE20)	169/173/177	
Maximum E.I.R.P.	TX Mode_IEEE 802.11ac (VHT40) TX Mode_IEEE 802.11ax (HE40)	167/175	-
	TX Mode_IEEE 802.11ac (VHT80) TX Mode_IEEE 802.11ax (HE80)	171	
	TX Mode_IEEE 802.11ac (VHT160) TX Mode_IEEE 802.11ax (HE160)	163	

NOTE:

(1)	For radiated emission band edge tes	t, both Vertical	I and Horizontal	are evaluated,	but only the worst	case
	(Vertical) is recorded.					


Project No.: 2212C001 Page 10 of 45 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

AC power line conducted emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	Razer	RC30-024801	N/A	Supplied by test requester.
В	27" 4K Monitor	DELL	U2720Q	CN-083VF-WSL00-0 B7-332L	Furnished by test lab.
С	USB K/B	DELL	KB216t	/	Furnished by test lab.
D	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC00- 79E-01HA	Furnished by test lab.
E	EarPods	Apple	A1472	N/A	Furnished by test lab.
F	USB 3.0 HDD	WD	WDBC3C0010BSL-0B	WX81A88ALJUC	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Power Cord	Furnished by test lab.
2	N/A	N/A	1.7m	HDMI Cable	Furnished by test lab.
3	N/A	N/A	0.18m	Type C to Type C Cable	Furnished by test lab.

Radiated Emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	Razer	RC30-024801	N/A	Supplied by test requester.
В	27" 4K Monitor	DELL			Furnished by test lab.
С	USB K/B	DELL	KB216t	CN-0W33XP-L0300 -797-05TY-A03	Furnished by test lab.
D	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC0 0-79E-01HA	Furnished by test lab.
Е	EarPods	Apple	A1472	N/A	Furnished by test lab.
F	USB 3.0 HDD	WD	WDBC3C0010 BSL-0B	WX81A88ALJUC	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Power Cord	Supplied by test requester.
2	N/A	N/A	1.7m	HDMI Cable	Furnished by test lab.
3	N/A	N/A	0.18m	Type C to Type C Cable	Furnished by test lab.

Project No.: 2212C001 Page 12 of 45 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	II	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	II	-18.33

The following table is the setting of the receiver.

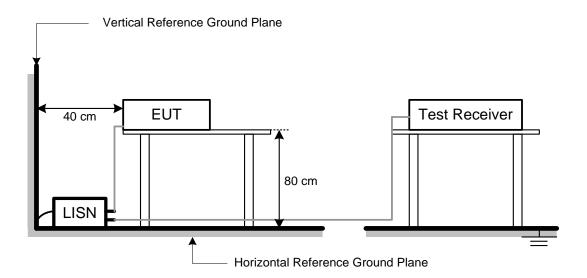
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2212C001 Page 13 of 45 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150-5250	-27	68.3
5250-5350	-27	68.3
5470-5725	-27	68.3
	-27 (NOTE 2)	68.3
E70E E0E0	10 (NOTE 2)	105.3
5725-5850	15.6 (NOTE 2)	110.9
	27 (NOTE 2)	122.3

NOTE:

(1) The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 μ V/m, where P is the eirp (Watts)

- (2) According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (3) The test result calculated as following:

 Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
36.23	+	-11.97	II	24.26

Measurement Value		Limit Value		Margin Level
24.26	-	40	=	-15.74

Project No.: 2212C001 Page 15 of 45 Report Version: R01

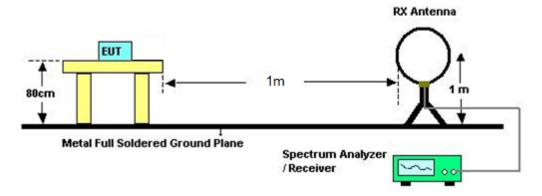
Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

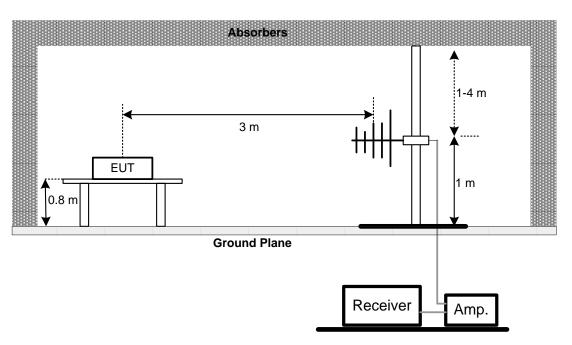
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

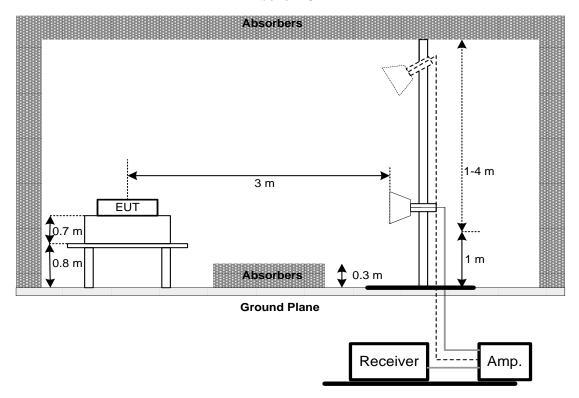

No deviation.

