

FCC Radio Test Report

FCC ID: RWO-RZ040379

This report concerns: Original Grant

Project No.	:	2111C002
Equipment	:	Wireless Headset
Brand Name	:	RAZER
Test Model	:	RZ04-0379
Series Model	:	RZ04-0379XXXX-XXXX (X can be 0-9 or A-Z)
Applicant	:	Razer Inc.
Address	:	9 Pasteur, Suite 100, Irvine, CA92618, USA
Manufacturer	:	Razer (Asia-Pacific) Pte.,Ltd.
Address	:	1 one-north Crescent, #02-01 Singapore 138538
Factory	:	RAZER TECHNOLOGY AND DEVELOPMENT (SHENZHEN) CO., LTD
Address	:	East Wing, 3rd Floor, Block 2, Phase 1 of Vision Shenzhen Business
		Park Keji South Road, Hi-Tech Industrial Park, Shenzhen 518057, China
Date of Receipt	:	Nov. 01, 2021
Date of Test	:	Nov. 02, 2021 ~ Nov. 22, 2021
Issued Date	:	Dec. 09, 2021
Report Version	:	R00
Test Sample	:	Sample No.: DG2021110192 for conducted, DG2021110191 for radiated.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Van cent. Tan

Prepared by : Vincent Tan

Welly zhou

ACCREDITED TESTING CERT #5123.02

Approved by : Welly Zhou

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
	-
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	11
2.3 PARAMETERS OF TEST SOFTWARE	11
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.5 SUPPORT UNITS	13
3 . AC POWER LINE CONDUCTED EMISSIONS	14
3.1 LIMIT	14
3.2 TEST PROCEDURE	14
3.3 DEVIATION FROM TEST STANDARD	14
3.4 TEST SETUP	15
3.5 EUT OPERATING CONDITIONS	15
3.6 TEST RESULTS	15
4. RADIATED EMISSIONS	16
4.1 LIMIT	16
4.2 TEST PROCEDURE	17
4.3 DEVIATION FROM TEST STANDARD	18
4.4 TEST SETUP	18
4.5 EUT OPERATING CONDITIONS	19
4.6 TEST RESULT - 9 KHZ TO 30 MHZ	19
4.7 TEST RESULT - 30 MHZ TO 1000 MHZ	19
4.8 TEST RESULT - ABOVE 1000 MHZ	19
5. BANDWIDTH	20
5.1 LIMIT	20
5.2 TEST PROCEDURE	20
5.3 DEVIATION FROM STANDARD	20
5.4 TEST SETUP	20
5.5 EUT OPERATION CONDITIONS	20

Table of Contents	Page
5.6 TEST RESULTS	20
6 . MAXIMUM OUTPUT POWER	21
6.1 LIMIT	21
6.2 TEST PROCEDURE	21
6.3 DEVIATION FROM STANDARD	21
6.4 TEST SETUP	21
6.5 EUT OPERATION CONDITIONS	21
6.6 TEST RESULTS	21
7 . CONDUCTED SPURIOUS EMISSION	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 DEVIATION FROM STANDARD	22
7.4 TEST SETUP	22
7.5 EUT OPERATION CONDITIONS	22
7.6 TEST RESULTS	22
8 . POWER SPECTRAL DENSITY	23
8.1 LIMIT	23
8.2 TEST PROCEDURE	23
8.3 DEVIATION FROM STANDARD	23
8.4 TEST SETUP	23
8.5 EUT OPERATION CONDITIONS	23
8.6 TEST RESULTS	23
9 . MEASUREMENT INSTRUMENTS LIST	24
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	26
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	29
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	34
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	37
APPENDIX E - BANDWIDTH	62
APPENDIX F - MAXIMUM OUTPUT POWER	65
APPENDIX G - CONDUCTED SPURIOUS EMISSION	68
APPENDIX H - POWER SPECTRAL DENSITY	71

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Dec. 09, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247(a)(2)	Bandwidth	APPENDIX E	PASS		
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS		
15.247(d)	Conducted Spurious Emission	APPENDIX G	PASS		
15.247(e)	Power Spectral Density	APPENDIX H	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

(1) "N/A" denotes test is not applicable to this device.

(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China.

BTL's Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions Measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
DG-CB01	CISPR	9kHz ~ 30MHz	-	2.36
	CISPR	30MHz ~ 200MHz	V	4.36
		30MHz ~ 200MHz	Н	3.32
		200MHz ~ 1,000MHz	V	4.08
DG-CB03		200MHz ~ 1,000MHz	Н	3.96
		1GHz ~ 6GHz	-	3.80
		6GHz ~ 18GHz	-	4.82
		18GHz ~ 26.5GHz	-	3.62
		26.5GHz ~ 40GHz	-	4.00

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	23°C	65%	AC 120V/60Hz	Aries Tang
Radiated Emissions-9 kHz to 30 MHz	25°C	55%	DC 5V	Sparrow Liu
Radiated Emissions-30 MHz to 1000 MHz	22°C	49%	DC 5V	Kwok Guo
Radiated Emissions-Above 1000 MHz	23°C	39%	DC 5V	Kwok Guo Chen Mo
Bandwidth	24°C	46%	DC 5V	King Huang
Maximum Output Power	24°C	46%	DC 5V	King Huang
Conducted Spurious Emission	24°C	46%	DC 5V	King Huang
Power Spectral Density	24°C	46%	DC 5V	King Huang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Headset
Brand Name	RAZER
Test Model	RZ04-0379
Series Model	RZ04-0379XXXX-XXXX (X can be 0-9 or A-Z)
Model Difference(s)	The system model number is RZ04-0379XXXX-XXXX, this system consists of Wireless Headset (Model: RZ04-0379) and USB Wireless Transceiver (Model: RC30-0378), X can be 0-9 or A-Z.
Power Source	1# Supplied from PC USB port. 2# Supplied from battery. Model: 553450PN2
Power Rating	1# DC 5V 2# DC 3.7V 1200mAh/4.44Wh
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK
Bit Rate of Transmitter	1Mbps, 2Mbps
Max. Peak Output Power	2Mbps: 4.85 dBm (0.0031 W)
Max. Average Output Power	2Mbps: 4.58 dBm (0.0029 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Innovation	N/A	РСВ	N/A	4.18

Note: The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX Mode_1Mbps Channel 00/19/39	
Mode 2	TX Mode_2Mbps Channel 00/19/39	
Mode 3	TX Mode_2Mbps Channel 39	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test		
Final Test Mode Description		
Mode 3	TX Mode_2Mbps Channel 39	

Radiated emissions test - Below 1GHz		
Final Test Mode	Description	
Mode 3	TX Mode_2Mbps Channel 39	

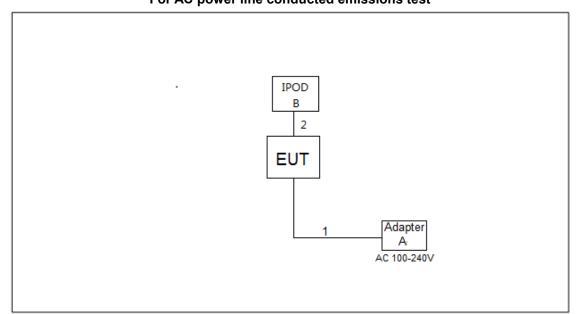
Radiated emissions test - Above 1GHz		
Final Test Mode Description		
Mode 1	TX Mode_1Mbps Channel 00/19/39	
Mode 2	TX Mode_2Mbps Channel 00/19/39	

Conducted test		
Final Test Mode Description		
Mode 1	TX Mode_1Mbps Channel 00/19/39	
Mode 2	TX Mode_2Mbps Channel 00/19/39	

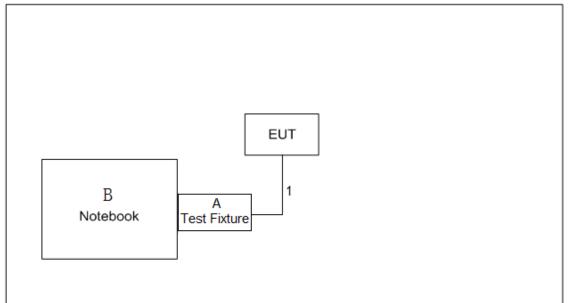
Note:

- (1) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (2) For AC power line conducted emissions and radiated emissions below 1 GHz test, the 2Mbps Channel 39 is found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	AV	VRDLABV2(1.2.	9.7)
Frequency (MHz)	2402	2440	2480
1Mbps	0x05	0x05	0x05
2Mbps	0x05	0x05	0x05



2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

For Radiated emissions test

2.5 SUPPORT UNITS

	For AC power line conducted emissions test					
Item	Equipment	Brand	Brand Model No.			
А	Adapter	HUAWEI	HUAWEI N/A N/A			
В	IPOD	APPLE	A1574	CCQTJ1N3GGK8		
ltem	Cable Type	Cable Type Shielded Type Ferrite Core Length		Length		
1	USB Cable	NO	NO	1m		
2	Audio Cable	YES	NO	1.2m		

