

FCC Radio Test Report

FCC ID: RWO-RZ040378

This report concerns: Original Grant

Project No.		2110C120
Equipment	:	Wireless Headset
Brand Name	:	
Test Model	:	RZ04-0378
Series Model	:	RZ04-0378XXXX-XXXX (X can be 0-9 or A-Z)
Applicant	:	Razer Inc.
Address	:	9 Pasteur, Suite 100, Irvine, CA92618, USA
Manufacturer	:	Razer (Asia-Pacific) Pte.,Ltd.
Address	:	1 one-north Crescent, #02-01 Singapore 138538
Factory	:	RAZER TECHNOLOGY AND DEVELOPMENT (SHENZHEN) CO., LTD
Address	:	East Wing, 3rd Floor, Block 2, Phase 1 of Vision Shenzhen Business Park
		Keji South Road, Hi-Tech Industrial Park, Shenzhen 518057, China
Date of Receipt	:	Oct. 26, 2021
Date of Test	:	Oct. 27, 2021 ~ Nov. 29, 2021
Issued Date	:	Dec. 10, 2021
Report Version	:	R00
Test Sample	:	Sample No.: DG2021102731 for conducted, DG2021102733 for radiated.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Brom ! 101

Prepared by : Evan Yang

welly zhou

Approved by : Welly Zhou

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
1.3 TEST ENVIRONMENT CONDITIONS	9
2. GENERAL INFORMATION	10
2.1 GENERAL DESCRIPTION OF EUT	10
2.2 DESCRIPTION OF TEST MODES	12
2.3 PARAMETERS OF TEST SOFTWARE	13
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	14
2.5 SUPPORT UNITS	14
3 . AC POWER LINE CONDUCTED EMISSIONS	15
3.1 LIMIT	15
3.2 TEST PROCEDURE	15
3.3 DEVIATION FROM TEST STANDARD	15
3.4 TEST SETUP	16
3.5 EUT OPERATING CONDITIONS	16
3.6 TEST RESULTS	16
4 . RADIATED EMISSIONS	17
4.1 LIMIT	17
4.2 TEST PROCEDURE	18
4.3 DEVIATION FROM TEST STANDARD	18
4.4 TEST SETUP	19
4.5 EUT OPERATING CONDITIONS	20
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	20
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	20
4.8 TEST RESULTS - ABOVE 1000 MHZ	20
5 . NUMBER OF HOPPING FREQUENCY	21
5.1 LIMIT	21
5.2 TEST PROCEDURE	21
5.3 DEVIATION FROM STANDARD	21
5.4 TEST SETUP	21
5.5 EUT OPERATION CONDITIONS	21

Table of Contents	Page
5.6 TEST RESULTS	21
6 . AVERAGE TIME OF OCCUPANCY	22
6.1 LIMIT	22
6.2 TEST PROCEDURE	22
6.3 DEVIATION FROM STANDARD	22
6.4 TEST SETUP	22
6.5 EUT OPERATION CONDITIONS	22
6.6 TEST RESULTS	22
7 . HOPPING CHANNEL SEPARATION	23
7.1 LIMIT	23
7.2 TEST PROCEDURE	23
7.3 DEVIATION FROM STANDARD	23
7.4 TEST SETUP	23
7.5 EUT OPERATION CONDITIONS	23
7.6 TEST RESULTS	23
8 . BANDWIDTH	24
8.1 LIMIT	24
8.2 TEST PROCEDURE	24
8.3 DEVIATION FROM STANDARD	24
8.4 TEST SETUP	24
8.5 EUT OPERATION CONDITIONS	24
8.6 TEST RESULTS	24
9 . MAXIMUM OUTPUT POWER	25
9.1 LIMIT	25
9.2 TEST PROCEDURE	25
9.3 DEVIATION FROM STANDARD	25
9.4 TEST SETUP	25
9.5 EUT OPERATION CONDITIONS	25
9.6 TEST RESULTS	25
10 . CONDUCTED SPURIOUS EMISSION	26
10.1 LIMIT	26
10.2 TEST PROCEDURE	26
10.3 DEVIATION FROM STANDARD	26
10.4 TEST SETUP	26

Table of Contents	Page
10.5 EUT OPERATION CONDITIONS	26
10.6 TEST RESULTS	26
11 . MEASUREMENT INSTRUMENTS LIST	27
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	29
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	32
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	37
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	40
APPENDIX E - NUMBER OF HOPPING FREQUENCY	65
APPENDIX F - AVERAGE TIME OF OCCUPANCY	67
APPENDIX G - HOPPING CHANNEL SEPARATION	72
APPENDIX H - BANDWIDTH	74
APPENDIX I - MAXIMUM OUTPUT POWER	76
APPENDIX J - CONDUCTED SPURIOUS EMISSION	80
APPENDIX K - DECLARATION FOR BLUETOOTH DEVICE	85

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Dec. 10, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	FCC CFR Title 47, Part 15, Subpart C				
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emission	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	PASS		
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	PASS		
15.247(a)(1)	Hopping Channel Separation	APPENDIX G	PASS		
15.247(a)(1)	Bandwidth	APPENDIX H	PASS		
15.247(a)(1)	Maximum Output Power	APPENDIX I	PASS		
15.247(d)	Conducted Spurious Emission	APPENDIX J	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

- (1) "N/A" denotes test is not applicable in this test report
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB03 (3m)		30MHz ~ 200MHz	V	4.36
	CISPR	30MHz ~ 200MHz	Н	3.32
		200MHz ~ 1,000MHz	V	4.08
		200MHz ~ 1,000MHz	Н	3.96

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03 (3m)		1GHz ~ 6GHz	3.80
	CISPR	6GHz ~ 18GHz	4.82

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03 (1m)		18 ~ 26.5 GHz	3.62
	CISPR	26.5 ~ 40 GHz	4.00

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	23°C	65%	AC 120V/60Hz	Aries Tang
Radiated Emissions-9 kHz to 30 MHz	25°C	60%	DC 5V	Sparrow Liu
Radiated Emissions-30 MHz to 1000 MHz	26°C	52%	DC 5V	Chen Mo
Radiated Emissions-Above 1000 MHz	26°C	52%	DC 5V	Laughing Zhang
Number of Hopping Frequency	23.1°C	47%	DC 5V	Longdage Feng
Average Time of Occupancy	23.1°C	47%	DC 5V	Longdage Feng
Hopping Channel Separation	23.1°C	47%	DC 5V	Longdage Feng
Bandwidth	23.1°C	47%	DC 5V	Longdage Feng
Maximum Output Power	23.1°C	47%	DC 5V	Longdage Feng
Conducted Spurious Emission	23.1°C	47%	DC 5V	Longdage Feng

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Headset
Brand Name	RAZER
Test Model	RZ04-0378
Series Model	RZ04-0378XXXX-XXXX (X can be 0-9 or A-Z)
Model Difference(s)	The system model number is RZ04-0378XXXX-XXXX, this system consists of Wireless Headset (Model: RZ04-0378) and USB Wireless Transceiver (Model: RC30-0378), X can be 0-9 or A-Z.
Power Source	1# Supplied from USB port. 2# Supplied from battery. Model: 553450
Power Rating	1# 5V 500mA 2# 3.7V, 1000mAh, 3.7Wh
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK
Bit Rate of Transmitter	1Mbps, 2Mbps, 3Mbps
Max. Peak Output Power	3Mbps: 11.50 dBm (0.0141 W)
Max. Average Output Power	3Mbps: 9.34 dBm (0.0086 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Unnovation WE DESIRE. WE EXPLORE	BTH-1393	PCBA	N/A	2.22

Note: The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 2	TX Mode_2Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		
Mode 4	TX Mode_3Mbps Channel 00		

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 4	TX Mode_3Mbps Channel 00		

Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 4	TX Mode_3Mbps Channel 00		

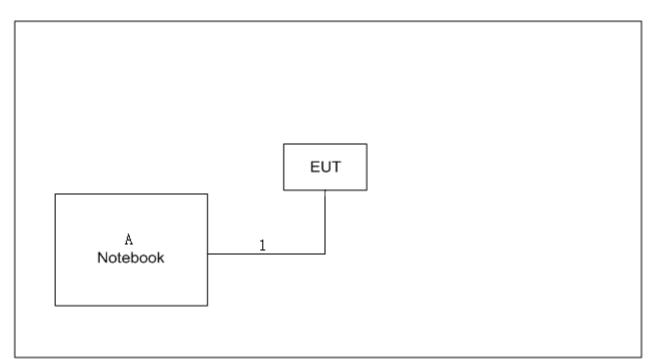
Radiated emissions test - Above 1GHz			
Final Test Mode Description			
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		

Maximum Output Power			
Final Test Mode Description			
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 2	TX Mode_2Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		

Other Conducted test			
Final Test Mode Description			
Mode 1 TX Mode_1Mbps Channel 00/39/78			
Mode 3 TX Mode_3Mbps Channel 00/39/78			

Note:

- (1) The measurements for Output Power were tested with DH1/3/5 during 1Mbps, 2Mbps and 3Mbps, the worst case were 1Mbps (DH5) and 3Mbps (DH5), only worst case were documented for other test items except Average Time of Occupancy.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) For AC power line conducted emissions and radiated spurious emissions below 1 GHz test, the 3Mbps Channel 00 is found to be the worst case and recorded.
- (4) The product supports 2.4G Hopping technology and Bluetooth technology at the same time, and the technology used is similar to that of Bluetooth. The chip and fixed frequency software used at the same time are the same. The difference is that when the product does not work with Bluetooth technology, it needs to be used with a dongle. So all reports only tested one of Bluetooth technology and hopping technology.