Project No.: 2212C001 Page 16 of 45 Report Version: R01



4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

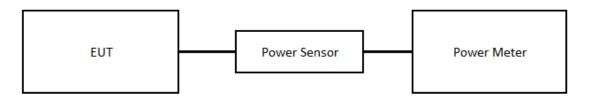
NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 MAXIMUM E.I.R.P. TEST

5.1 LIMIT

Section	Equipment Category	Maximum e.i.r.p. Limit
	Indoor access point	36
15.407(a)	Subordinate device	36
	Client devices	30


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. Method PM-G (Measurement using a gated RF average power meter): Measurements may be performed using a wideband gated RF power meter provided that the gateparameters are adjusted such that the power is measured only when the EUT is transmitting at itsmaximum power control level. Since the measurement is made only during the ON time of thetransmitter, no duty cycle correction factor is required.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D

6 LIST OF MEASURING EQUIPMENTS

AC Power Line Conducted Emissions							
Item Kind of Equipment		Manufacturer	Manufacturer Type No. Serial No.		Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK R&S		R&S ENV216 101521		2022/9/28	2023/9/27	
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2022/3/31	2023/3/30	
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15	
4	Measurement		EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18			
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7			
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8			
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29			
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14			
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14			
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14			
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18			
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17			
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17			
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19			
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19			
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2022/3/15	2023/3/14			
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2022/3/15	2023/3/14			
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

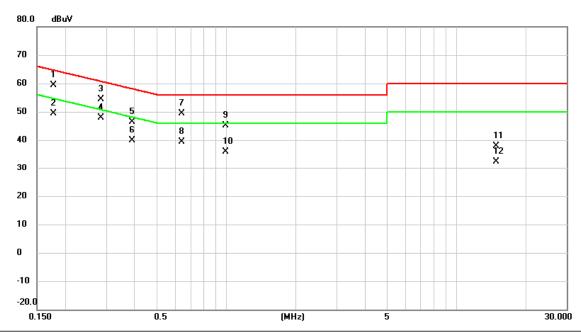
Maximum E.I.R.P.						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2212C001 Page 20 of 45 Report Version: R01

7 EUT TEST PHOTO						
Please refer to document Appendix No.: TP-2212C001-1 (APPENDIX-TEST PHOTOS).						
8 EUT PHOTOS						
Please refer to document Appendix No.: EP-2212C001-1 (APPENDIX-EUT PHOTOS).						

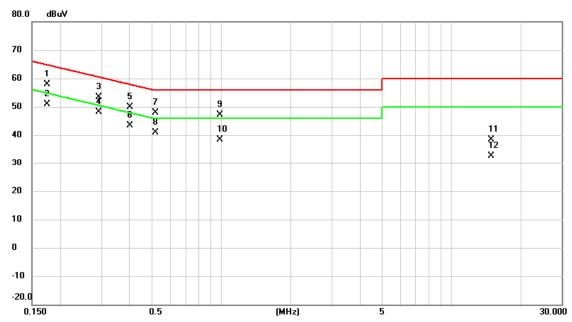
Project No.: 2212C001 Page 21 of 45 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2212C001 Page 22 of 45 Report Version: R01

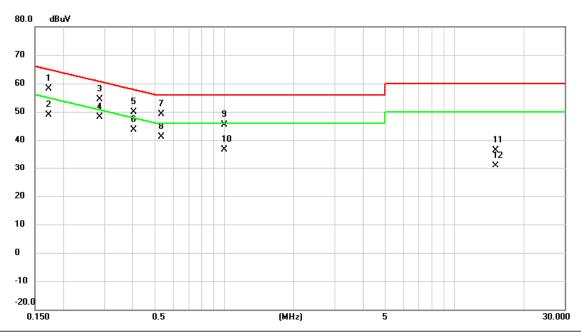
ı				
	Test Mode	Normal	Tested Date	2023/1/6
	Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1770	49.65	9.63	59.28	64.63	-5.35	QP	
2		0.1770	39.72	9.63	49.35	54.63	-5.28	AVG	
3		0.2850	44.70	9.63	54.33	60.67	-6.34	QP	
4	*	0.2850	38.24	9.63	47.87	50.67	-2.80	AVG	
5		0.3907	36.82	9.63	46.45	58.05	-11.60	QP	
6		0.3907	30.37	9.63	40.00	48.05	-8.05	AVG	
7		0.6405	39.69	9.64	49.33	56.00	-6.67	QP	
8		0.6405	29.65	9.64	39.29	46.00	-6.71	AVG	
9		0.9960	35.34	9.67	45.01	56.00	-10.99	QP	
10		0.9960	26.10	9.67	35.77	46.00	-10.23	AVG	
11		14.8830	27.99	9.89	37.88	60.00	-22.12	QP	
12		14.8830	22.40	9.89	32.29	50.00	-17.71	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