Fc	or Radiated	emissions	te	st

Item	Equipment	Brand	Model No.	Series No.	Note
А	Test Fixture	N/A	N/A	N/A	-
В	D Natabaak	Lenovo	Pro 13	N/A	9 kHz to 30 MHz
В	Notebook	Honor	14SER5 3500	N/A	Above 30 MHz

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	Data Cable	NO	NO	0.2m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (d	BμV)
Frequency of Emission (MHZ)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

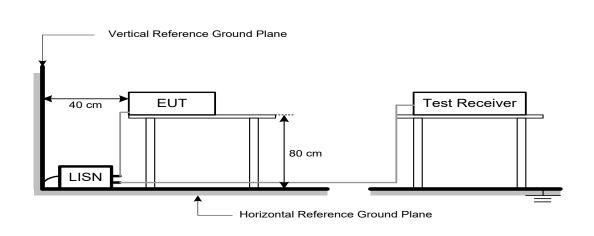
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:


0	
Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of [Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

	(dBuV/m at 3 m)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Note:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

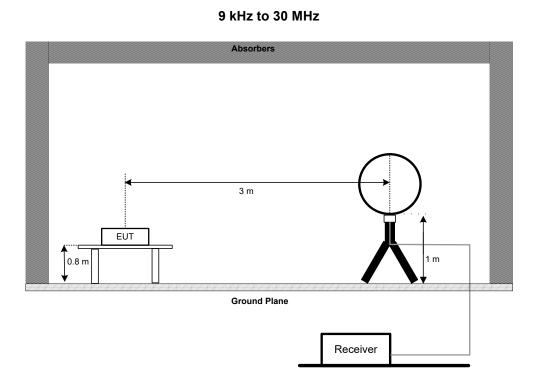
4.2 TEST PROCEDURE

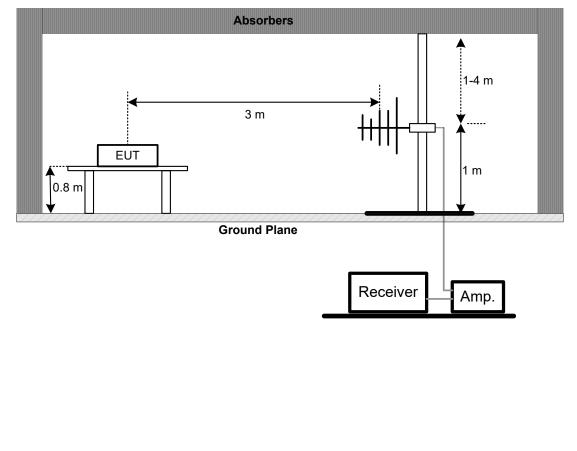
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

Spectrum ParametersSettingStart ~ Stop Frequency9 kHz~150 kHz for RBW 200 HzStart ~ Stop Frequency0.15 MHz~30 MHz for RBW 9 kHzStart ~ Stop Frequency30 MHz~1000 MHz for RBW 100 kHz

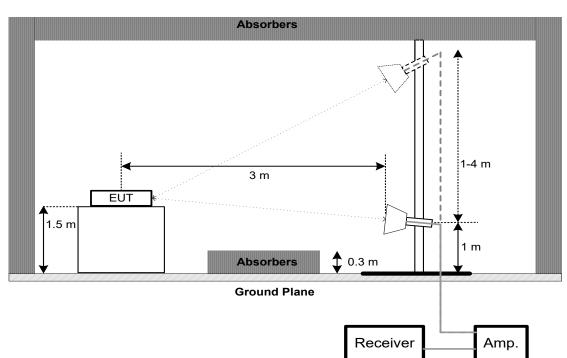
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value


Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULT - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(2)	6 dB Bandwidth	>= 500 kHz
	99% Emission Bandwidth	-

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting	
Span Frequency	> Measurement Bandwidth	
RBW	100 kHz	
VBW	300 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

For 99% Emission Bandwidth:

Spectrum Parameters	Setting
Span Frequency	Between 1.5 times and 5.0 times the OBW
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 watt or 30.00 dBm

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	≥ 3×RBW
RBW	3 MHz
VBW	3 MHz
Detector	Peak/RMS
Trace	Max Hold
Sweep Time	Auto

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSION

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

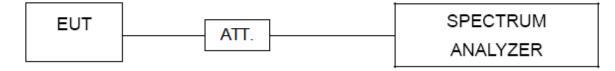
8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.


b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting	
Span Frequency	2 MHz (1 Mbps) / 4 MHz (2 Mbps)	
RBW	3 kHz	
VBW	10 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022			
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022			
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022			
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022			
5	Measurement Software Farad		EZ-EMC Ver.NB-03A1-01	N/A	N/A			
6	Cable	N/A	RG223	12m	Mar. 09, 2022			
7	643 Shield Room	Shield Room ETS		N/A	N/A			

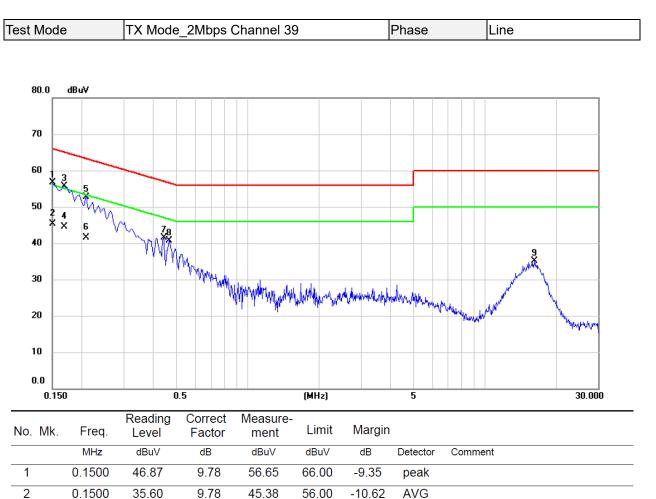
	Radiated Emissions - 9 kHz to 30 MHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	MXE EMI Receiver	Keysight	N9038A	MY56400091	Feb. 27, 2022			
2*	2* Active Loop Antenna R		HFH2-Z2	830749/020	Aug. 23, 2024			
3	Cable	N/A	RG 213/U(9kHz~1GHz)	N/A	May 27, 2022			
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
5	966 Chamber Room ETS		9*6*6	N/A	Jul. 17, 2022			

	Radiated Emissions - 30 MHz to 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Antenna	Schwarzbeck VULB9160		9160-3232	Mar. 15, 2022			
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022			
3	Cable	emci	LMR-400	N/A	Nov. 30, 2022			
4	Controller	СТ	SC100	N/A	N/A			
5	Controller	MF	MF-7802	MF780208416	N/A			
6	Receiver	Agilent	gilent N9038A MY52130039		Mar. 19, 2022			
7	Measurement Software	nt Farad EZ-EMC N/A		N/A	N/A			
8	966 Chamber Room	RM	9*6*6	N/A	Jul. 24, 2022			

Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer Type No. Serial No.		Calibrated until			
1	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Apr. 21, 2022		
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022		
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022		
4	Controller	СТ	SC100	N/A	N/A		
5	Controller	MF	MF-7802	MF780208416	N/A		
6	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022		
7	EXA Spectrum Analyzer	Keysight	N9010A	MY56480488	Feb. 28, 2022		
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330 -K	619413	Jul. 16, 2022		
9	Cable	N/A	A81-SMAMSMAM- 12.5M	N/A	Oct. 15, 2022		
10	Cable	Talent microwave	A40-2.92M2.92M-2. 5M	N/A	Nov. 30, 2021		
11	Filter	STI	STI15-9912	N/A	Jul. 10, 2022		
12	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
13	966 Chamber Room RM		9*6*6	N/A	Jul. 24, 2022		

Bandwidth & Maximum Output Power & Power Spectral Density & Conducted Spurious Emission								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022			
2	2 Attenuator WOKEN 6SM3502 VAS1214NL Feb. 07, 2022							
3	RF Cable	Tongkaichuan	N/A	N/A	N/A			
4	DC Block	Mini	N/A	N/A	N/A			

Remark "N/A" denotes no model name, serial no. or calibration specified.


"*" calibration period of equipment list is three year.