2.3 PARAMETERS OF TEST SOFTWARE

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	AWRDLABV2_V1.0.9.19		
Frequency (MHz)	2402	2441	2480
1Mbps	0X02	0X02	0X02
2Mbps	0X02	0X02	0X02
3Mbps	0X02	0X02	0X02

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
A	Notebook	Honor	14SER5 3500	N/A

ltem	Cable Type	Shielded Type	Ferrite Core	Length
1	USB Cable	NO	NO	1.2m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

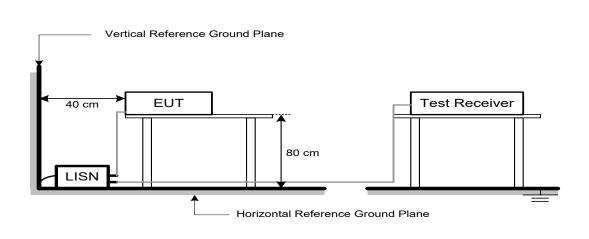
Eroquency of Emission (MHz)	Limit (dBµV)	
Frequency of Emission (MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


The following table is the setting of the receiver:

Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of [Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency	(dBuV/m at 3 m)	
(MHz)	Peak	Average
Above 1000	74	54

Note:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

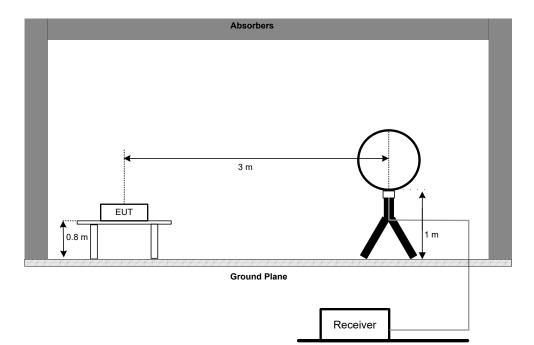
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

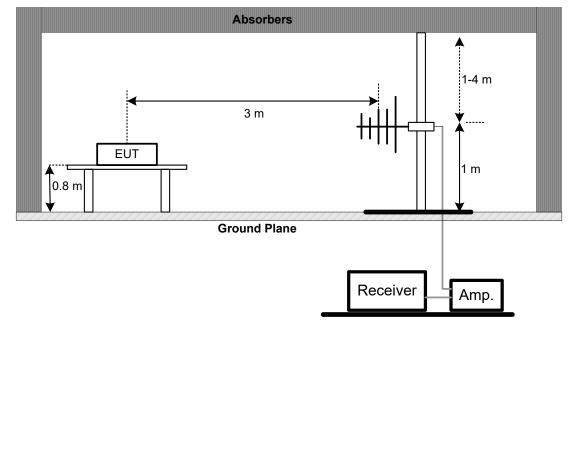
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

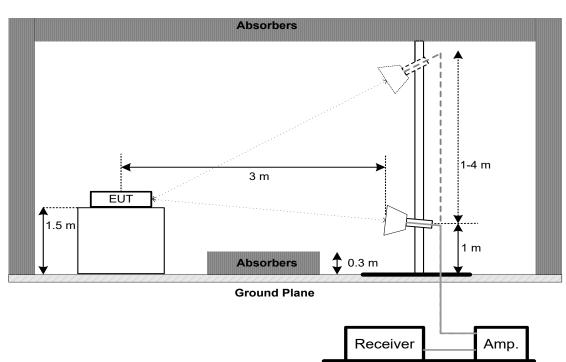

4.3 DEVIATION FROM TEST STANDARD

No deviation.



4.4 TEST SETUP

9 kHz to 30 MHz


30 MHz to 1 GHz

BTL

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. NUMBER OF HOPPING FREQUENCY

5.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Number of Hopping Frequency	15

5.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	> Operating Frequency Range
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec

6.2 TEST PROCEDURE

- a. Set the EUT for DH1, DH3 and DH5 packet transmitting.
- b. Measure the maximum time duration of one single pulse.
- c. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- d. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- e. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- f. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- g. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	0 MHz
RBW	1 MHz
VBW	1 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	As necessary to capture the entire dwell time per hopping channel

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. HOPPING CHANNEL SEPARATION

7.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	Wide enough to capture the peaks of two adjacent channels
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. BANDWIDTH

8.1 LIMIT

Section	Test Item
FCC 15.247(a)(1)	Bandwidth

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Span Frequency	> Measurement Bandwidth		
RBW	30 kHz		
VBW	100 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MAXIMUM OUTPUT POWER

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)	Maximum Output Power	0.1250 Watt or 20.97 dBm

Note: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Span Frequency	Approximately five times the 20 dB bandwidth, centered on a hopping channel.		
RBW	3 MHz		
VBW	3 MHz		
Detector	Peak/RMS		
Trace	Max Hold		
Sweep Time	Auto		

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

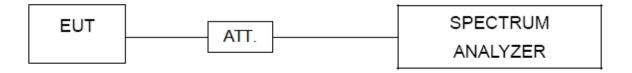
Please refer to the APPENDIX I.

10. CONDUCTED SPURIOUS EMISSION

10.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

10.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Start Frequency	30 MHz		
Stop Frequency	26.5 GHz		
RBW	100 kHz		
VBW	100 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

11. MEASUREMENT INSTRUMENTS LIST

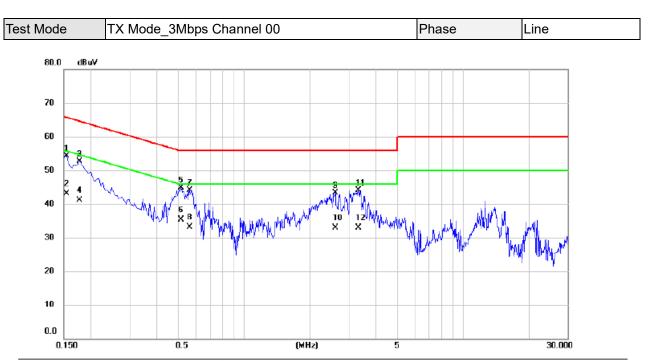
	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Serial No.	Calibrated until				
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022			
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022			
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022			
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022			
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
6	Cable	N/A	RG223	12m	Mar. 09, 2022			
7	643 Shield Room	ETS	6*4*3m	3m N/A				

	Radiated Emissions - 9 kHz to 30 MHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Loop Antenna	EM	EM-6876-1	230	Apr. 28, 2022			
2	Cable	N/A RG 213/U		N/A	May 27, 2022			
3	MXE EMI Receiver	Keysight	N9038A	MY56400091	Feb. 27, 2022			
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
5	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022			

	Radiated Emissions - 30 MHz to 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022			
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022			
3	Cable	Cable emci LMR-400 N/A		N/A	Nov. 30, 2022			
4	Controller	СТ	SC100	N/A	N/A			
5	Controller	MF	MF-7802	MF780208416	N/A			
6	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022			
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
8	966 Chamber Room	RM 9*6*6 N/A		Jul. 24, 2022				

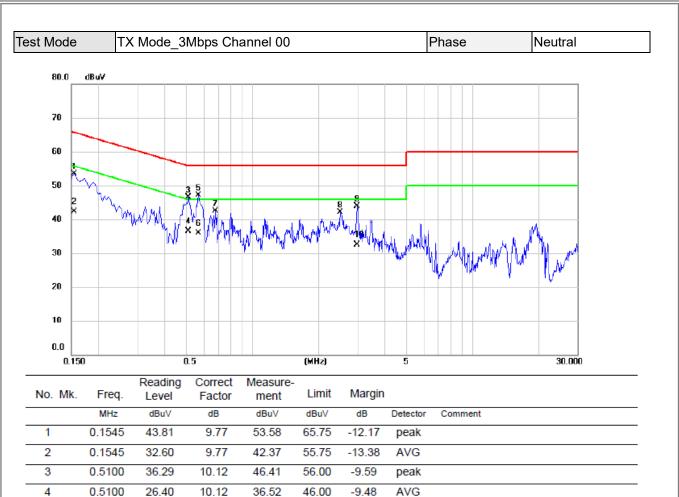
Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Apr. 21, 2022		
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022		
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022		
4	Controller	СТ	SC100	N/A	N/A		
5	Controller	MF	MF-7802	MF780208416	N/A		
6	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022		
7	EXA Spectrum Analyzer	Keysight	N9010A	MY56480488	Feb. 28, 2022		
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330 -K	619413	Jul. 16, 2022		
9	Cable	N/A	A81-SMAMSMAM- 12.5M	N/A	Oct. 15, 2022		
10	Cable	Talent microwave	A40-2.92M2.92M-2. 5M	N/A	Nov. 30, 2022		
11	Filter	STI	STI15-9912	N/A	Jul. 10, 2022		
12	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
13	966 Chamber Room	RM	9*6*6	N/A	Jul. 24, 2022		

Number of Hopping Frequency & Average Time of Occupancy & Hopping Channel Separation & Bandwidth & Maximum Output Power & Conducted Spurious Emission								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022			
2	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022			
3	3 RF Cable Tongkaichuan N/A N/A N/A							
4	DC Block	Mini	N/A	N/A	N/A			


Remark "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	44.64	9.70	54.34	65.75	-11.41	peak	
2		0.1545	33.40	9.70	43.10	55.75	-12.65	AVG	
3		0.1770	42.93	9.84	52.77	64.63	-11.86	peak	
4		0.1770	31.20	9.84	41.04	54.63	-13.59	AVG	
5		0.5144	34.99	9.93	44.92	56.00	-11.08	peak	
6	*	0.5144	25.40	9.93	35.33	46.00	-10.67	AVG	
7		0.5640	34.21	9.94	44.15	56.00	-11.85	peak	
8		0.5640	23.20	9.94	33.14	46.00	-12.86	AVG	
9		2.6070	33.21	10.10	43.31	56.00	-12.69	peak	
10		2.6070	22.80	10.10	32.90	46.00	-13.10	AVG	
11		3.3225	33.91	10.16	44.07	56.00	-11.93	peak	
12		3.3225	22.70	10.16	32.86	46.00	-13.14	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