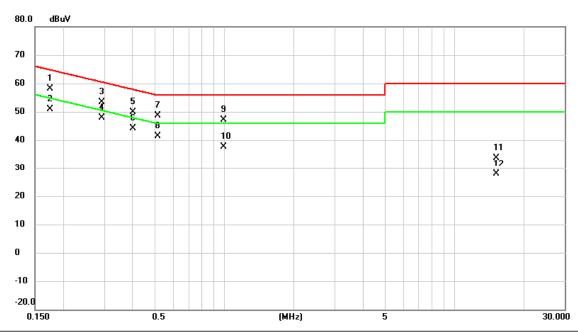
ı				
	Test Mode	Normal	Tested Date	2023/1/6
	Test Frequency	-	Phase	Neutral



No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBu∀	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1748	48.22	9.65	57.87	64.73	-6.86	QP	
2	0.1748	41.29	9.65	50.94	54.73	-3.79	AVG	
3	0.2917	43.65	9.64	53.29	60.48	-7.19	QP	
4 *	0.2917	38.42	9.64	48.06	50.48	-2.42	AVG	
5	0.4020	40.26	9.64	49.90	57.81	-7.91	QP	
6	0.4020	33.83	9.64	43.47	47.81	-4.34	AVG	
7	0.5167	38.22	9.64	47.86	56.00	-8.14	QP	
8	0.5167	31.16	9.64	40.80	46.00	-5.20	AVG	
9	0.9870	37.34	9.68	47.02	56.00	-8.98	QP	
10	0.9870	28.65	9.68	38.33	46.00	-7.67	AVG	
11	14.8853	28.53	9.97	38.50	60.00	-21.50	QP	
12	14.8853	22.73	9.97	32.70	50.00	-17.30	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

T.	not Mode	Idlia	Tootod Doto	2022/4/0
16	est Mode	Idle	Tested Date	2023/1/6
Te	est Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1725	48.52	9.64	58.16	64.84	-6.68	QP	
2		0.1725	39.22	9.64	48.86	54.84	-5.98	AVG	
3		0.2872	44.76	9.63	54.39	60.60	-6.21	QP	
4	*	0.2872	38.54	9.63	48.17	50.60	-2.43	AVG	
5		0.4042	40.28	9.63	49.91	57.77	-7.86	QP	
6		0.4042	33.88	9.63	43.51	47.77	-4.26	AVG	
7		0.5325	39.43	9.63	49.06	56.00	-6.94	QP	
8		0.5325	31.52	9.63	41.15	46.00	-4.85	AVG	
9		1.0005	35.62	9.67	45.29	56.00	-10.71	QP	
10		1.0005	27.04	9.67	36.71	46.00	-9.29	AVG	
11		15.0833	26.54	9.90	36.44	60.00	-23.56	QP	
12		15.0833	20.95	9.90	30.85	50.00	-19.15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/1/6
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1748	48.52	9.65	58.17	64.73	-6.56	QP	
2		0.1748	41.23	9.65	50.88	54.73	-3.85	AVG	
3		0.2917	43.65	9.64	53.29	60.48	-7.19	QP	
4	*	0.2917	38.19	9.64	47.83	50.48	-2.65	AVG	
5		0.4020	40.23	9.64	49.87	57.81	-7.94	QP	
6		0.4020	34.52	9.64	44.16	47.81	-3.65	AVG	
7		0.5144	38.91	9.64	48.55	56.00	-7.45	QP	
8		0.5144	31.62	9.64	41.26	46.00	-4.74	AVG	
9		0.9892	37.42	9.68	47.10	56.00	-8.90	QP	
10		0.9892	28.06	9.68	37.74	46.00	-8.26	AVG	
11		15.1463	23.61	9.98	33.59	60.00	-26.41	QP	
12		15.1463	17.83	9.98	27.81	50.00	-22.19	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2212C001 Page 27 of 45 Report Version: R01

_	Test Mo	de	IEEE	802.1	11ax	(HE1	60)		Т	est Date)	202	3/2/1	
	st Frequ				5MH					olarizatio			tical	
	Temp			2	3°C					Hum.		59	9%	
80.0 dB	uV/m													7
70														
60														
50														
40			Ž ž				×		5 X			6		
30	_		××											
20														
10														
0.0														
30.000	127.00				418.		515.		612.			6.00	1000.00	MH
No.	Mk.	Freq.		ading evel		orrect actor		easure- ment		Limit	Over			
		MHz	dE	₿uV		dB	d	BuV/m	(dBuV/m	dB	Detector	Comme	ent
1	!	30.9710) 48	3.62	-1	2.73	,	35.89		40.00	-4.11	QP		
2		270.534		'.08		2.21	- ;	34.87		46.00	-11.13	peak		
3		297.017		5.40		1.51		33.89		46.00	-12.11	peak		
4	*	475.672	4 49	.81	-(5.94	-	42.87		46.00	-3.13	QP		
5		591.432	8 42	2.81	-4	1.42	- ;	38.39		46.00	-7.61	peak		
6		891.367	4 39	.33	-(0.03	- ;	39.30		46.00	-6.70	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