Except * item, all calibration period of equipment list is one year.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

REMARKS:

3 *

4

5

6

7

8

9

0.1680

0.1680

0.2085

0.2085

0.4425

0.4650

16.2150

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

45.95

34.70

42.98

31.60

31.65

30.87

24.44

55.74

44.49

52.80

41.42

41.51

40.73

35.15

9.79

9.79

9.82

9.82

9.86

9.86

10.71

65.06

55.06

63.26

53.26

57.01

56.60

60.00

-9.32

-10.57

-10.46

-11.84

-15.50

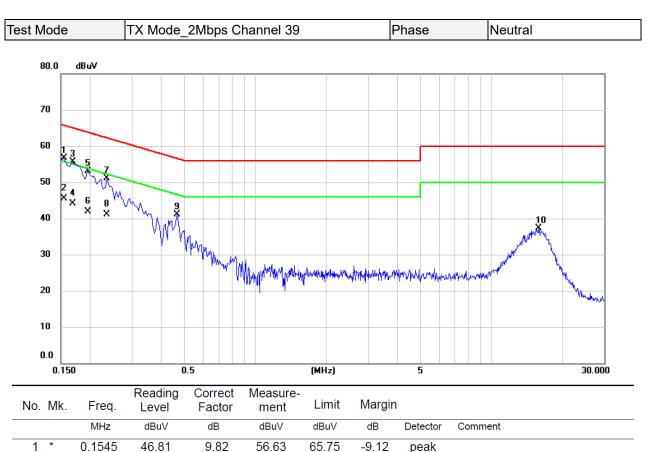
-15.87

-24.85

peak

AVG

peak


AVG

peak

peak

peak

REMARKS:	

2

3

4

5

6 7

8

9

10

0.1545

0.1680

0.1680

0.1950

0.1950

0.2355

0.2355

0.4650

15.8055

35.60

45.78

34.20

43.17

32.10

41.16

31.20

31.12

26.48

9.82

9.84

9.84

9.85

9.85

9.86

9.86

9.94

10.78

45.42

55.62

44.04

53.02

41.95

51.02

41.06

41.06

37.26

55.75

65.06

55.06

63.82

53.82

62.25

52.25

56.60

60.00

-10.33

-9.44

-11.02

-10.80

-11.87

-11.23

-11.19

-15.54

-22.74

AVG

peak

AVG

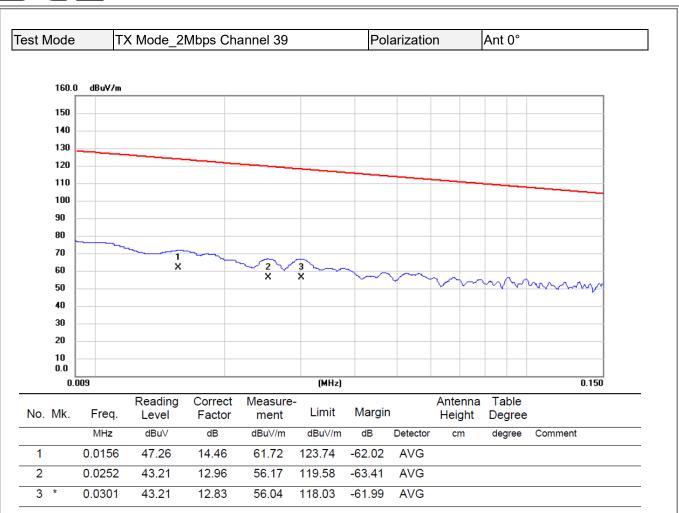
peak

AVG

peak

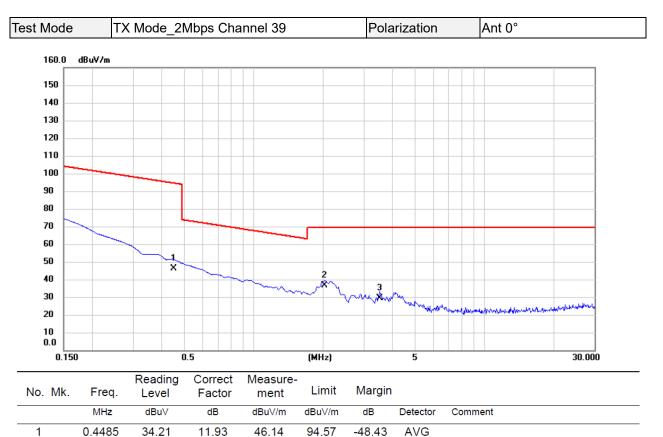
AVG

peak


peak

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ



REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

69.54

69.54

36.45

29.25

-33.09

-40.29

QP

QP

REMARKS:

2

3

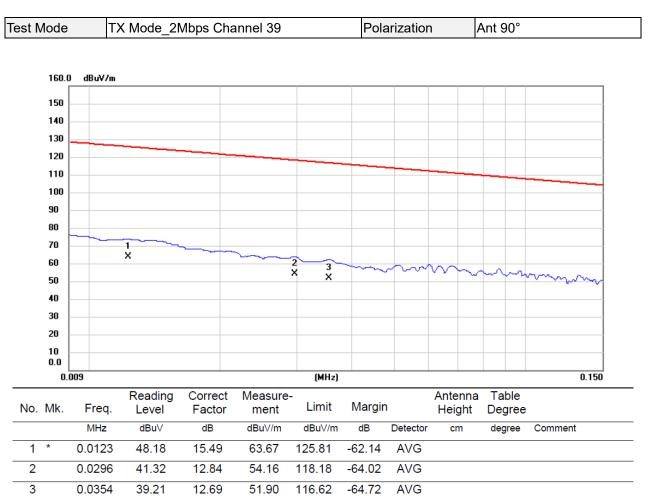
*

2.0305

3.5231

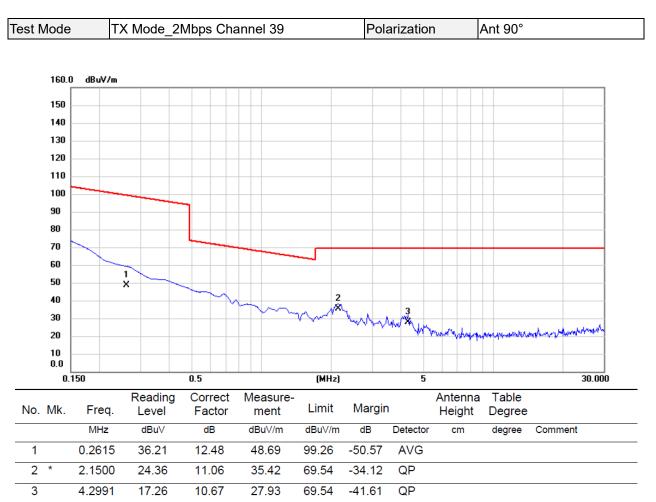
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

25.32


18.65

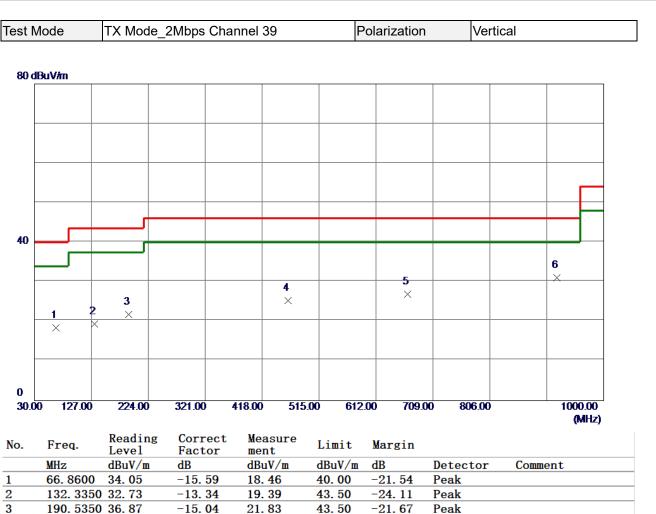
11.13

10.60



REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

46.00

46.00

46.00

-20.72

-19.16

-15.03

Peak

Peak

Peak

REMARKS:

4

5

6 *

462. 6200 32. 68

665.8350 30.61

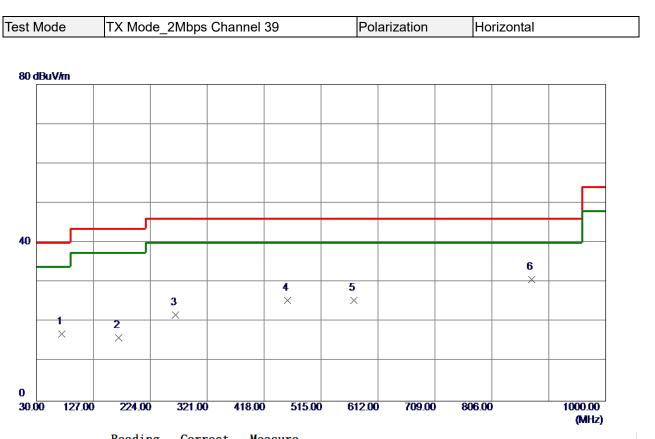
920. 4600 30. 18

(1) Measurement Value = Reading Level + Correct Factor.