5

6 7

8

9

10

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

36.96

25.80

32.47

31.58

33.44

22.10

10.16

10.16

10.11

10.43

10.48

10.48

47.12

35.96

42.58

42.01

43.92

32.58

56.00

46.00

56.00

56.00

56.00

46.00

-8.88

-10.04

-13.42

-13.99

-12.08

-13.42

peak

AVG

peak

peak

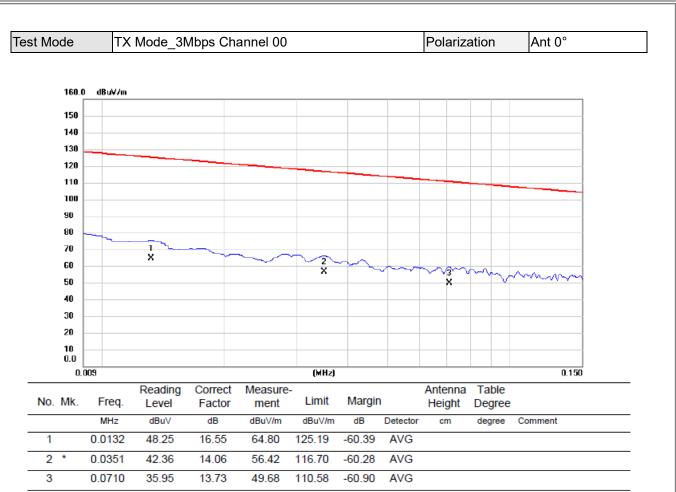
peak

AVG

0.5685

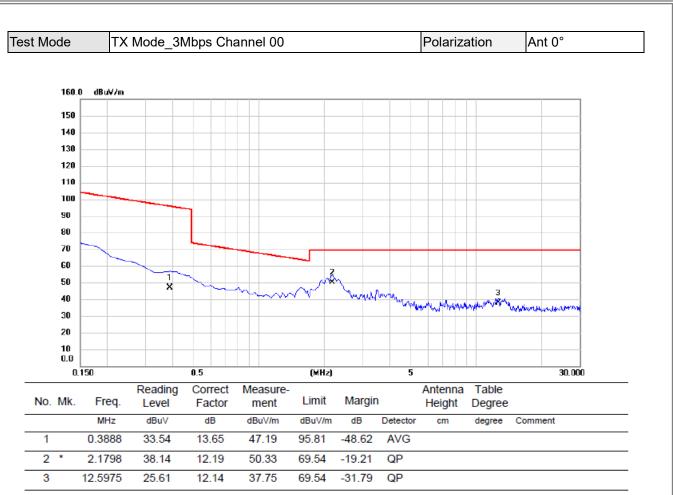
0.5685

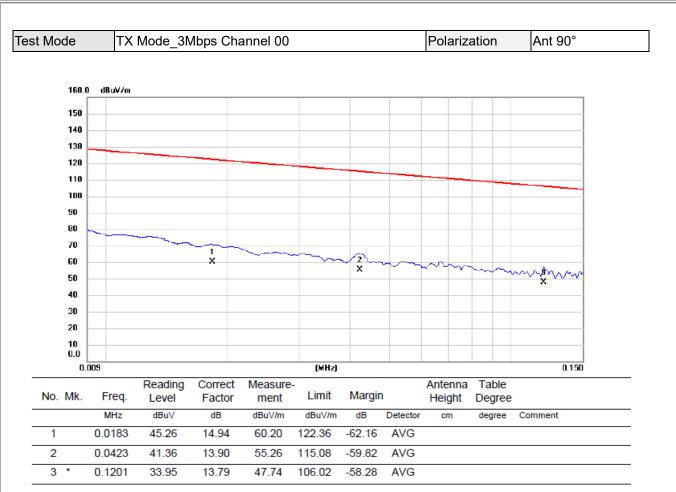
0.6765


2.5080

2.9850

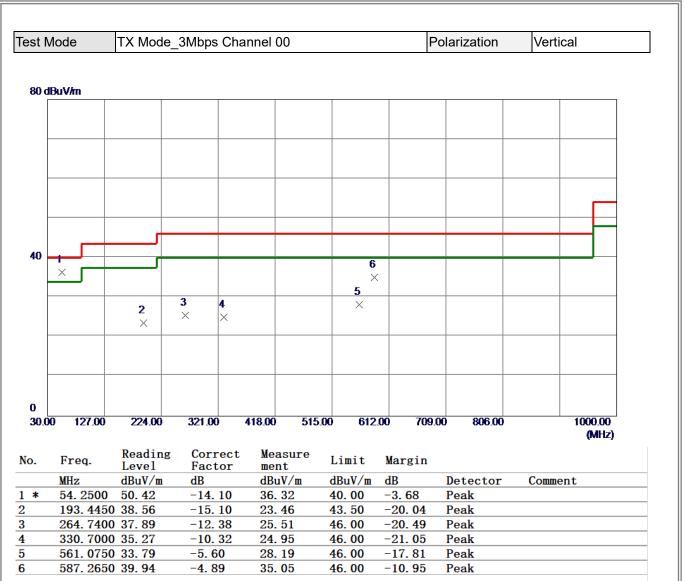
2.9850


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

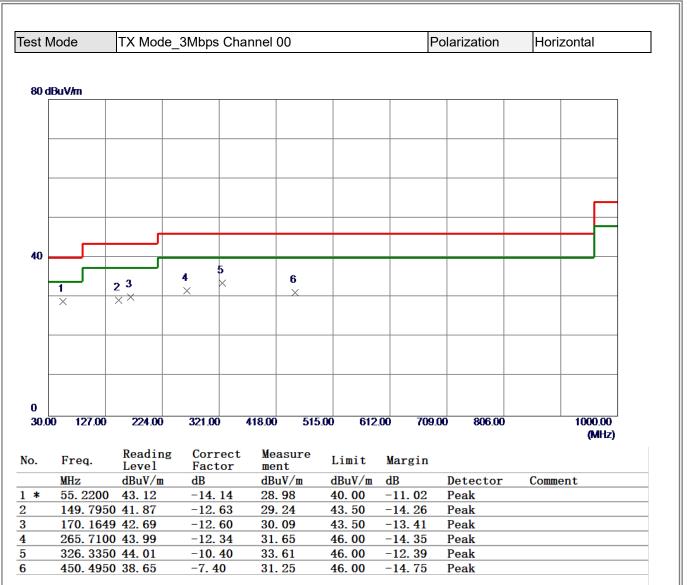

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

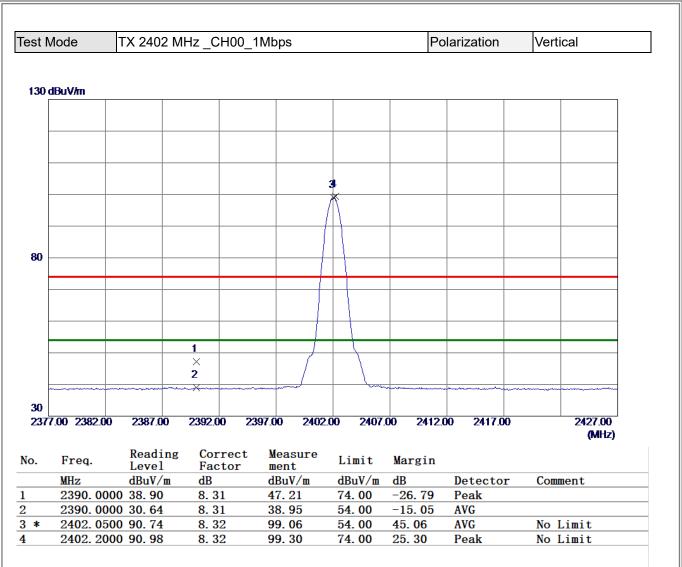
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