-	Test Mod	de	IEEE				60)			t Date				3/2/1	
Tes	st Frequ	ency			5MHz	<u>'</u>				rization				Horizontal	
	Temp			2	3°C				Н	lum.			59	9%	
BO.O dB	BuV/m														٦
70															
50															
50															
10 1	Ž		3 X 4 X			Ş	5						×		
80															1
20															
10															
0.0															
30.000	127.00	224.00	321.	.00	418.0	0	515.	00 6	12.00	709	.00 (806.00		1000.00	MH
No.	Mk.	Freq.		iding vel		rect ctor		easure- ment	L	imit	Over				
		MHz	dE	₿uV	C	ΙB	dE	3uV/m	dB	uV/m	dB	Dete	ector	Comme	ent
1	!	62.1368	47	.14	-12	2.44	3	34.70	4	0.00	-5.30	C	P		
2		96.4464	52	.23	-16	6.76	3	35.47	4	3.50	-8.03	ре	ak		
3	*	270.712		.97		2.21		11.76		6.00	-4.24		P		
4		297.1283		.47		.51		39.96		6.00	-6.04		P		
5		474.613	2 46	.90	-6	.98	3	39.92	4	6.00	-6.08	ре	ak		
6		891.243	7 36	.88	-0	.03	3	36.85	40	6.00	-9.15	pe	ak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2212C001 Page 30 of 45 Report Version: R01

Test Mod			802.11a		Test Date			3/2/3	
Test Freque			5MHz		Polarization	1		tical	
Temp		2	3°C		Hum.		59	9%	
130.0 dBuV/m									7
20									
120									
10				5	+				-
00				√ \$\\					
· /				/ \ Ø∕\					
10				++-		<u> </u>			4
10									
				$I \mid \Lambda$					
70				N V					1
50				/' 'W					
1 2 50 ************************************	3.4	Marylon Add Marylon		' \	Z		L. Malleware Maly March	8	
50 Karakaranakaran	WALLOW TO PROPERTY OF	ورجوا أواريا أرافاه الإمرانيون والا	CANADAM PARTITION OF THE PARTITION OF TH	—————————————————————————————————————	Marketon March 180	An health and the bear Market	Malandar Make March	La autodia a andra da	all I
					the property of the Reserve	e describation deather	Annual States and Alberta and all	Prestrudituditation de de	1
10	, ,				to seek to only free.	- Annual Calles	See administration and all	Petron ally Mil onestatia	
					CA DATE IN COUNTY OF THE COUNTY	The state of the s	X- (4)	h-ta-k-tra sh k- th k-to-k-th-th-	
					1 A seek to odk from	A CALL	77 (46) (1)	Park mally my have a second	
40						A COLLON	×- 1440 1 (1440 1441)	h-ur-vadle Mikasa Arche	
30					The state of the s		24 Character (1995 (41)	h-ur-v-adle Miles and site de	
0.0 5645.000 5685.00		5765.00	5805.00		885.00 592	25.00 596	5.00	6045.00	
20		5765.00 Reading	5805.00 Correct	5845.00 58 Measure-					
0.0 5645.000 5685.00	0 5725.00 Freq.	5765.00 Reading Level	5805.00 Correct Factor	5845.00 5 Measure- ment	885.00 592 Limit	25.00 596 Over	5.00	6045.00	MI
80 20 0.0 5645.000 5685.00 No. Mk.	o 5725.00 Freq.	5765.00 Reading Level dBuV	5805.00 Correct Factor dB	5845.00 5 Measure- ment dBuV/m	885.00 592 Limit dBuV/m	25.00 596 Over dB	55.00 Detector		MI
0.0 5645.000 5685.00 No. Mk.	0 5725.00 Freq. MHz 5646.827	5765.00 Reading Level dBuV 49.43	5805.00 Correct Factor dB 1.79	5845.00 56 Measure- ment dBuV/m 51.22	885.00 592 Limit dBuV/m 68.20	25.00 596 Over dB -16.98	Detector peak	6045.00	M
0.0 0.0 5645.000 5685.00 No. Mk.	5725.00 Freq. MHz 5646.827 5682.507	5765.00 Reading Level dBuV 49.43 50.30	5805.00 Correct Factor dB 1.79 1.86	5845.00 56 Measurement dBuV/m 51.22 52.16	885.00 592 Limit dBuV/m 68.20 92.26	Over dB -16.98 -40.10	Detector peak peak	6045.00	M
0.0 0.0 5645.000 5685.00 No. Mk.	5725.00 Freq. MHz 5646.827 5682.507 5716.000	5765.00 Reading Level dBuV 49.43 50.30 49.67	5805.00 Correct Factor dB 1.79 1.86 1.92	5845.00 50 Measure- ment dBuV/m 51.22 52.16 51.59	B85.00 592 Limit dBuV/m 68.20 92.26 109.68	Over dB -16.98 -40.10 -58.09	Detector peak peak peak	6045.00	M
0 0.0 5645.000 5685.00 No. Mk.	5725.00 Freq. MHz 5646.827 5682.507 5716.000 5721.160	5765.00 Reading Level dBuV 49.43 50.30 49.67 48.95	5805.00 Correct Factor dB 1.79 1.86 1.92 1.93	5845.00 56 Measurement dBuV/m 51.22 52.16 51.59 50.88	885.00 592 Limit dBuV/m 68.20 92.26	Over dB -16.98 -40.10	Detector peak peak peak peak peak	6045.00 Comme	ent
0.0 5645.000 5685.00 No. Mk.	5725.00 Freq. MHz 5646.827 5682.507 5716.000 5721.160 5845.000	5765.00 Reading Level dBuV 49.43 50.30 49.67 48.95 102.25	5805.00 Correct Factor dB 1.79 1.86 1.92 1.93 2.19	5845.00 56 Measurement dBuV/m 51.22 52.16 51.59 50.88 104.44	B85.00 592 Limit dBuV/m 68.20 92.26 109.68	Over dB -16.98 -40.10 -58.09	Detector peak peak peak peak peak peak	6045.00 Comme	ent
80 50.0 5645.000 5685.00 No. Mk.	5725.00 Freq. MHz 5646.827 5682.507 5716.000 5721.160	5765.00 Reading Level dBuV 49.43 50.30 49.67 48.95	5805.00 Correct Factor dB 1.79 1.86 1.92 1.93	5845.00 56 Measurement dBuV/m 51.22 52.16 51.59 50.88	B85.00 592 Limit dBuV/m 68.20 92.26 109.68	Over dB -16.98 -40.10 -58.09	Detector peak peak peak peak peak	6045.00 Comme	MI