-7.40

-3.77

0.79

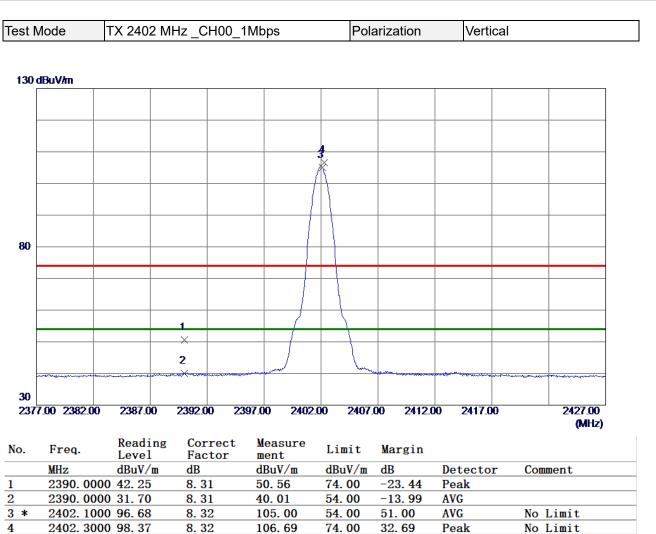

25.28

26.84

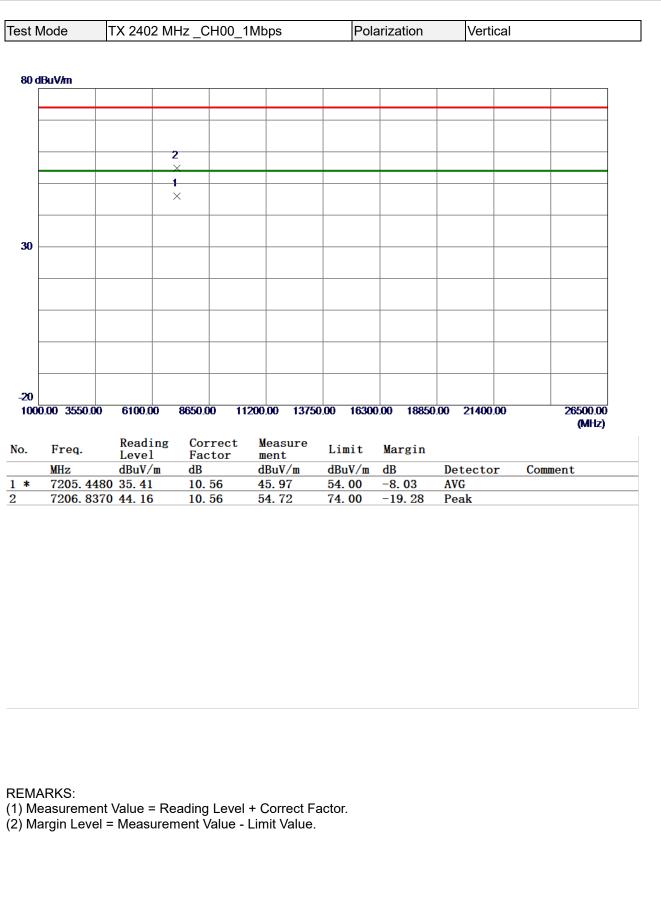
30.97

(2) Margin Level = Measurement Value - Limit Value.

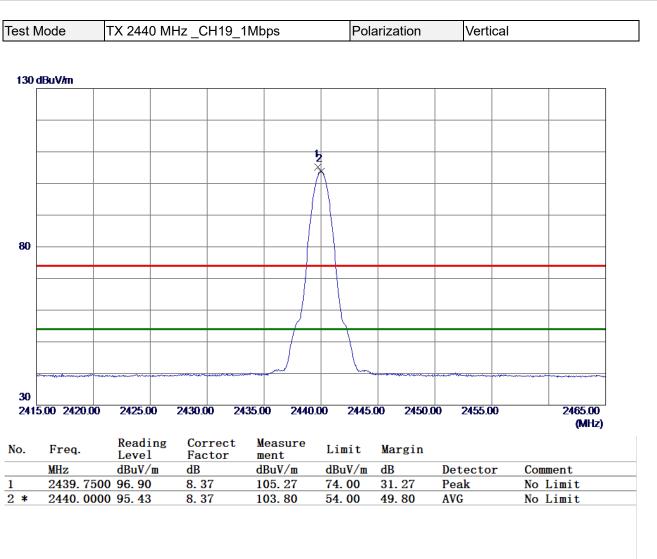
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	72.6800	33.85	-16.82	17.03	40.00	-22. 9 7	Peak	
2	170. 1649	28.68	-12.67	16.01	43. 50	-27. 49	Peak	
3	266. 6800	34.21	-12. 40	21.81	46.00	-24. 19	Peak	
4	457.7700	32.97	-7.48	25.49	46.00	-20. 51	Peak	
5	570.7750	31.10	-5.62	25.48	46.00	-20. 52	Peak	
6 *	873. 9000	30. 98	-0. 33	30.65	46.00	-15.35	Peak	


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

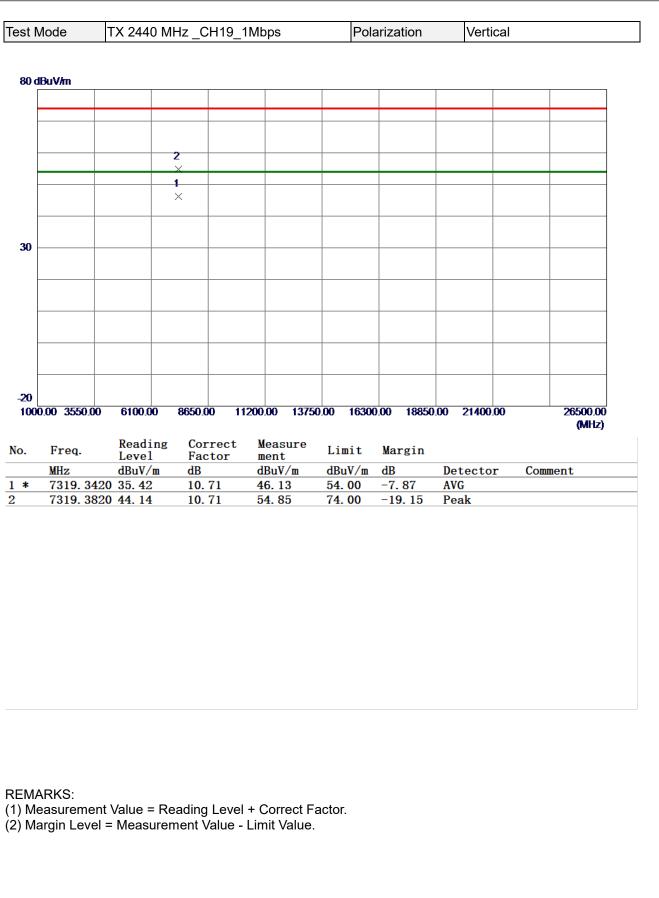

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

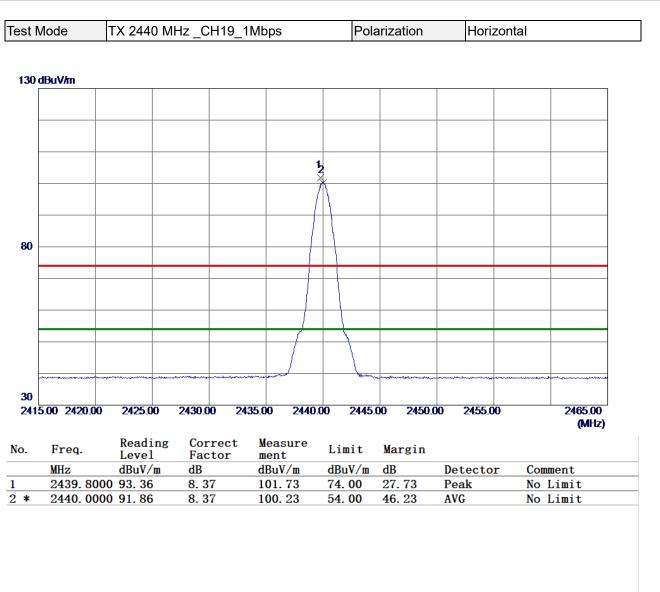

Test N	/lode	TX 2402 M	Hz_CH00	_1Mb	ps		Pola	arization	Horizo	ntal	
130	dBuV/m										
						+					
						4					
						∦					
						$ \rangle$					
						H					
80											
						+					
						+					
			×								
			2								
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			+		w		~~~~~~	
30											
237	7.00 2382.0	0 2387.00	2392.00	2397.0	) 2402	2.00	2407.	00 2412	00 2417.00		27.00 (MHz)
	_	Reading	Correc	t. Me	easure	_					(
No.	Freq.	Level	Factor	ше	ent		.imit	Margin			
1	MHz	dBuV/m	dB		BuV/m		BuV/m	dB	Detector	Comment	
1 2		000 40. 58 000 30. 78	8. 31 8. 31		8.89 0.09		4.00 4.00	-25. 11 -14. 91	Peak AVG		
2 3 *		00 92.74	8.32		1.06		4. 00	47.06	AVG	No Limi	
4	2402.30	00 94.18	8.32	10	2. 50	7	4. 00	28. 50	Peak	No Limi	t

- Measurement Value = Reading Level + Correct Factor.
  Margin Level = Measurement Value Limit Value.