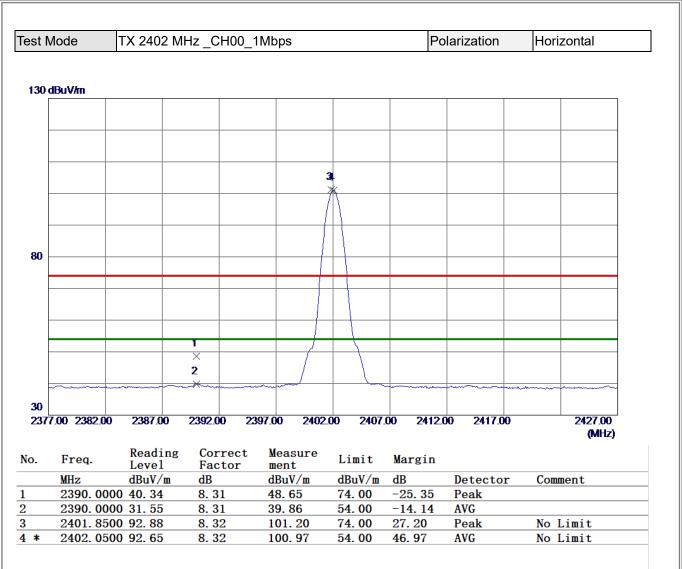

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

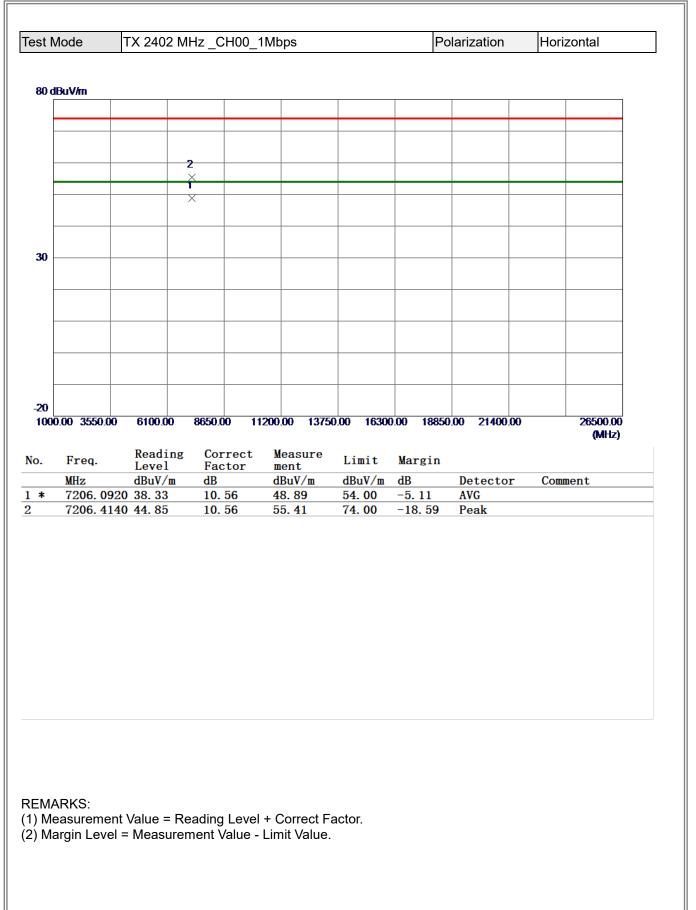


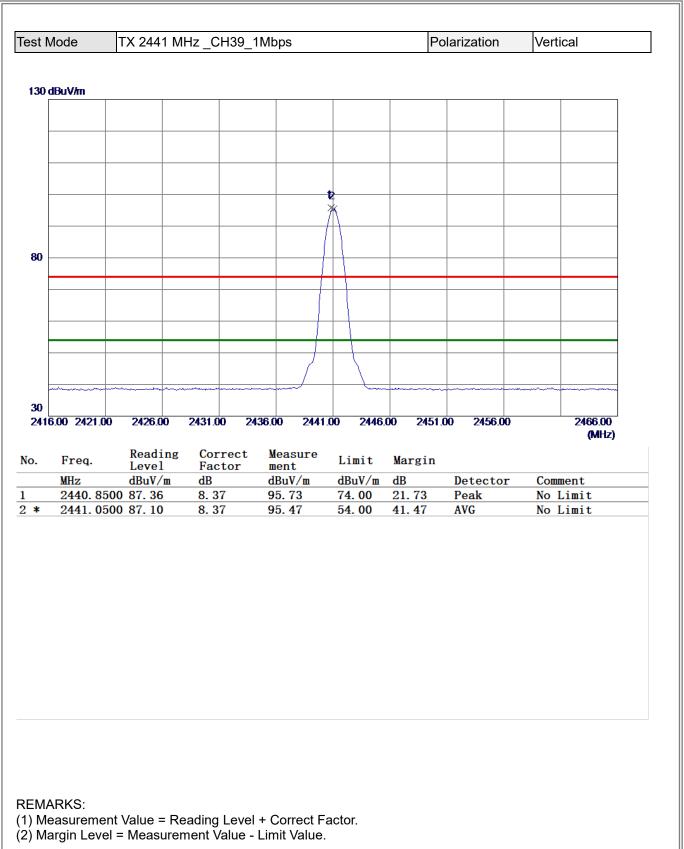
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

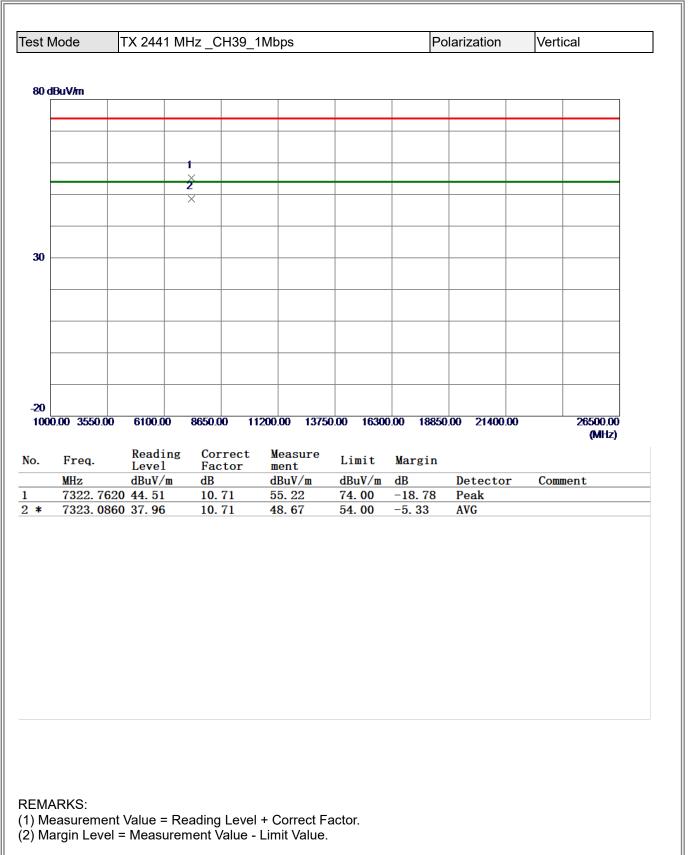


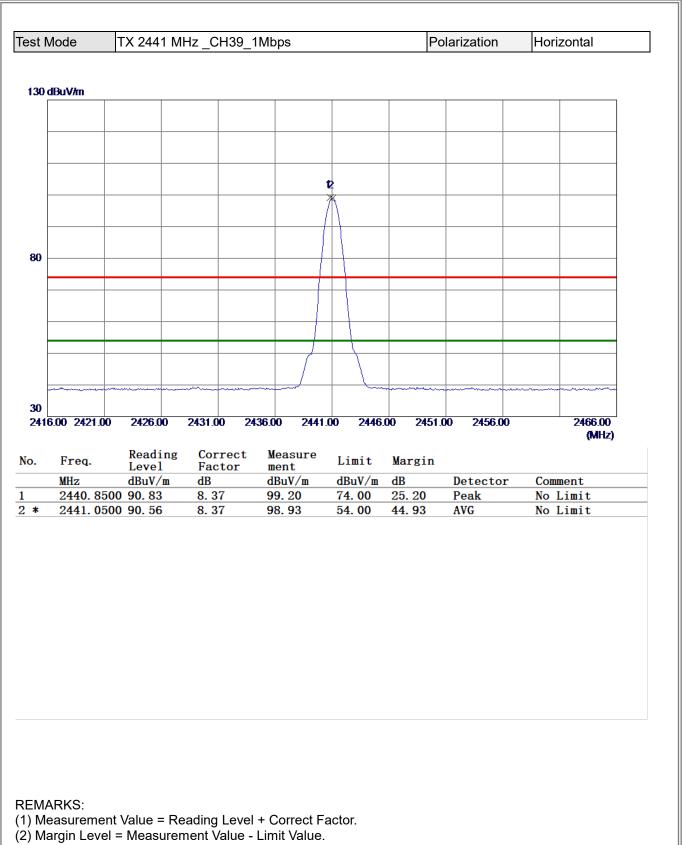
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

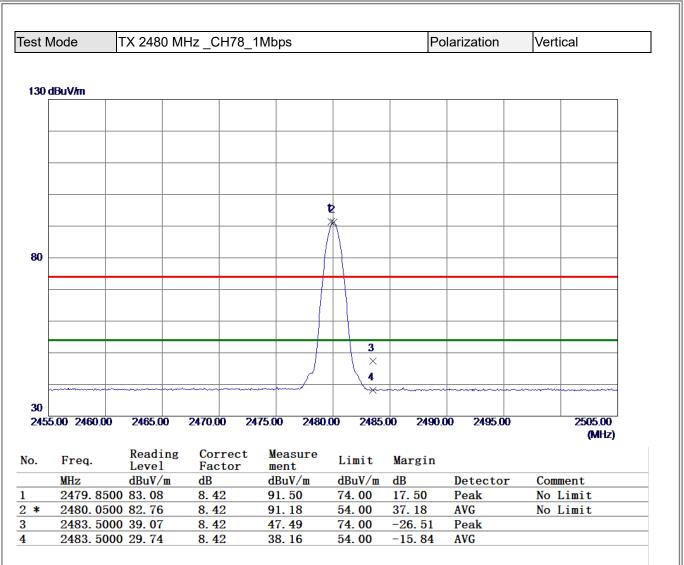

0 dBu	de T	X 2402	MHz _CH	l00_1Mbps	;		Po	larization	١	/ertical
dBu										
	Vim									
			1							
			ž							
			-×							
<u>ا</u>										
-										
	0 3550.00	6100.00	9650.00	11200.00	13750.00	16300 (M 400E0	00 2140	00	26500.0
00.00	0 3330.00	6100.00	8650.00	11200.00	13750.00	10300.0	00000	.00 2140	0.00	2000.0 (MHz)
J	Freq.	Readin Level	g Corr Fact	ect Mea or men	sure Li	i mit	Margin			
	ſHz	dBuV/m	dB	dBu	V/m dB		dB	Detect	or (Comment
	7205. 6060		10.5				-17.41	Peak		
	7206. 0440	39.73	10. 50	6 50.	29 04	. 00	-3. 71	AVG		



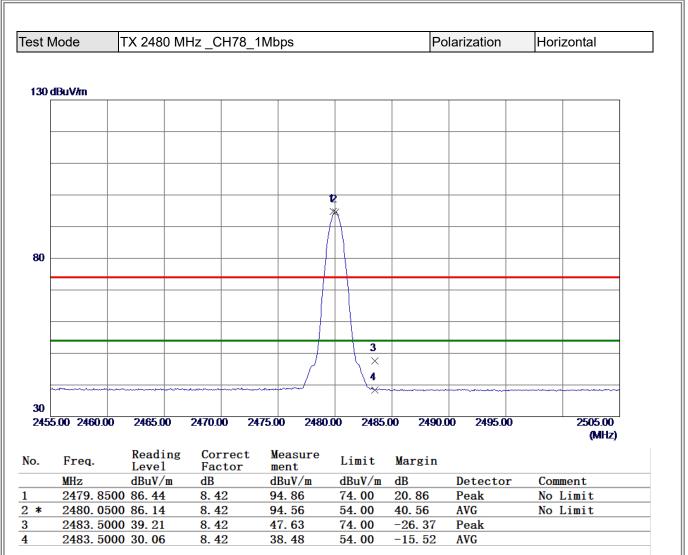
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





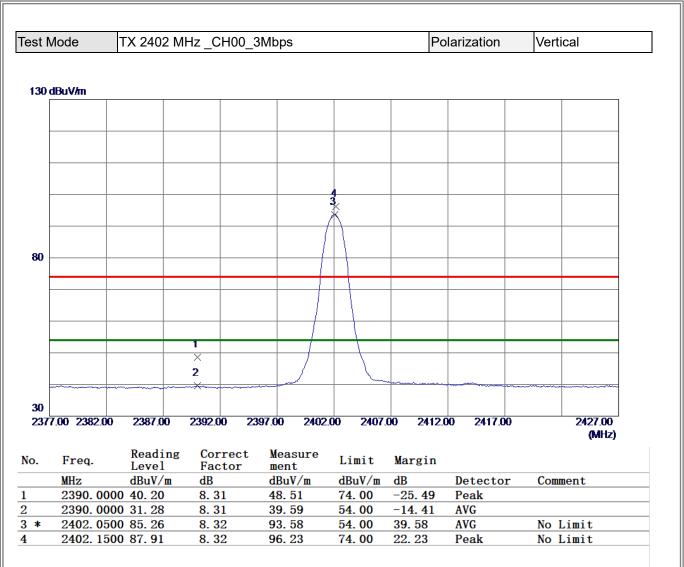


	lode	TX 2441 M	IHz_CH39_	1Mbps		P	olarization	Horizontal
) d	BuV/m							
ſ								
╞			2					
┝			×					
			1 ×					
0								
ľ								
$\left \right $								
0				000 00 1075				
	0.00 3550.00	6100.00	8650.00 11	1200.00 1375	0.00 16300	0.00 1885	0.00 21400.00	26500.0 (MHz
	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	7323. 1260		10.71	45. 51	54.00	-8.49	AVG	
	7323. 5060		10.71	53.86	74.00	-20. 14	Peak	
) 43. 15						
		9 43. 15						
	NRKS:	9 43. 15						