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE 8	302.11ac (VH	T80)	Test Da	ite	202	3/2/1
Te	est Frequ	ency		5855MHz		Polariza	tion	Vei	rtical
	Temp			23°C		Hum.		59	9%
130.0 c	dBuV/m								
120 110 100 90 80				M	√ ₩\ ₽ \/\ _\	M			
50 1 50 ×××	and software	norganisti Nagadrajadi	way My was wat	and the state of t		\$ Whome		where	"Mandaga al Lorania"
20									
0.0									
5655.0	000 5695.0	0 5735.0	0 5775.	00 5815.00	5855.00	5895.00	5935.00 59	75.00	6055.00 MF
No.	Mk.	Freq.	Read Lev			e- Limit	Over		
		MHz	dΒι	ιV dB	dBuV/m	ı dBuV/ı	n dB	Detector	Comment
1	*	5658.720	52.6	61 1.81	54.42	74.65	-20.23	peak	
2		5717.253	3 52.	53 1.92	54.45	110.03	3 -55.58	peak	
		5721.040	53.7	78 1.93	55.71	113.17	7 -57.46	peak	
3			_	0.04	101.07			peak	No Limit
3 4		5855.000	99.0	06 2.21	101.27			<u> p</u> ear	INO LITTIL
3		5855.000 5855.000			91.50			AVG	No Limit
3 4) 89.2	29 2.21		108.78	3 -45.60		