Set Mode      TX 2402 MHz_CH00_1Mbps      Polarization      Horizontal        80 dBuV/m      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1	
1      1        2	
1      1        2	
30      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×	
X      X      X      X        30      X      X      X      X      X        30	
X    X    X      2    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      20    ×    ×      30    ×    ×      30    ×    ×      30    ×    ×      20    ×    ×    ×      30	
30    2    ×	
30    X    X    X      20    X    X    X      1000.00    3550.00    6100.00    8650.00    11200.00      1000.00    3550.00    6100.00    8650.00    11200.00    16300.00    18850.00    21400.00      0.    Freq.    Reading Level    Correct Factor ment    Limit Margin    Margin      MHz    dBuV/m    dB    dBuV/m    dB    Detector Comm      7205. 2880    41. 25    10. 56    51. 81    74. 00    -22. 19    Peak	
20      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3	
20      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3      3	
Non-order      Reading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dB      V/m      dB      Detector      Common        7205.2880      41.25      10.56      51.81      74.00      -22.19      Peak	
MHz      dBuV/m      dB      dBuV/m      dB      Duv/m      Duv/m      dB      Duv/m      dB      Duv/m      dB      Duv/m      Duv/m <t< td=""><td></td></t<>	
Non-optical      Reading      Correct      Measure      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dB      Duv/m      dB      Detector      Common        7205.2880      41.25      10.56      51.81      74.00      -22.19      Peak	
MHz      dBuV/m      dB      dBuV/m      dB      Duv/m      Duv/m      dB      Duv/m      dB      Duv/m      dB      Duv/m      Duv/m <t< td=""><td></td></t<>	
MHz      dBuV/m      dB      dBuV/m      dB      Duv/m      dB      Duv/m      dB      Detector      Common formation        7205.2880      41.25      10.56      51.81      74.00      -22.19      Peak	
MHz      dBuV/m      dB      dBuV/m      dB      Duv/m      Duv/m      dB      Duv/m      dB      Duv/m      dB      Duv/m      Duv/m <t< td=""><td></td></t<>	
MHz      dBuV/m      dB      dBuV/m      dB      Duv/m      dB      Duv/m      dB      Detector      Common formation        7205.2880      41.25      10.56      51.81      74.00      -22.19      Peak	
MHz      Level      Factor      ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comm        7205.2880      41.25      10.56      51.81      74.00      -22.19      Peak	26500.00
S.      Freq.      Level      Factor      ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comm        7205.2880      41.25      10.56      51.81      74.00      -22.19      Peak	(MHz)
7205. 2880 41. 25 10. 56 51. 81 74. 00 -22. 19 Peak	
	nent



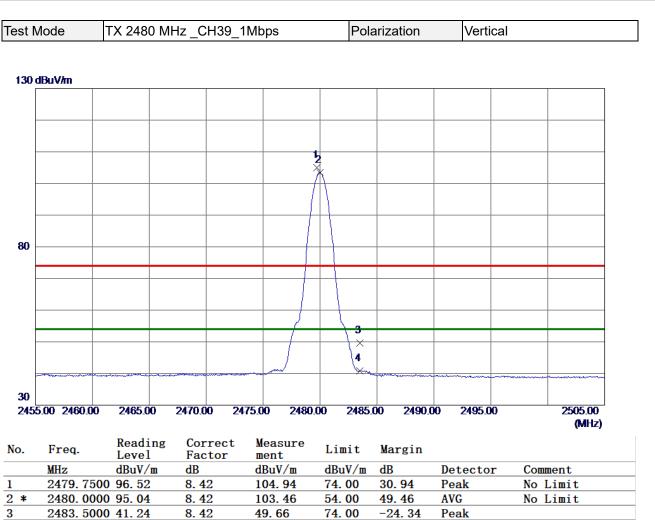



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.










- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



80 dBuV/m	
2      2      1        1      ×      ×        1      ×      ×        30      ×      ×        1      ×      ×        1000.00 3550.00      6100.00      8650.00      11200.00      13750.00      16300.00      18850.00      21400.00        0.      Freq.      Reading      Correct      Measure ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dB      Detector      Comment	
30      1        30      1        20      1        20      1        1000.00 3550.00      6100.00        8650.00      11200.00        1000.00      3550.00        6100.00      8650.00        11200.00      13750.00        16300.00      18850.00        21400.00        20        1000.00        3550.00        6100.00        8650.00        11200.00        13750.00        16300.00        16300.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00        1000.00	
30      X      Image: Content Measure Limit Margin        20	
30      X      Image: Content Measure Limit Margin        20	
30    1    ×	
30    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×	
30	
20    1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    1000.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00<	
20    1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    1000.00    3550.00    6100.00    86550.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    1000.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    1000.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00      20    11200.00    13750.00    16300.00    18850.00    21400.00	
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Commen	
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Commen	
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	
. Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Commen	26500.00
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comme	(MHz)
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comme	
	nt
7320. 6980 41. 63 10. 71 52. 34 74. 00 -21. 66 Peak	





-13.28

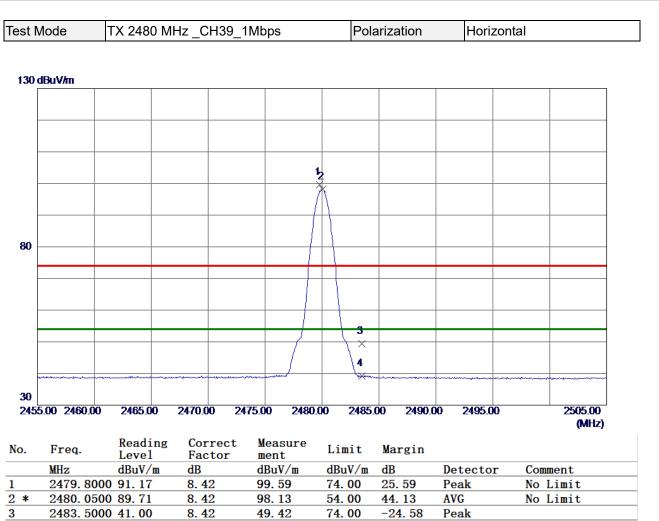
AVG

REMARKS:

4

2483. 5000 32. 30

(1) Measurement Value = Reading Level + Correct Factor.


8.42

40.72



80 dBuV/n	Image: select
30  2	
	Image: select
30 	Image: select
X  X    1  X    30  X	
X  I    1  X    30  X	Image: select
30 -30 -30 -30 -30 -30 -30 -30 -	
30 -30 -30 -30 -30 -30 -30 -30 -	
-20	
-20	
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 188	850.00 21400.00 26500.0
	(MHz
o. Freq. Reading Correct Measure Limit Margin Level Factor ment Limit Margin	n
MHz dBuV/m dB dBuV/m dBuV/m dB	Detector Comment
* 7439.2970 35.74 10.86 46.60 54.00 -7.40 7440.7570 44.83 10.86 55.69 74.00 -18.31	





-14.87

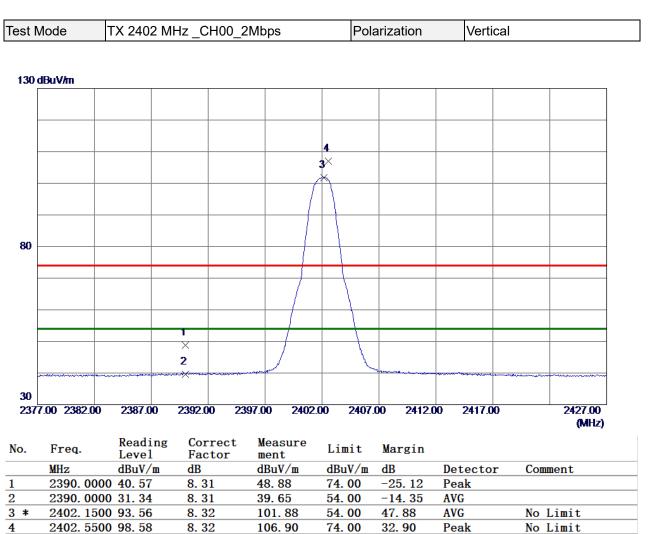
AVG

**REMARKS**:

4

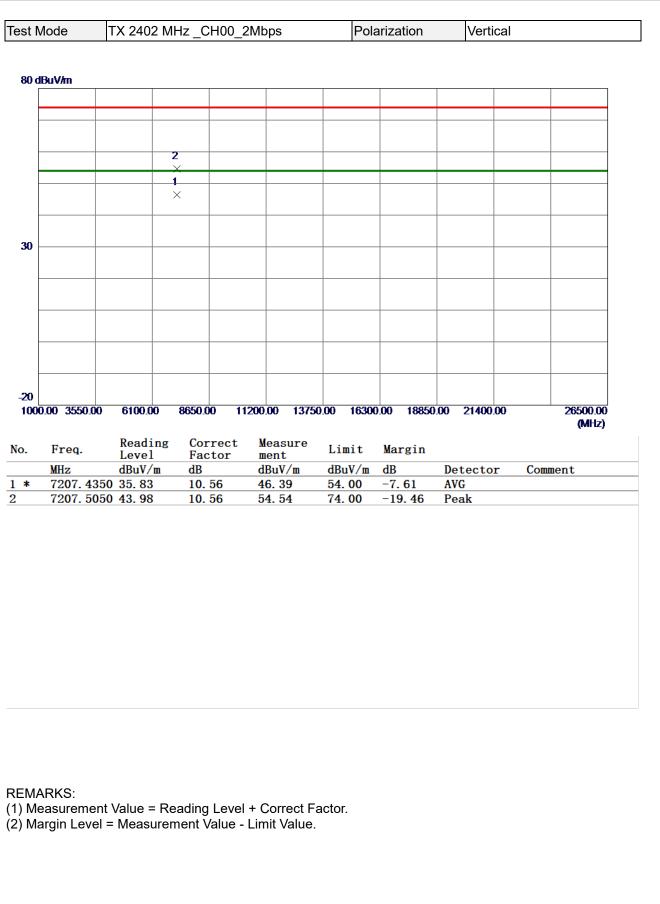
2483. 5000 30. 71

(1) Measurement Value = Reading Level + Correct Factor.