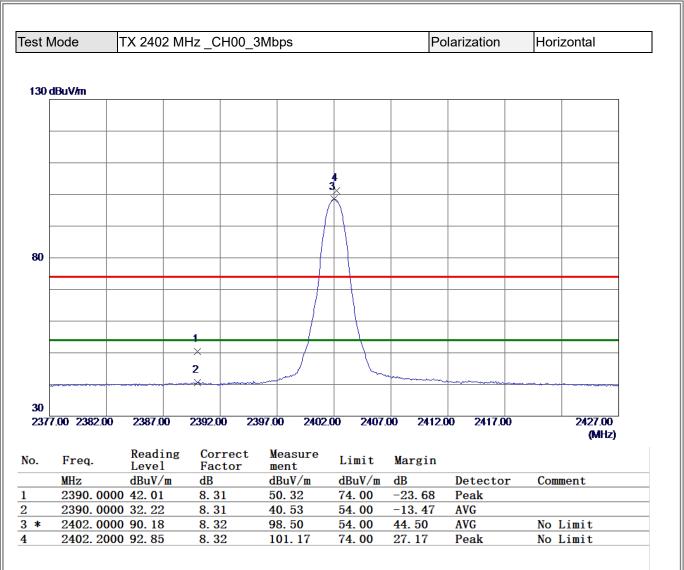
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Image: Second	531 10	lode	TX 2480 M	Hz _CH78_	1Mbps		Po	olarization	Vertical
Image: Note of the second system Image: Note of the seco									
X X	30 df	∃uV/m							
× ×	Γ								
× ×									
× ×									
× ×	Ļ			-					
× ×	L			X					
Image: Second	-								
Image: Second system Image: Se									
Image: Second system Image: Second system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Image: Second system Image: Se	0								
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak	~ [
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak									
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak									
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak	┝								
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak									
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak	┝								
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak									
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak									
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak	20								
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.4580 43.72 10.86 54.58 74.00 -19.42 Peak								0.00 21400.00	
7439. 4580 43. 72 10. 86 54. 58 74. 00 -19. 42 Peak		Freq.	Lovol	Factor	ment				
			dBuV/m	dB					Comment
		7439. 458	dBuV/m 0 43.72	dB 10. 86	54. 58	74.00	-19.42	Peak	Comment
		7439. 458	dBuV/m 0 43.72	dB 10. 86	54. 58	74.00	-19.42	Peak	Comment
/IARKS: Measurement Value = Reading Level + Correct Factor.	*	7439. 458	dBuV/m 0 43.72	dB 10. 86	54. 58	74.00	-19.42	Peak	Comment



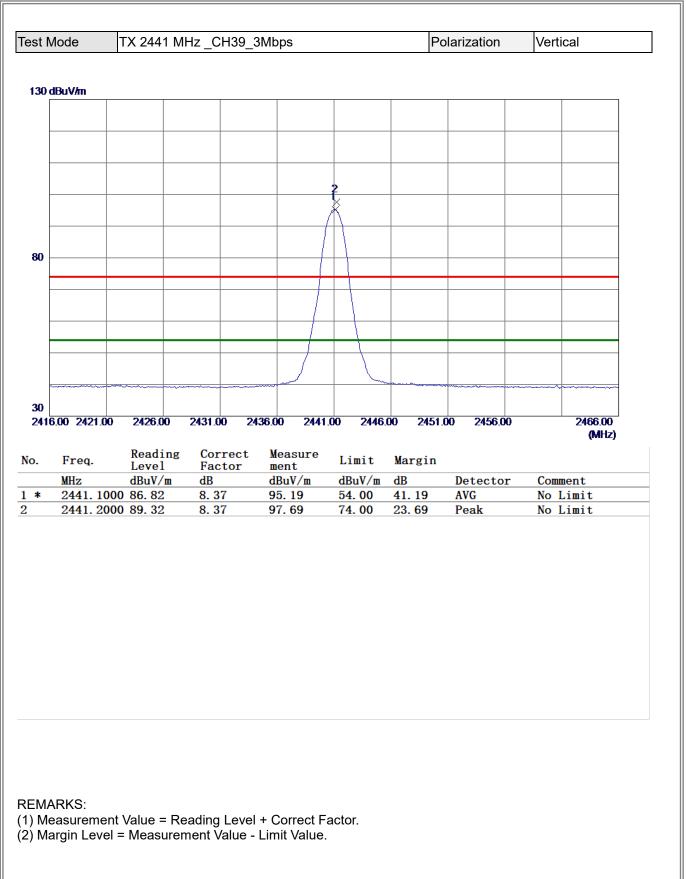
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Image: state of the s	X X	est N	lode	TX 2480 M	Hz _CH78_ ⁻	1Mbps		Po	olarization	Horizontal
Image: state of the s	1 1 1 × × × 2 × × × × ×									
X X	X X	80 d	BuV/m							
X X	X X	Γ								
X X	X X									
X X	X X									
X X	X X	-								
30 2 × Image: Constraint of the second s	30 2 × 1	-								
30	30	ŀ								
20	20				×					
20	20									
20	20	30								
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	-								
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 . Freq. Reading Correct Measure Limit Margin . Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	╞								
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 . Freq. Reading Correct Measure Limit Margin . Freq. BuV/m dB dBuV/m dBuV/m dB Detector Comment MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 . Freq. Reading Correct Measure Limit Margin . Freq. BuV/m dB dBuV/m dBuV/m dB Detector Comment MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									
Number Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Duv/m dB Duv/m Duv	Non-openation Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									
(MHz - Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	(MHz - Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak		00 3550.00	0 6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	00 21400.0	0 26500.0
MHz BuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	1000	1.00 3.330.00	0100.00	0000.00	1200.00 1515	0.00 10.00	0.00 10000	21400.0	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7440.0820 41.84 10.86 52.70 74.00 -21.30 Peak									(
7440. 0820 41. 84 10. 86 52. 70 74. 00 -21. 30 Peak	7440. 0820 41. 84 10. 86 52. 70 74. 00 -21. 30 Peak) .	Freq.	Reading	Correct Factor		Limit	Margin		(,
* 7440. 1080 33. 35 10. 86 44. 21 54. 00 −9. 79 AVG	* 7440. 1080 33. 35 10. 86 44. 21 54. 00 -9. 79 AVG).		Level	Factor	ment			Detector	
			MHz 7440.08	Level dBuV/m 20 41.84	Factor dB 10.86	ment dBuV/m 52.70	dBuV/m 74.00	dB -21. 30	Peak	
			MHz 7440.08	Level dBuV/m 20 41.84	Factor dB 10.86	ment dBuV/m 52.70	dBuV/m 74.00	dB -21. 30	Peak	
EMARKS:		То. ; *	MHz 7440.08 7440.10	Level dBuV/m 20 41.84	Factor dB 10.86	ment dBuV/m 52.70	dBuV/m 74.00	dB -21. 30	Peak	



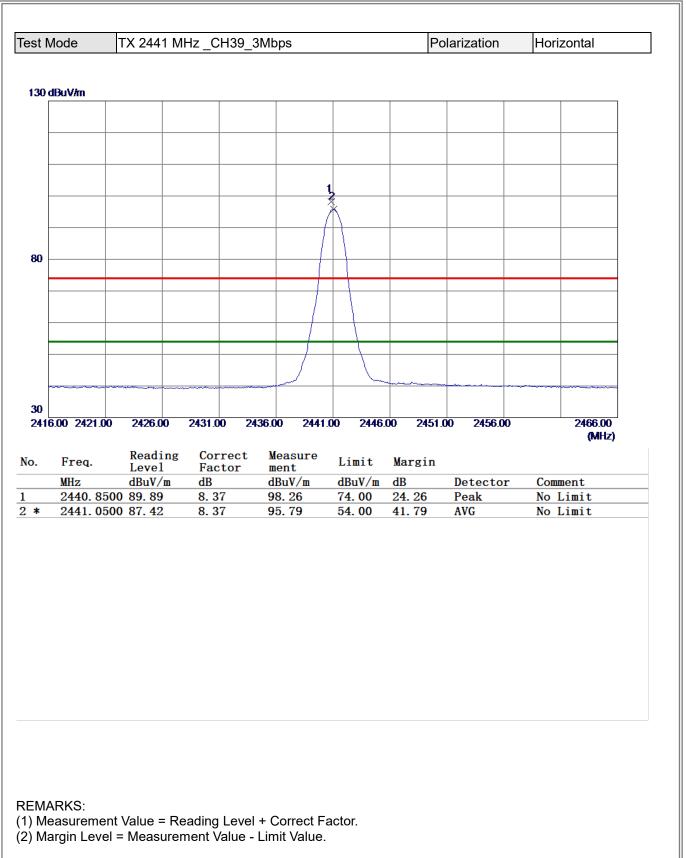
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Image: Second state Image: Second state				Po		Mbps	z_CH00_3)2 MH	X 2402	ode T	IV
1 1											
× ×		I		1						}uV/m	
× ×											
× ×											┝
X X X 2 X X X X X											
× ×								1			┢
× ×								+ ×			ŀ
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment											
MHz MBuV/m Margin Margin <td></td>											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (P Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (P Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											$\left \right $
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											$\left \right $
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 (Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											
Reading Correct Measure Limit Margin Freq. Reading Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment											ľ
Reading LevelCorrect FactorMeasure mentLimit MarginMHzdBuV/mdBdBuV/mdBuV/mdB		_									L
Freq.Reading LevelCorrect FactorMeasure mentLimit MarginMHzdBuV/mdBdBuV/mdBuV/mdB	26500.00 (MHz)	U	0.00 21400.00	0.00 18850	00 16300	200.00 13750	650.00 112	00 a	6100.0	.00 3550.00	UU
Fleq.LevelFactormentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment	(1011 12.)					Moasuro	Corroct	ing	Poadi		
				Margin	Limit		Factor	1	Level	Freq.	
7205. 7300 43. 35 10. 56 53. 91 74. 00 -20. 09 Peak	Comment	Com									
						53.91	10.56				
7206. 1680 34. 61 10. 56 45. 17 54. 00 -8. 83 AVG			AVG	-8.83	54.00	45.17	10. 56	1	34.61	7206. 1680	
7206. 1680 34. 61 10. 56 45. 17 54. 00 -8. 83 AVG											