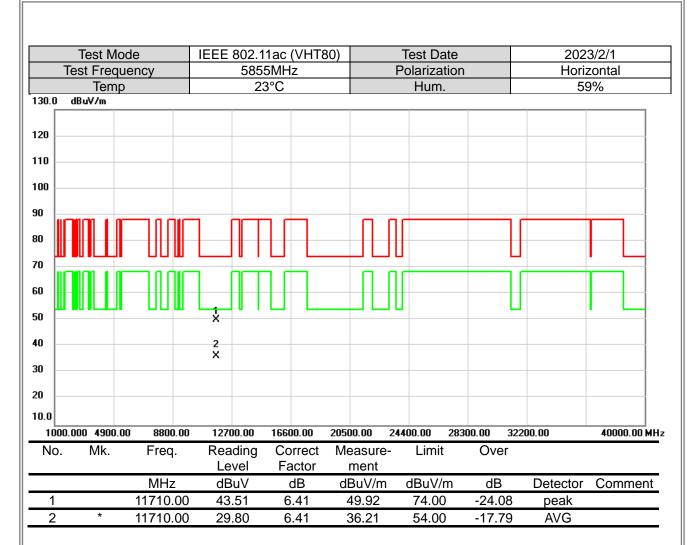
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test I		IEEE	802.11a			Test Date			3/2/1
	Test Fre			5815M		Po	olarization			tical
130.0	Ter dBuV/m	mp		23°C	,		Hum.		59	9%
130.0	UD UY/III									
120 110 100										
90				VVV	\ \\\					
70 60 50	WANT OF THE PARTY	Myster where the	2 X W^W**				;			Munday
40 30										
20 10.0										
	5.000 565						5.00 589		5.00	6015.00 MH
No.	. Mk.	Freq.		-	orrect Nactor	Measure- ment	Limit	Over		
		MHz	d	BuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	5644.1	07 6°	1.14	1.78	62.92	68.20	-5.28	peak	
		5698.0	67 6°	1.32	1.89	63.21	103.77	-40.56	peak	
2					1.92	61.91	110.12	-48.21	peak	
3		5717.5	87 59	9.99	1.92	01.01				
		5717.5 5721.6		9.99 7.55	1.92	59.48	114.45	-54.97	peak	
3			00 5	7.55				-54.97		No Limit
3 4		5721.6	00 5 00 9	7.55 3.42	1.93	59.48		-54.97	peak	No Limit No Limit
3 4 5		5721.6 5815.0	00 5 00 93 00 82	7.55 3.42 2.26	1.93 2.13	59.48 95.55		-54.97 -45.77	peak peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mod	е		802.11a		Test Date		202	3/2/1
Test Freque	ncy		5MHz		Polarizatio	n	Horiz	zontal
Temp		23	3°C		Hum.		59	9%
30.0 dBuV/m								
20								
		1 X						
1		2 X						
1000.000 4900.00	8800.00	12700.00	16600.00	20500.00	24400.00 28	300.00 322	00.00	40000 00 MI
No. Mk.			Correct	Measure-		Over	.00.00	40000.00 MF
INO. IVIK.	Freq.	Reading Level	Factor	ment	Liffill	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	11690.00	41.85	6.39	48.24	74.00	-25.76	peak	Commont
2 *	11690.00	29.37	6.39	35.76	54.00	-18.24	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mod		IEEE 802.1		60)	Test Da			3/2/1
Test Freque	ency		5MHz		Polariza			tical
Temp		2	3°C		Hum.		59	9%
30.0 dBuV/m								
20								
		7 1	7 (-7	П	ПГ			
) 								
		1						
		2 X						
0.0								
1000.000 4900.00	8800.00	12700.00	16600.00	20500.00	24400.00	28300.00 323	200.00	40000.00 MF
No. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/ı	m dB	Detector	Comment
1	11710.00	42.25	6.41	48.66	74.00	-25.34	peak	
2 *	11710.00	29.96	6.41	36.37	54.00	-17.63	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mod		IEEE 802.1		0)	Test Date			3/2/1
Test Freque	ency		5MHz		Polarizatio	n		tical
Temp 30.0 dBuV/m			3°C		Hum.		58	9%
20		1 X 2 X						
1000.000 4900.00	8800.00	12700.00	16600.00	20500.00	24400.00 28	3300.00 322	00.00	40000.00 Mi
No. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	11630.00	42.56	6.36	48.92	74.00	-25.08	peak	
2 *	11630.00	30.35	6.36	36.71	54.00	-17.29	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mod		IEEE 802.		60)	Test Dat			3/2/1
Test Freque	ency		5MHz		Polarizati	on		zontal
Temp		2	3°C		Hum.		59	9%
30.0 dBuV/m								
20			7 (-7					
		1 X						
		2 X						
0.0								
1000.000 4900.00	8800.00	12700.00	16600.00	20500.00	24400.00	28300.00 322	00.00	40000.00 MH
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/n	n dB	Detector	Comment
1	11630.00	41.67	6.36	48.03	74.00	-25.97	peak	
2 *	11630.00	30.20	6.36	36.56	54.00	-17.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Report No.: BTE 1 COT 6 22 12 COOT
APPENDIX D	MAXIMUM E.I.R.P.

Project No.: 2212C001 Page 40 of 45 Report Version: R01

Test Mode	IEEE 802.11a	_Ant. 1			Tested Date	2023/1/1	6
Test Frequency		Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	result
5845	12.51	0.0178	16.23	0.0420	30.00	1.0000	Pass
5865	12.48	0.0177	16.20	0.0417	30.00	1.0000	Pass
5885	12.41	0.0174	16.13	0.0410	30.00	1.0000	Pass
5885	12.41	0.0174	16.13	0.0410	30.00	1.0000	Pass

Test Mode	IEEE 802.11a	_Ant. 2			Tested Date	2023/1/1	6
Test Frequency		Conducted	E.I.R.P.		E.I.R.P. Limit		Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	result
5845	13.02	0.0200	16.74	0.0472	30.00	1.0000	Pass
5865	12.94	0.0197	16.66	0.0463	30.00	1.0000	Pass
5885	12 52	0.0179	16 24	0.0421	30.00	1 0000	Pass

Test Mode	IEEE 802.11a	_Total			Tested Date	2023/1/16	
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit E.I.	R.P. Limit	

Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result
5845	15.78	0.0379	19.50	0.0892	30.00	1.0000	Pass
5865	15.73	0.0374	19.45	0.0880	30.00	1.0000	Pass
5885	15.48	0.0353	19.20	0.0831	30.00	1.0000	Pass