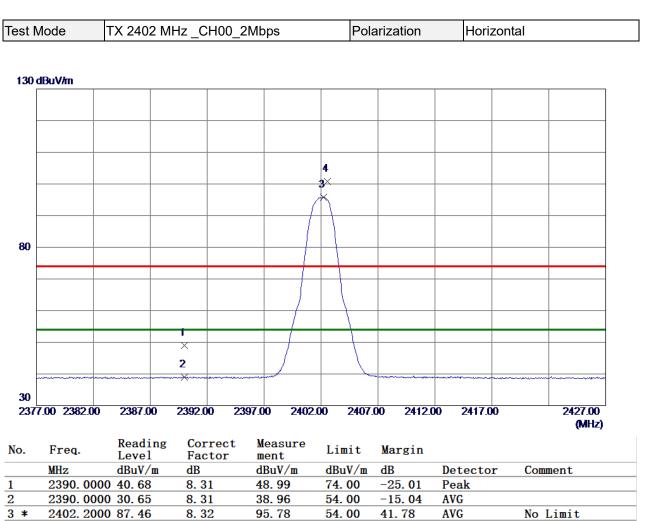

8.42

39.13




30 BuV/m      Image: Solution in the second secon	
$\begin{tabular}{ c c c c c c } \hline \hline & & & & & & & & & & & & & & & & & $	
30	
100    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1	
0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00	26500.00 (MHz)
Free Reading Correct Measure Limit Margin	(,
Fleq. Level Factor ment Limit Margin	
MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Con        7439.3150      32.06      10.86      42.92      54.00      -11.08      AVG      AVG	mment
7439. 3700 41. 95 10. 86 52. 81 74. 00 -21. 19 Peak	






- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.









4

2402. 5500 92. 48

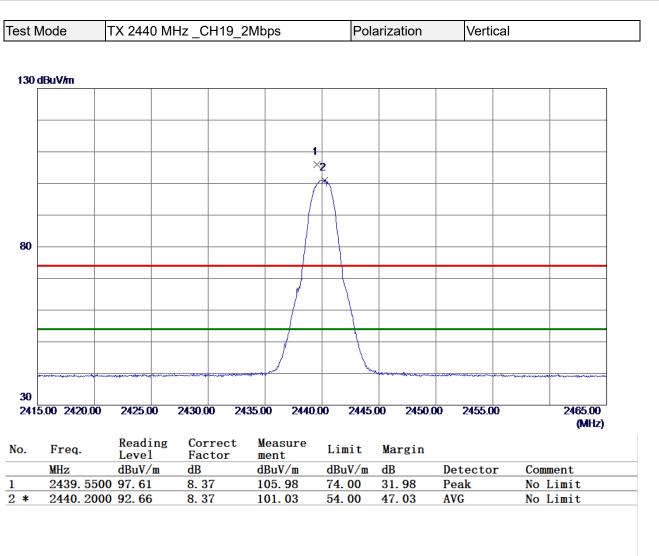
(1) Measurement Value = Reading Level + Correct Factor.

8.32

100.80

7**4**. 00

26.80


Peak

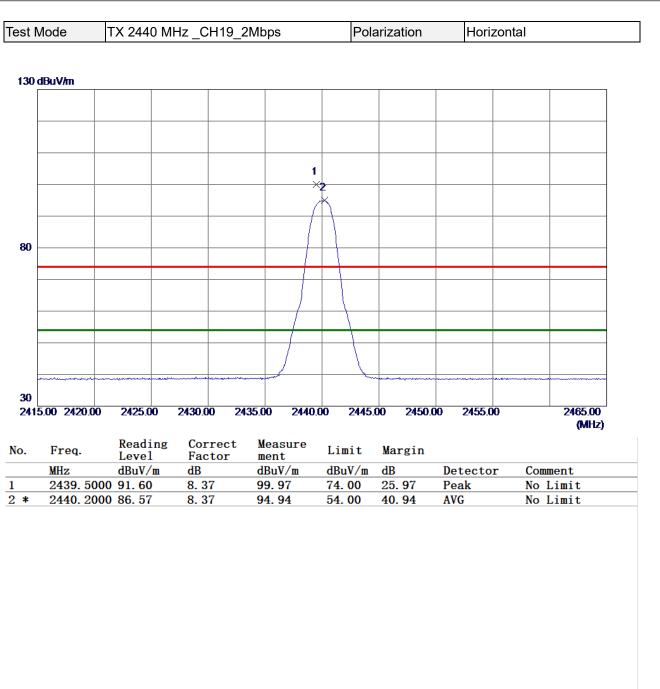
No Limit



Fest N	Node	TX 2402	MHz _C	H00_2N	/lbps	Pola	arization	Horizo	ontal	
80 c	lBuV/m									
			1							
			× 2							
			×							
30										
-20 100	0.00 3550.00	6100.00	8650.0	0 1120	00.00 13750	0.00 16300	0.00 18850	.00 21400.0	0	26500.00
										(MHz)
lo.	Freq.	Readin Level	Fac		Measure ment	Limit	Margin			
	MHz 7204.570	dBuV/m 00 42.56	dB 10.		dBuV/m 53.12	dBuV/m 74.00	dB -20.88	Detector Peak	Сош	ient
*	7207.460	00 33.92	10.	56	44. 48	54.00	- <b>9</b> . 52	AVG		





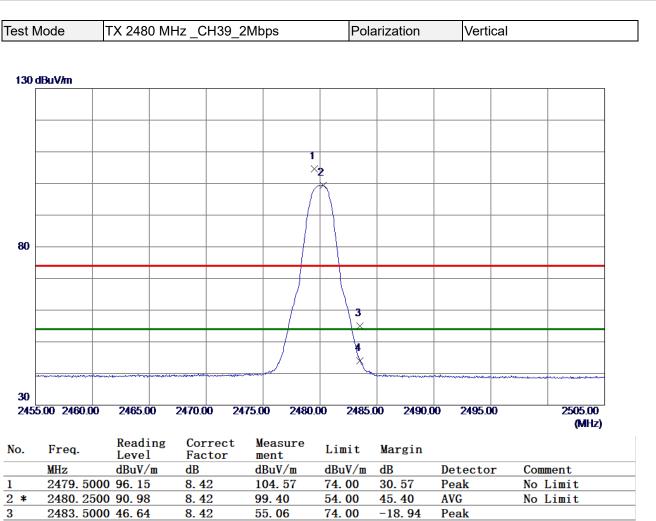

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.






- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	est Mode	TX 2440 M	IHz_CH19	_2Mbps	Pol	arization	Horizor	ntal
2      .      A      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .	90 dBut/im							
X      I      X        1      X      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I      I        X      I      I      I      I      I        X      I      I      I      I      I      I        X      I      I      I      I      I      I								
X      I      X        1      X      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I      I        X      I      I      I      I      I        X      I      I      I      I      I      I        X      I      I      I      I      I      I								
X      I      X        1      X      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I        X      I      I      I      I      I        X      I      I      I      I      I        X      I      I      I      I      I      I        X      I      I      I      I      I      I								
1      ×      Image: Contract of the contrecont of the contrecont of the contrecont of the cont								
30								
20      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .			×					
20      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .								
OOD.00      3550.00      6100.00      8650.00      11200.00      13750.00      16300.00      18850.00      21400.00      26500.00      (MHz)        .      Freq.      Reading Level      Correct Factor      Measure ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        *      7321.4830      32.52      10.71      43.23      54.00      -10.77      AVG	0							
MHz      Buv/m      B								
MHz      Buv/m      B								
MHz      Buv/m      B								
MHz      Buv/m      B								
MHz      Buv/m      B								
MHz      Buv/m      B	20							
Freq.      Reading Level      Correct Factor      Measure ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        *      7321.4830      32.52      10.71      43.23      54.00      -10.77      AVG		00 6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	0.00 21400.00	
MHz      Level      Factor      ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        *      7321.4830      32.52      10.71      43.23      54.00      -10.77      AVG		Reading	Correct	t Measure	<b>.</b>	. ·		(MILZ)
* 7321. 4830 32. 52 10. 71 43. 23 54. 00 -10. 77 AVG	. Freq.		Factor		Limit	Margin		
7321. 5500 41. 71 10. 71 52. 42 74. 00 -21. 58 Peak					dDuV/m		Detector	Commont
	MHz	dBuV/m	dB	dBuV/m		dB		Comment
	MHz * 7321.4	dBuV/m 830 32.52	dB 10. 71	dBuV/m 43.23	54.00	dB −10. 77	AVG	Comment