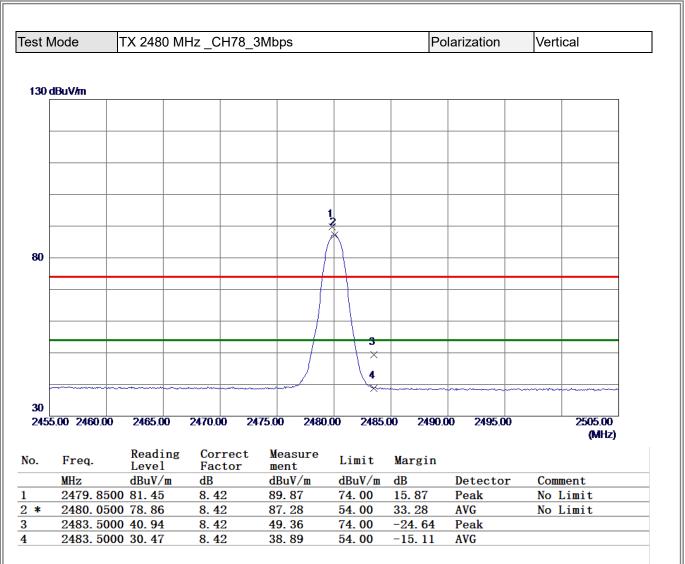


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

51 10	lode	ТХ	2402	MHz_(CH00_	3Mbps	3			Pola	arization		Hori	zontal
80 d	BuV/m													
				2										
				X										
				1 ×										
ŀ														
0														
1														
ŀ												+		
+														
0														
00	0.00 3550.0	0	6100.00	8650	00 1	1200.00	13750	.00 1630	0.00	18850.0	0 2140	0.00		26500.0 (MHz)
		T	Readin	а Co	rrect	Mos	isure							(INILIZ)
	Freq.	I	Level	Fa	ctor	mer	nt	Limit	Marg					
k	MHz 7206.07		1BuV/m	<u>dB</u>	56	<u>dBu</u> 42.	V/m	dBuV/m 54.00	<u>dB</u> -11.		Detecto AVG	or	Com	ment
-	7206. 64				56	52.		74.00	-21.		Peak			

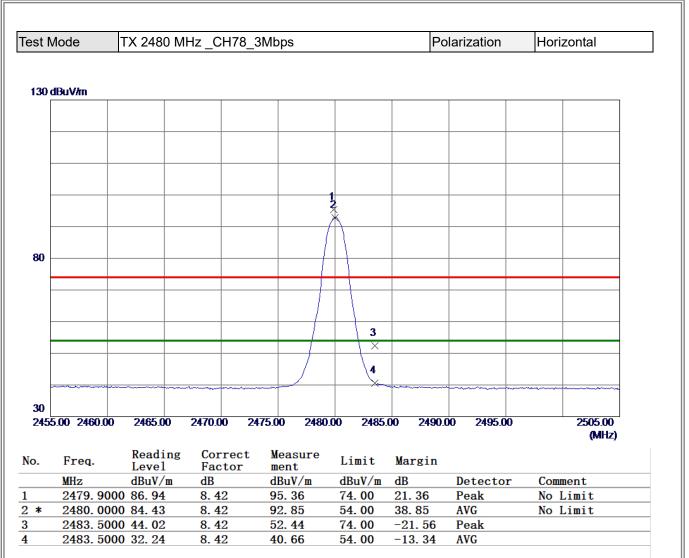


80 dBuV/m 2 1 2 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 dBuV/m 2 1 2 1 × 1 × 00 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × × × × × × × × × × × × × × × × <	80 dBuV/m 2 1 2 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	est Mo	ode	TX 2441	MHz_C	H39	3Mb	ps			Po	larizati	on	Ver	tical
Z X Image: Contract Measure ment Image: Contract Measure Measure ment Image: Contract Measure Mea	2 . 1 .	2						-								
Z X Image: Contract Measure ment Image: Contract Measure Measure ment Image: Contract Measure Mea	2 . 1 .	2														
30 1 1 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< td=""><td>X X</td><td>X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I</td><td>80 dB</td><td>uV/m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	X X	X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I	80 dB	uV/m												
30 1 1 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< td=""><td>X X</td><td>X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	X X	X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I														
30 1 1 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< td=""><td>X X</td><td>X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	X X	X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I														
30 1 1 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< td=""><td>X X</td><td>X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	X X	X I I 30 X I I 30 X I I 30 X I I 30 I I I I I 30 I I I I I 30 I I I I I I 30 I I I I I														
30 1 X 1	1 1	30 1				2										
30 ×	0 ×	30 ×														
30 30 <td< td=""><td>00 0 <t< td=""><td>30 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></t<></td></td<>	00 0 0 <t< td=""><td>30 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></t<>	30 30 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				-										
20	20 .	20				~										
20	20 .	20														
20	20 .	20	20													
NOOD 00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	w -													
MHz Buv/m B	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Buv/m B														
MHz Buv/m B	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Buv/m B														
MHz Buv/m B	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Buv/m B														
NOOD 00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG														
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG														
MHz Buv/m B	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Buv/m B														
MHz Buv/m B	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Buv/m B														
NOOD 00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG														
Keading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	Keading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	Keading Correct Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG														00500.00
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	000.0	00 3550.0	0 6100.00	8650.0	0 1	1200.	00 137	50.00 16	300.00	18850	.00 21	400.00		
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG	MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 7323.0400 35.69 10.71 46.40 54.00 -7.60 AVG														
* 7323. 0400 35. 69 10. 71 46. 40 54. 00 -7. 60 AVG	* 7323. 0400 35. 69 10. 71 46. 40 54. 00 -7. 60 AVG	* 7323. 0400 35. 69 10. 71 46. 40 54. 00 -7. 60 AVG			Readin	a Cor	rect	м	asuro							(MFLZ)
).	Freq.	Readin Level	g Cor Fac	rect tor			Limi	t Ma	argin				(MITZ)
7323. 3640 43. 90 10. 71 54. 61 74. 00 -19. 39 Peak	7323. 3640 43. 90 10. 71 54. 61 74. 00 -19. 39 Peak	7323. 3640 43. 90 10. 71 54. 61 74. 00 -19. 39 Peak		MHz	Level dBuV/m	Fac dB	tor	m dl	ent BuV/m	dBuV/	m dE	3		ctor	Сош	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	ctor	Сош	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	ctor	Соп	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	tor	Com	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	tor	Com	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	tor	Com	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	tor	Com	
			*	MHz 7323.04	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	tor	Com	
	MARKO		*	MHz 7323.04 7323.36	Level dBuV/m 400 35.69	Fac dB 10.	tor 71	m dl 40	ent BuV/m 6.40	dBuV 54.00	/m dE) -7	3 7. 60	AVG	tor	Com	
:MARKS:			*	MHz 7323.04 7323.36	Level dBuV/m 100 35.69 340 43.90	Fac dB 10. 10.	tor 71 71	m dl 4€ 54	ent 3uV/m 5.40 4.61	dBuV/ 54.00 74.00	/m dE) -7	3 7. 60	AVG	tor	Com	
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	* MAR Mea	MHz 7323.04 7323.36	Level dBuV/m 100 35. 69 640 43. 90	Fac dB 10. 10.	tor 71 71 71	m dI 44 54	ent BuV/m 5. 40 1. 61	Factor.	/m dE) -7	3 7. 60	AVG	tor	Com	
	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	⊧ MAF Mea	MHz 7323.04 7323.36	Level dBuV/m 100 35. 69 640 43. 90	Fac dB 10. 10.	tor 71 71 71	m dI 44 54	ent BuV/m 5. 40 1. 61	Factor.	/m dE) -7	3 7. 60	AVG	tor	Com	
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	* MAF Mea	MHz 7323.04 7323.36	Level dBuV/m 100 35. 69 640 43. 90	Fac dB 10. 10.	tor 71 71 71	m dI 44 54	ent BuV/m 5. 40 1. 61	Factor.	/m dE) -7	3 7. 60	AVG	tor	Com	



) dBu	V/m			H39_3	Mbps		Pc	olarization		Horizontal
) dBu	V/m									
			1							
			X							
			2 ×							
-										
						1				
UU.UU	3550.00	6100.00	8650.0	0 112	200.00 13750	0.00 16300	0.00 18850	0.00 21400	.00	26500.0 (MH
		Readin	a Cor	rect	Measure					
I	Freq.	Level	Fac	tor	ment	Limit	Margin			
	Hz	dBuV/m			dBuV/m	dBuV/m		Detecto	r	Comment
		20 42. 15	10.		52.86	74.00	-21.14	Peak		
	323. 190	00 32.32	10.	(1	43. 03	54.00	-10. 97	AVG		