1							
Test Mode	IEEE 802.11a	c (VHT20) Ar	nt. 1		Tested Date	2023/1/10	6
		/_					
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	.
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5845	12.71	0.0187	16.43	0.0440	30.00	1.0000	Pass
5865	12.56	0.0180	16.28	0.0425	30.00	1.0000	Pass
5885	12.50	0.0178	16.22	0.0419	30.00	1.0000	Pass
			<u> </u>				
Test Mode	IEEE 802.11a	c (VHT20) Ar	nt. 2		Tested Date	2023/1/10	ô
		, ,=					
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	FIRPLimit	E.I.R.P. Limit	_
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5845	13.14	0.0206	16.86	0.0485	30.00	1.0000	Pass
5865	12.95	0.0197	16.67	0.0465	30.00	1.0000	Pass
5885	12.64	0.0184	16.36	0.0433	30.00	1.0000	Pass
					1		
Test Mode	IEEE 802.11a	c (VHT20) To	otal		Tested Date	2023/1/10	6
		, ,=					
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	FIRPLimit	E.I.R.P. Limit	
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5845	15.94	0.0393	19.66	0.0925	30.00	1.0000	Pass
5865	15.77	0.0378	19.49	0.0889	30.00	1.0000	Pass
5885	15.58	0.0361	19.30	0.0851	30.00	1.0000	Pass
	.0.00	0.000.	10.00	0.000	00.00		. 0.00
Test Mode	IEEE 802.11a	c (VHT40) Ar	nt. 1		Tested Date	2023/1/10	6
		(*********					
Test Frequency	Conducted	Conducted	FIRP	FIRP	FIRPLimit	FIRPLimit	_
Test Frequency (MHz)		Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)		E.I.R.P. Limit (W)	Result
(MHz)	Power (dBm)	Conducted Power (W) 0.0302	(dBm)	(W)	(dBm)	(W)	
-		Power (W)					Result Pass Pass
(MHz) 5835	Power (dBm) 14.80	Power (W) 0.0302	(dBm) 18.52	(W) 0.0711	(dBm) 30.00	(W) 1.0000	Pass
(MHz) 5835	Power (dBm) 14.80	Power (W) 0.0302	(dBm) 18.52	(W) 0.0711	(dBm) 30.00	(W) 1.0000	Pass
(MHz) 5835	Power (dBm) 14.80 15.11	Power (W) 0.0302 0.0324	(dBm) 18.52 18.83	(W) 0.0711	(dBm) 30.00	(W) 1.0000	Pass Pass
(MHz) 5835 5875	Power (dBm) 14.80	Power (W) 0.0302 0.0324	(dBm) 18.52 18.83	(W) 0.0711	(dBm) 30.00 30.00	(W) 1.0000 1.0000	Pass Pass
(MHz) 5835 5875 Test Mode	Power (dBm) 14.80 15.11 IEEE 802.11a	Power (W) 0.0302 0.0324 c (VHT40)_Ar	(dBm) 18.52 18.83	(W) 0.0711 0.0764	(dBm) 30.00 30.00	(W) 1.0000 1.0000	Pass Pass
(MHz) 5835 5875	Power (dBm) 14.80 15.11 IEEE 802.11a	Power (W) 0.0302 0.0324	(dBm) 18.52 18.83	(W) 0.0711	(dBm) 30.00 30.00	(W) 1.0000 1.0000	Pass Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz)	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm)	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W)	(dBm) 18.52 18.83 nt. 2	(W) 0.0711 0.0764 E.I.R.P. (W)	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm)	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W)	Pass Pass Result
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000	Pass Pass Result Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz)	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm)	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W)	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm)	(W) 0.0711 0.0764 E.I.R.P. (W)	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm)	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W)	Pass Pass Result
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000	Pass Pass Result Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98 15.20	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315 0.0331	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70 18.92	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000 1.0000	Pass Pass Result Pass Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835 5875	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315 0.0331	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70 18.92	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00 30.00	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000	Pass Pass Result Pass Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835 5875 Test Mode	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98 15.20 IEEE 802.11a	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315 0.0331	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70 18.92	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741 0.0780	(dBm) 30.00 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00 30.00 Tested Date	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000 1.0000	Pass Pass Result Pass Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835 5875 Test Mode Test Frequency	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98 15.20 IEEE 802.11a Conducted	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315 0.0331 c (VHT40)_Tc	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70 18.92	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741 0.0780	Tested Date E.I.R.P. Limit (dBm) 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00 Tested Date	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000 1.0000 2023/1/10	Pass Pass Result Pass Pass
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835 5875 Test Mode Test Frequency (MHz)	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98 15.20 IEEE 802.11a Conducted Power (dBm)	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315 0.0331 c (VHT40)_Tc Conducted Power (W)	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70 18.92 otal E.I.R.P. (dBm)	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741 0.0780 E.I.R.P. (W)	Tested Date E.I.R.P. Limit (dBm) 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00 Tested Date E.I.R.P. Limit (dBm)	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W)	Pass Pass Result Pass Pass Result
(MHz) 5835 5875 Test Mode Test Frequency (MHz) 5835 5875 Test Mode Test Frequency	Power (dBm) 14.80 15.11 IEEE 802.11a Conducted Power (dBm) 14.98 15.20 IEEE 802.11a Conducted	Power (W) 0.0302 0.0324 c (VHT40)_Ar Conducted Power (W) 0.0315 0.0331 c (VHT40)_Tc	(dBm) 18.52 18.83 nt. 2 E.I.R.P. (dBm) 18.70 18.92	(W) 0.0711 0.0764 E.I.R.P. (W) 0.0741 0.0780	Tested Date E.I.R.P. Limit (dBm) 30.00 Tested Date E.I.R.P. Limit (dBm) 30.00 Tested Date	(W) 1.0000 1.0000 2023/1/10 E.I.R.P. Limit (W) 1.0000 1.0000 2023/1/10	Pass Pass Result Pass Pass