-10.08

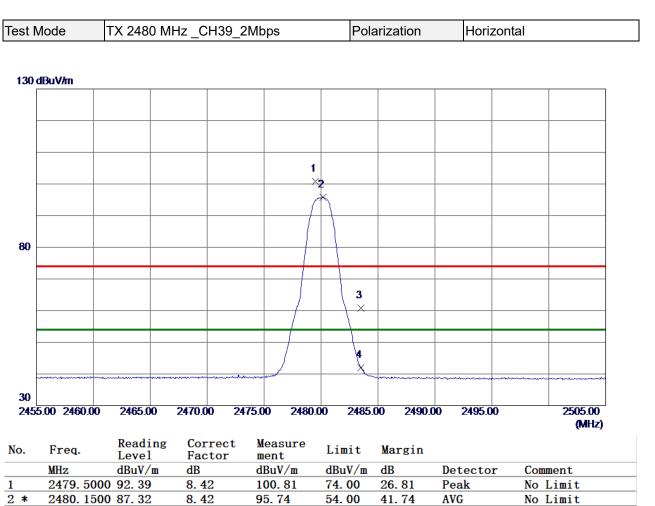
AVG

**REMARKS**:

4

2483. 5000 35. 50

(1) Measurement Value = Reading Level + Correct Factor.


8.42

43.92



Test N	lode	TX 2480	MHz _C	H39_2N	Mbps	Pola	arization	Vert	ical		
80 d	BuV/m										
]											
			-1								
			×								
			2								
			×								
20											
30											
-20											
100	0.00 3550.00	0 6100.00	8650.0				00 40050	00 04404	00		
			0000.0	0 112	00.00 137	50.00 16300	0.00 18850	0.00 21400	00.0		26500.00
						50.00 16300	J.UU 16650	J.UU 21400	00		26500.00 (MHz)
No.	Freq.	Readin	g Cor	rect	Measure	50.00 16300 Limit	Margin	J.UU 214UU	100		
	MHz	Readin Level dBuV/m	g Cor Fac dB	rect tor	Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		Comme	(MHz)
	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
	MHz 7441.49	Readin Level dBuV/m	g Cor Fac dB	rect tor 86	Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		Comme	(MHz)
	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1	MHz 7441.49	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
No.	MHz 7441.49 7441.55	Readin Level dBuV/m 30 44.58	g Cor Fac dB 10.	rect tor 86	Measure ment dBuV/m 55.44	Limit dBuV/m 74.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1 2 *	MHz 7441.49 7441.55	Readin Level 30 44.58 00 35.75	g Cor Fac 10. 10.	86 86	Measure ment dBuV/m 55.44 46.61	Limit dBuV/m 74.00 54.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1 2 * REM4 1) Me	MHz 7441. 49 7441. 55	Readin Level dBuV/m 30 44.58 00 35.75	g Cor Fac 10. 10.	Level +	Measure ment dBuV/m 55.44 46.61	Limit dBuV/m 74.00 54.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1 2 * REM4 1) Me	MHz 7441. 49 7441. 55	Readin Level 30 44.58 00 35.75	g Cor Fac 10. 10.	Level +	Measure ment dBuV/m 55.44 46.61	Limit dBuV/m 74.00 54.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)
1 2 * REM4 1) Me	MHz 7441. 49 7441. 55	Readin Level dBuV/m 30 44.58 00 35.75	g Cor Fac 10. 10.	Level +	Measure ment dBuV/m 55.44 46.61	Limit dBuV/m 74.00 54.00	Margin dB -18.56	Detecto Peak		Comme	(MHz)





**54.00** 

60.74

42.08

-13.26

-11.92

Peak

AVG

REMARKS:

3

4

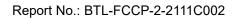
2483. 5000 52. 32

2483. 5000 33. 66

(1) Measurement Value = Reading Level + Correct Factor.

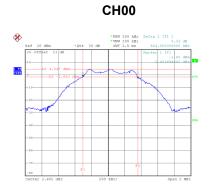
8.42

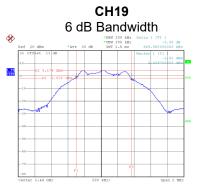
8.42



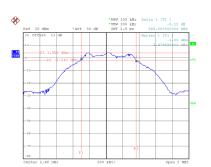

80 dBuV/m      1      2      2      ×      2      ×      1      2      ×      1      2      ×      1      ×      1      ×      1      ×      1      ×      1      ×      1      ×      1      ×      1      ×      1      ×      1      ×      1      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×      ×	Test N	/lode	TX 2480 M	Hz_CH39	9_2Mbps	Pola	arization	Horizont	al
30      1      1        2      ×      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -      -			·					·	
30      X      Image: Contract Measure ment      Limit Margin        -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -21 <td< th=""><th>80 d</th><th>BuV/m</th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th></td<>	80 d	BuV/m					_		
30      X      Image: Contract Measure ment      Limit Margin        -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
30      X      Image: Contract Measure ment      Limit Margin        -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -21 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
30      X      Image: Correct Measure ment      Limit Margin        -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -21									
30      X      Image: Correct Measure ment      Limit Margin        -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -20      -21									
30      2									
30    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×    ×									
30									
-20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -	-								
-20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -20    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -21    -									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak	30								
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Measure Factor ment    Limit Margin    MHz    dBuV/m    dB    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00    3550.00    6100.00    8650.00    11200.00    13750.00    16300.00    18850.00    21400.00    26500.00      No.    Freq.    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak									
1000.00      3550.00      6100.00      8650.00      11200.00      13750.00      16300.00      18850.00      21400.00      26500.00        No.      Freq.      Reading Level      Correct Factor      Measure ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        1      7438.6350      41.40      10.86      52.26      74.00      -21.74      Peak	20								
MHz    Reading Level    Correct Factor    Measure ment    Limit    Margin      MHz    dBuV/m    dB    dBuV/m    dBuV/m    dB    Detector    Comment      1    7438.6350    41.40    10.86    52.26    74.00    -21.74    Peak		0.00 3550.00	0 6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	0.00 21400.00	26500.00
NO.      Freq.      Level      Factor      ment      Limit      Margin        MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        1      7438.6350      41.40      10.86      52.26      74.00      -21.74      Peak									
MHz      dBuV/m      dB      dBuV/m      dBuV/m      dB      Detector      Comment        1      7438.6350      41.40      10.86      52.26      74.00      -21.74      Peak	No	From	Reading	Correc	t Measure	I imi+	Margin		
1 7438. 6350 41. 40 10. 86 52. 26 74. 00 -21. 74 Peak	NO.								<b>2</b>
	1								Comment
	2 *								
	_								

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

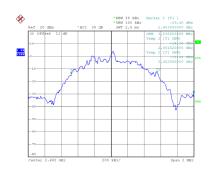




## **APPENDIX E - BANDWIDTH**

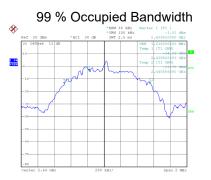





Test Mode	TX Mode _1	Mbps			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Test Result
00	2402	0.664	1.036	0.5	Pass
19	2440	0.670	1.036	0.5	Pass
39	2480	0.666	1.040	0.5	Pass







CH39



Date: 6.NOV.2021 15:39:40

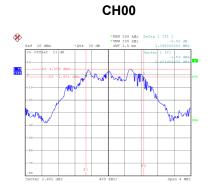


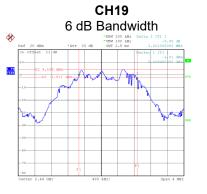
Date: 6.NOV.2021 15:41:36



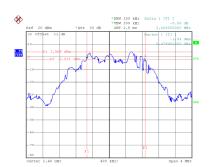
Date: 6.NOV.2021 15:43:42



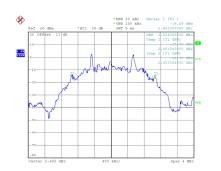

Date: 6.NOV.2021 15:38:39


#### Date: 6.NOV.2021 15:41:43

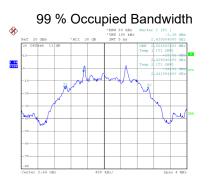
Date: 6.NOV.2021 15:43:50



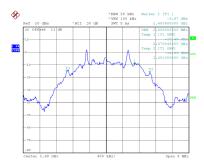

Т	est Mode	TX Mode _2	Mbps			
	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Test Result
	00	2402	1.398	2.024	0.5	Pass
	19	2440	1.412	2.024	0.5	Pass
	39	2480	1.408	2.008	0.5	Pass