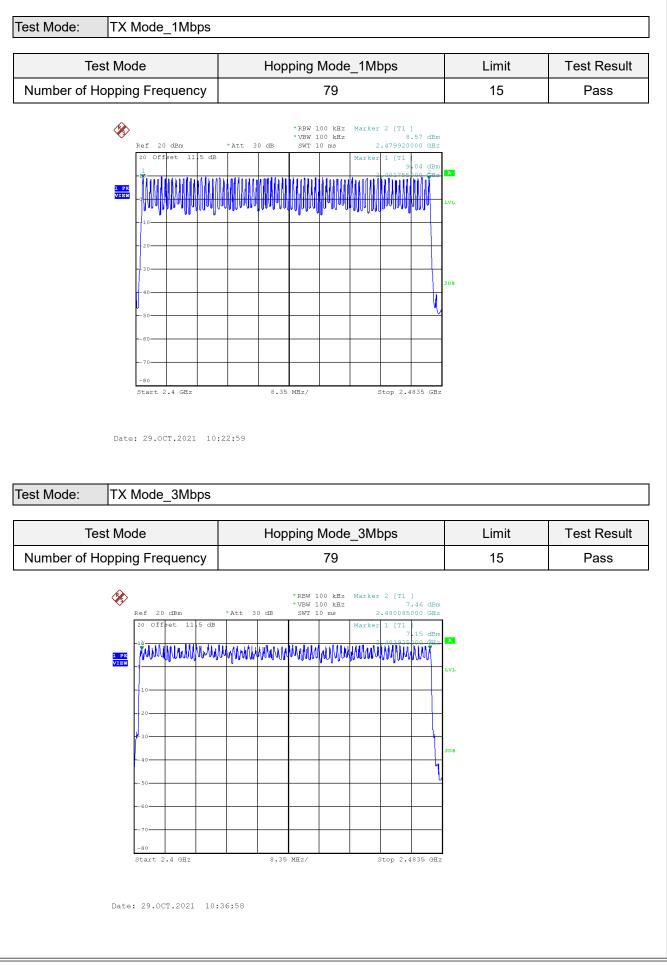
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

SLIV	lode	TX 2480 M	Hz_CH78_3	3Mbps		Po	larization	Ver	tical
						·			
30 d	BuV/m								
 [
ŀ			2						
			×						
			×						
-									
xo									
" [
╞									
+									
20									
000	00 3550.00	0 6100.00	8650.00 11	200.00 13750	0.00 16300	0.00 18850	.00 21400.0	00	26500.00 (MHz)
		Reading	Correct	Measure					(iau rs)
	Freq.	Level	Factor	ment	Limit	Margin			
ŧ	MHz 7439 94	dBuV/m 80 35.21	dB 10.86	dBuV/m 46.07	dBuV/m 54.00	dB -7.93	Detector AVG	r Con	ment
		20 43. 84	10.86	54. 70	74.00	-19.30	Peak		

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



	lode	TX 2480 N	1Hz_CH78	_3Mbps		Po	olarization	Horizontal
						•		-
80 dl	BuV/m							
Γ								
-								
			1 ×					
+			2					
			×					
) -								
\vdash								
	0.00 3550.00	6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	00 01400.00	2650
UU	100 2220.00	0100.00	0000.00	11200.00 1375	0.00 1050	0.00 10000	0.00 21400.00	· 2000 (M
	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	7439.8420		10.86	52. 9 1	74.00	-21. 09	Peak	
	7440. 0660		10.86	43. 53	54.00	-10. 47	AVG	
¢			10.86	43. 53	54.00		AVG	

APPENDIX E - NUMBER OF HOPPING FREQUENCY

APPENDIX F - AVERAGE TIME OF OCCUPANCY

Test Mode	e l	Hopping Mode_1Mbp	S			
		Frequency	Pulse Duration	Dwell Time	Limits	
Data	a Packet	(MHz)	(ms)	(s)	(s)	Test Result
	DH1	2402	0.3950	0.1264	0.4000	Pass
	DH3	2402	1.6600	0.2656	0.4000	Pass
	DH5	2402	2.9200	0.3115	0.4000	Pass
	DH1	2441	0.4000	0.1280	0.4000	Pass
	DH3	2441	1.6600	0.2656	0.4000	Pass
	DH5	2441	2.9200	0.3115	0.4000	Pass
	DH1	2480	0.3950	0.1264	0.4000	Pass
	DH3	2480	1.6600	0.2656	0.4000	Pass
	DH5	2480	2.9200	0.3115	0.4000	Pass

Test Mode: AFH Mode_1Mbps

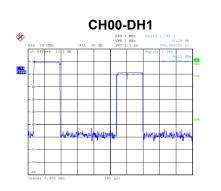
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH1	2430	0.3950	0.0632	0.4000	Pass
DH3	2430	1.6600	0.1328	0.4000	Pass
DH5	2430	2.9200	0.1558	0.4000	Pass
DH1	2439	0.4000	0.0640	0.4000	Pass
DH3	2439	1.6600	0.1328	0.4000	Pass
DH5	2439	2.9200	0.1558	0.4000	Pass
DH1	2449	0.3950	0.0632	0.4000	Pass
DH3	2449	1.6600	0.1328	0.4000	Pass
DH5	2449	2.9200	0.1558	0.4000	Pass

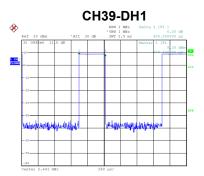
CH78-DH1

RBW 1 MHz VBW 1 MHz SWT 2.5 ms

Mary

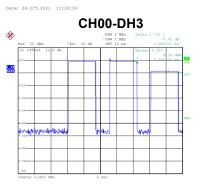
υÌs

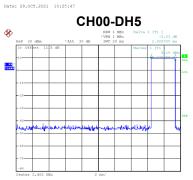

MINAL WY

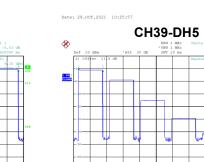

8

1 28

yget



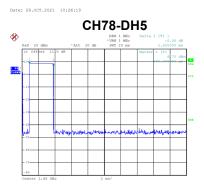



CH39-DH3

MEZ

week

Date: 29.0CT.2021 10:17:50


8

L PR

- 10-Junite

hyrine

Date: 29.0CT.2021 10:26:39

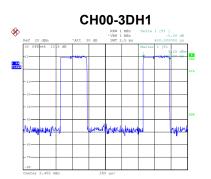
Date: 29.0CT.2021 10:28:12

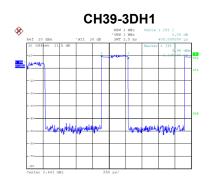
Date: 29.0CT.2021 10:27:53

Τe	est Mode	Hopping Mode_3Mbps						
	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result		
	3DH1	2402	0.4000	0.1280	0.4000	Pass		
	3DH3	2402	1.6600	0.2656	0.4000	Pass		
	3DH5	2402	2.9200	0.3115	0.4000	Pass		
	3DH1	2441	0.4050	0.1296	0.4000	Pass		
	3DH3	2441	1.6600	0.2656	0.4000	Pass		
	3DH5	2441	2.9200	0.3115	0.4000	Pass		
	3DH1	2480	0.4000	0.1280	0.4000	Pass		
	3DH3	2480	1.6400	0.2624	0.4000	Pass		
	3DH5	2480	2.9200	0.3115	0.4000	Pass		

Test Mode: AFH Mode_3Mbps

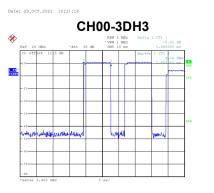
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
3DH1	2430	0.4000	0.0640	0.4000	Pass
3DH3	2430	1.6600	0.1328	0.4000	Pass
3DH5	2430	2.9200	0.1558	0.4000	Pass
3DH1	2439	0.4050	0.0648	0.4000	Pass
3DH3	2439	1.6600	0.1328	0.4000	Pass
3DH5	2439	2.9200	0.1558	0.4000	Pass
3DH1	2449	0.4000	0.0640	0.4000	Pass
3DH3	2449	1.6400	0.1312	0.4000	Pass
3DH5	2449	2.9200	0.1558	0.4000	Pass


CH78-3DH1


NBW 1 MHz VBW 1 MHz SWT 2.5 m

Ø

1 28



CH39-3DH3

1 MHz 1 MHz

born

bring

Wind

 Image: state state

Date: 29.0CT.2021 10:39:57

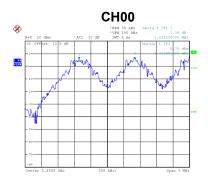
Date: 29.0CT.2021 10:39:50

Date: 29.0CT.2021 10:39:53

Date: 29.0CT.2021 10:31:22

lynn

8


L PR

APPENDIX G - HOPPING CHANNEL SEPARATION

Test Mode	Hopping Mode	_1Mbps		
Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
00	2402	1.022	0.560	Pass
39	2441	1.009	0.569	Pass
78	2480	1.008	0.536	Pass

Date: 29.0CT.2021 10:19:03

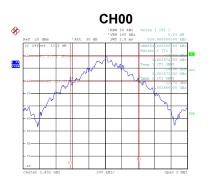
Test Mode Hopping Mode_3Mbps

Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
00	2402	1.002	0.878	Pass
39	2441	0.994	0.844	Pass
78	2480	1.114	0.844	Pass

Date: 29.0CT.2021 10:35:11

Date: 29.0CT.2021 10:32:57

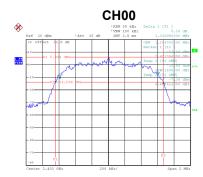
Date: 29.0CT.2021 10:34:04



APPENDIX H - BANDWIDTH

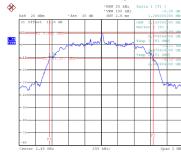
Те	st Mode	TX Mode _1Mbps		
	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
Ī	00	2402	0.840	0.884
-	39	2441	0.854	0.856
Ī	78	2480	0.804	0.864

Date: 29.0CT.2021 09:59:35


Date: 29.0CT.2021 10:01:09

Date: 29.0CT.2021 10:01:50

Test Mode TX Mode _3Mbps


Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
00	2402	1.317	1.204
39	2441	1.266	1.188
78	2480	1.266	1.188

CH39

Date: 29.0CT.2021 10:12:59

CH78

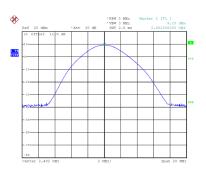
Date: 29.0CT.2021 10:14:27

%

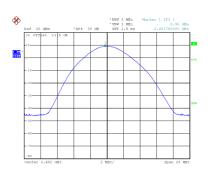
Date: 29.0CT.2021 10:15:01

APPENDIX I - MAXIMUM OUTPUT POWER

t M I -					
est Mode	TX Mode _1M	lops			
Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	9.10	20.97	0.1250	Pass
39	2441	8.77	20.97	0.1250	Pass
78	2480	8.62	20.97	0.1250	Pass
		•			
Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	8.95	20.97	0.1250	Pass