Test Mode	IEEE 802.11a	c (VHT80)_Ar	nt. 1		Tested Date	2023/1/1	6
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit	E.I.R.P. Limit (W)	Result
5855	14.12	0.0258	17.84	0.0608	30.00	1.0000	Pass
					_		
Test Mode	IEEE 802.11a	c (VHT80)_Ar	nt. 2		Tested Date	2023/1/1	6
Test Frequency (MHz)	Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	(W)	Result
5855	14.61	0.0289	18.33	0.0681	30.00	1.0000	Pass
To a Chila	ILEEE 000 44	- () (LITOO) T-			To do I Dada	0000/4/4	2
Test Mode	IEEE 802.11a	c (VH180)_1c	otai		Tested Date	2023/1/1	0
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	Daguit
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5855	17.38	0.0547	21.10	0.1289	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	c (VHT160)_ <i>F</i>	Ant. 1		Tested Date	2023/1/1	6
	•				1		
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result
5815	13.12	0.0205	16.84	0.0483	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	c (VHT160)_/	Ant. 2		Tested Date	2023/1/1	6
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result
5815	13.54	0.0226	17.26	0.0532	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	c (VHT160)_1	Total		Tested Date	2023/1/1	6
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result
5815	16.35	0.0431	20.07	0.1015	30.00	1.0000	Pass

_		
	_	
	_	
		ı

Test Mode	IEEE 802.11a	x (HE20) Ant	:. 1		Tested Date	2023/1/1	6
		(-/=					
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	D 1
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5845	12.99	0.0199	16.71	0.0469	30.00	1.0000	Pass
5865	12.84	0.0192	16.56	0.0453	30.00	1.0000	Pass
5885	12.61	0.0182	16.33	0.0430	30.00	1.0000	Pass
					-		
Test Mode	IEEE 802.11a	x (HE20)_Ant	. 2		Tested Date	2023/1/1	6
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	D It
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5845	13.41	0.0219	17.13	0.0516	30.00	1.0000	Pass
5865	13.45	0.0221	17.17	0.0521	30.00	1.0000	Pass
5885	13.18	0.0208	16.90	0.0490	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	x (HE20)_Tota	al		Tested Date	2023/1/1	6
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	Dazult
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5845	16.22	0.0418	19.94	0.0985	30.00	1.0000	Pass
5865	16.17	0.0414	19.89	0.0974	30.00	1.0000	Pass
5885	15.91	0.0390	19.63	0.0919	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	x (HE40)_Ant	. 1		Tested Date	2023/1/1	6
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5835	15.09	0.0323	18.81	0.0760	30.00	1.0000	Pass
5875	15.29	0.0338	19.01	0.0796	30.00	1.0000	Pass
					1		1
Test Mode	IEEE 802.11a	x (HE40)_Ant	. 2		Tested Date	2023/1/1	6
Test Frequency		Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	
5835	15.04	0.0319	18.76	0.0752	30.00	1.0000	Pass
5875	14.77	0.0300	18.49	0.0706	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	x (HE40)_Tota	al		Tested Date	2023/1/1	6
Test Frequency		Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	
5835	18.08	0.0642	21.80	0.1512	30.00	1.0000	Pass
5875	18.05	0.0638	21.77	0.1502	30.00	1.0000	Pass

Test Mode	IEEE 802.11a	x (HE80)_Ant	. 1		Tested Date	2023/1/1	6
					<u> </u>		
Test Frequency		Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result
(MHz) 5855	Power (dBm) 14.32	Power (W) 0.0270	(dBm) 18.04	(W) 0.0637	(dBm) 30.00	(W) 1.0000	Pass
0000	14.02	0.0210	10.04	0.0007	00.00	1.0000	1 433
Test Mode	IEEE 802.11a	x (HE80)_Ant	. 2		Tested Date	2023/1/1	6
						•	
Test Frequency		Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result
(MHz)	Power (dBm)		(dBm)	(W)	(dBm)	(W)	
5855	14.63	0.0290	18.35	0.0684	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	x (HE80)_Tota	al		Tested Date	2023/1/1	6
T	101	0	ELDD	ELDD	Terb b 12.22		
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	(dBm)	E.I.R.P. Limit (W)	Result
5855	17.49	0.0561	21.21	0.1321	30.00	1.0000	Pass
0000	11110	0.000		0.1021	00.00	110000	. 466
Test Mode	IEEE 802.11a	x (HE160)_Ar	nt. 1		Tested Date	2023/1/1	6
	•						
Test Frequency		Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result
(MHz)	Power (dBm)	\ /	(dBm)	(W)	(dBm)	(W)	
5815	13.09	0.0204	16.81	0.0480	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	x (HE160)_Ar	nt. 2		Tested Date	2023/1/1	6
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	F I R P I imit	E.I.R.P. Limit	
(MHz)	Power (dBm)		(dBm)	(W)	(dBm)	(W)	Result
5815	13.61	0.0230	17.33	0.0541	30.00	1.0000	Pass
Test Mode	IEEE 802.11a	x (HE160) To	otal		Tested Date	2023/1/1	 6
		(/			2.00		
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	Desult
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5815	16.37	0.0433	20.09	0.1020	30.00	1.0000	Pass

End of Test Report

Project No.: 2212C001 Page 45 of 45 Report Version: R01