CH39




Date: 6.NOV.2021 15:45:58



Date: 6.NOV.2021 15:47:54



Date: 6.NOV.2021 15:49:55



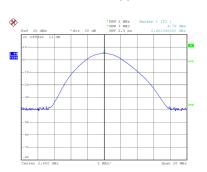
Date: 6.NOV.2021 15:44:59

#### Date: 6.NOV.2021 15:48:02

Date: 6.NOV.2021 15:50:03



## **APPENDIX F - MAXIMUM OUTPUT POWER**



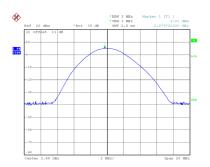

_						
Те	st Mode	TX Mode _1Mbps	3			
[	Frequency	Peak Output	Peak Output	Max. Limit	Max. Limit	Test Result
	<u>(MHz)</u> 2402	Power (dBm) 4.76	Power (W) 0.0030	(dBm) 30.00	(W) 1.0000	Pass
	2440	4.75	0.0030	30.00	1.0000	Pass
	2480	4.81	0.0030	30.00	1.0000	Pass
_						
	Frequency (MHz)	Average Output Power (dBm)	Average Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	2402	4.51	0.0028	30.00	1.0000	Pass
	2440	4.55	0.0029	30.00	1.0000	Pass

СН00

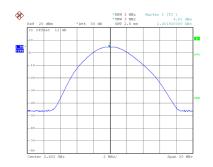
4.50

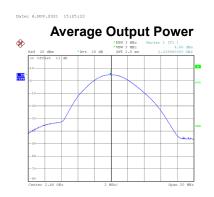
2480





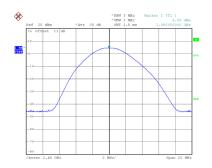

0.0028





Pass

1.0000




Date: 6.NOV.2021 15:24:43





Date: 6.NOV.2021 15:26:11

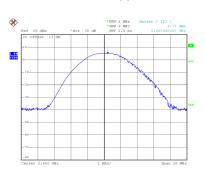
Date: 6.NOV.2021 15:33:56



Date: 6.NOV.2021 15:30:52

Date: 6.NOV.2021 15:32:47

30.00



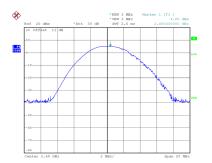

Test Mode	TX Mode _2Mbp	S			
Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.77	0.0030	30.00	1.0000	Pass
2440	4.76	0.0030	30.00	1.0000	Pass
2480	4.85	0.0031	30.00	1.0000	Pass
Frequency (MHz)	Average Output Power (dBm)	Average Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.58	0.0029	30.00	1.0000	Pass
2440	4.55	0.0029	30.00	1.0000	Pass

CH00

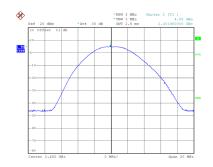
4.54

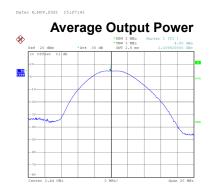
2480



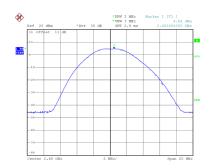



0.0028


CH39


Pass

1.0000



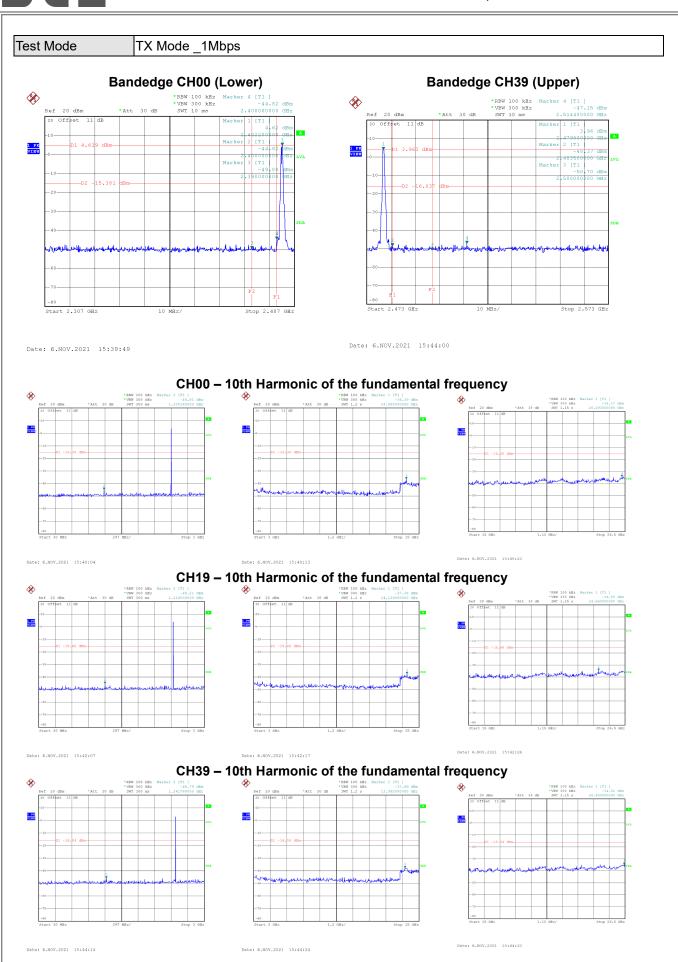

Date: 6.NOV.2021 15:27:02

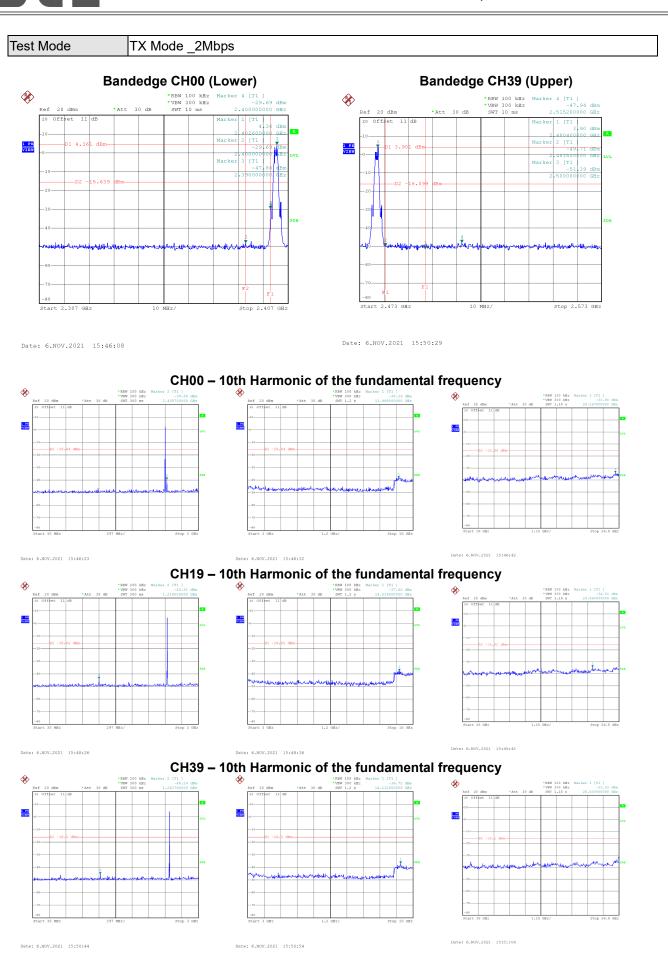




Date: 6.NOV.2021 15:28:17




Date: 6.NOV.2021 15:35:08

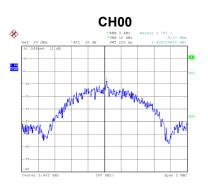

Date: 6.NOV.2021 15:36:22

Date: 6.NOV.2021 15:37:26



## **APPENDIX G - CONDUCTED SPURIOUS EMISSION**







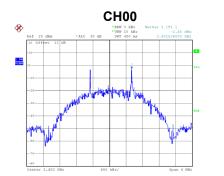

# **APPENDIX H - POWER SPECTRAL DENSITY**

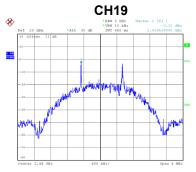


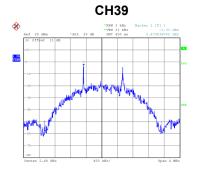
Τe	Test Mode TX Mode _1Mbps						
	Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Max. Limit (dBm/3 kHz)	Test Result		
	00	2402	-9.17	8.00	Pass		
	19	2440	-9.36	8.00	Pass		
	39	2480	-9.94	8.00	Pass		









Date: 6.NOV.2021 15:40:30


Test Mode

TX Mode _2Mbps

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Max. Limit (dBm/3 kHz)	Test Result
00	2402	-2.45	8.00	Pass
19	2440	-3.11	8.00	Pass
39	2480	-3.33	8.00	Pass







Date: 6.NOV.2021 15:46:49

Date: 6.NOV.2021 15:48:53

Date: 6.NOV.2021 15:51:11

#### End of Test Report