CH00	١

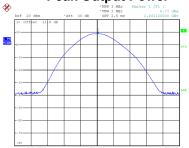
2441


2480

39

78

Date: 29.0CT.2021 09:33:18

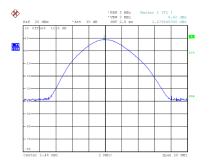

CH39 Peak Output Power

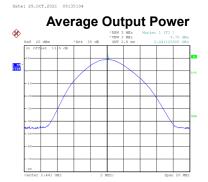
20.97

20.97

8.76

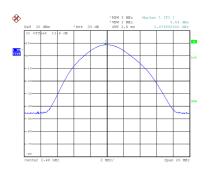
8.54


CH78


Pass

Pass

0.1250


0.1250

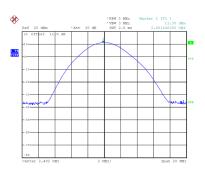
Date: 29.0CT.2021 09:37:23

Date: 29.0CT.2021 09:53:21

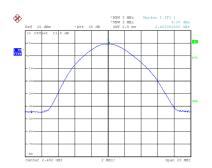
Date: 29.0CT.2021 09:52:25

Date: 29.0CT.2021 09:52:57

est Mode	TX Mode _2N	lbps			
		Deale Output Dewar	Max Limit	Max Limit	
Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	11.30	20.97	0.1250	Pass
39	2441	11.18	20.97	0.1250	Pass
78	2480	11.09	20.97	0.1250	Pass
Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	9.30	20.97	0.1250	Pass


СН00

39


78

2441

2480

Date: 11.NOV.2021 20:04:44

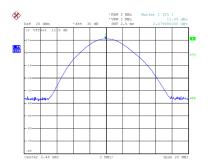
CH39 Peak Output Power

20.97

20.97

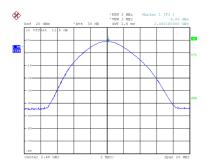
9.22

9.06


 CH78

Pass

Pass


0.1250

0.1250

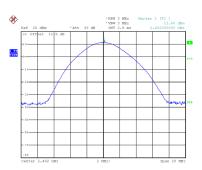
Dete: 11.1007.022 20:04:59

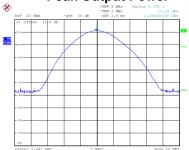
Date: 11.NOV.2021 20:05:11

Date: 29.0CT.2021 10:07:20

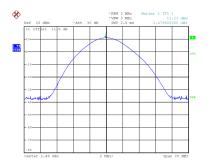
Date: 29.0CT.2021 10:10:14

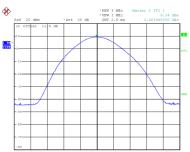
10:14

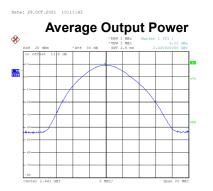

Date: 29.0CT.2021 10:10:33


Fest Mode	TX Mode _3M	bps			
	Frequency	Peak Output Power	Max. Limit	Max. Limit	
Channel	(MHz)	(dBm)	(dBm)	(W)	Test Result
00	2402	11.50	20.97	0.1250	Pass
39	2441	11.29	20.97	0.1250	Pass
78	2480	11.23	20.97	0.1250	Pass
				·	
Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	9.34	20.97	0.1250	Pass

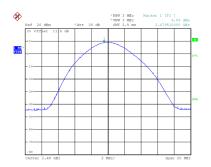
			(ubiii)	(• •)	
00	2402	9.34	20.97	0.1250	Pass
39	2441	9.22	20.97	0.1250	Pass
78	2480	9.08	20.97	0.1250	Pass


СН00


CH39 Peak Output Power



CH78



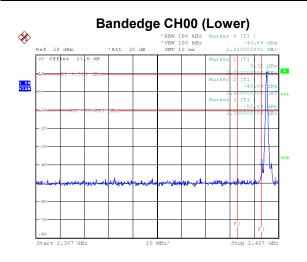
Date: 29.0CT.2021 10:11:29

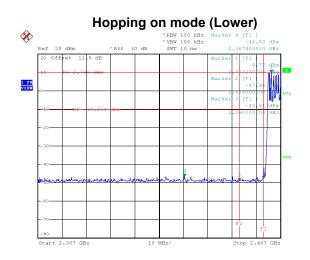
Date: 29.0CT.2021 10:11:57

Date: 29.0CT.2021 10:09:53

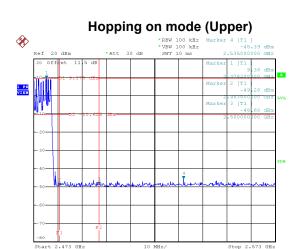
Date: 29.0CT.2021 10:08:26

Date: 29.0CT.2021 10:08:48


APPENDIX J - CONDUCTED SPURIOUS EMISSION

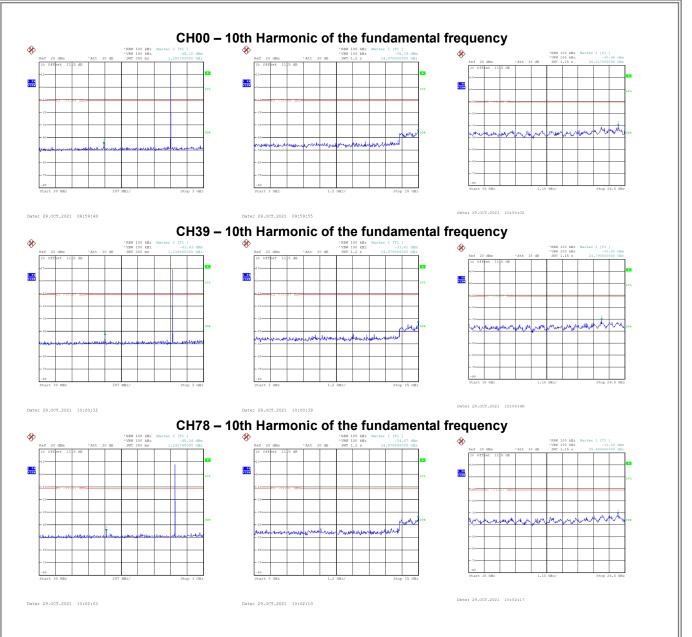

Test Mode

TX Mode _1Mbps



Expression of the second secon

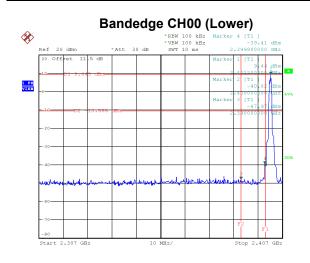
Date: 29.0CT.2021 09:59:10

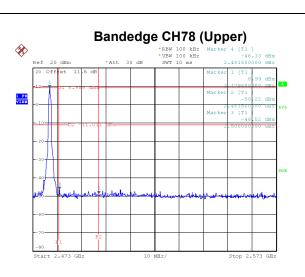

Date: 29.0CT.2021 10:23:33

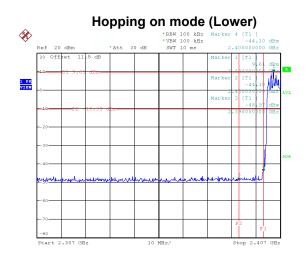
Date: 29.0CT.2021 10:25:12

Date: 29.0CT.2021 10:01:24

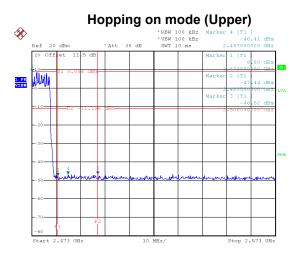
BL



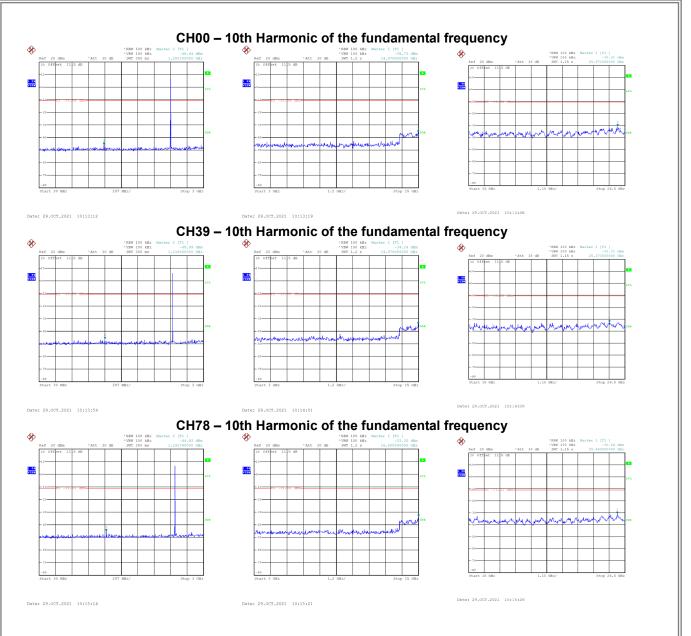



Test Mode

TX Mode _3Mbps



Date: 29.0CT.2021 10:12:43


Date: 29.0CT.2021 10:37:31

Date: 29.0CT.2021 10:14:42

Date: 29.0CT.2021 10:38:50

BL

APPENDIX K - DECLARATION FOR BLUETOOTH DEVICE

1. Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device has no influence on the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason the check of these RF parameters in one op-mode is sufficient.

2. Frequency range of a Bluetooth device:

Hereby we declare that the maximum frequency of this device is: 2402 - 2480MHz. This is according to the Bluetooth Core Specification (+ critical errata) for devices which will be operated in the USA. This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/04-E). Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification are not supported by this device.

3. Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organised in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from its BD address which is unique for each Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4. Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode: 40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5. Equally average use of frequencies in data mode and behaviour for short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

- a) LAP/UAP of the master of the connection.
- b) Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS.

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronisation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of $312.5 \,\mu$ s. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire.

LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR- operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behaviour:

The first connection between the two devices is established, a hopping sequence was generated. For transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 µs). The hopping sequence will always differ from the first one.

6. Receiver input bandwidth and behaviour for repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz. In every connection one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master.

Additionally the type of connection (e.g. single or multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

End of Test Report