

FCC Radio Test Report

FCC ID: RWO-RC300448

This report concerns: Original Grant

TD
ess
nina
es

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Evan Yang

Prepared by : Evan Yang Chay . Cai

Approved by : Chay Cai

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.1 TEST FACILITY 1.2 MEASUREMENT UNCERTAINTY	8
1.3 TEST ENVIRONMENT CONDITIONS	o 9
	-
2. GENERAL INFORMATION	10
2.1 GENERAL DESCRIPTION OF EUT	10
2.2 DESCRIPTION OF TEST MODES	12
2.3 PARAMETERS OF TEST SOFTWARE	13
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	14
2.5 SUPPORT UNITS	15
3 . AC POWER LINE CONDUCTED EMISSIONS	16
3.1 LIMIT	16
3.2 TEST PROCEDURE	16
3.3 DEVIATION FROM TEST STANDARD	16
3.4 TEST SETUP	17
3.5 EUT OPERATING CONDITIONS	17
3.6 TEST RESULTS	17
4. RADIATED EMISSIONS	18
4.1 LIMIT	18
4.2 TEST PROCEDURE	19
4.3 DEVIATION FROM TEST STANDARD	19
4.4 TEST SETUP	20
4.5 EUT OPERATING CONDITIONS	21
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	21
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	21
4.8 TEST RESULTS - ABOVE 1000 MHZ	21
5 . NUMBER OF HOPPING FREQUENCY	22
5.1 LIMIT	22
5.2 TEST PROCEDURE	22
5.3 DEVIATION FROM STANDARD	22
5.4 TEST SETUP	22
5.5 EUT OPERATION CONDITIONS	22

Table of Contents	Page
5.6 TEST RESULTS	22
6 . AVERAGE TIME OF OCCUPANCY	23
6.1 LIMIT	23
6.2 TEST PROCEDURE	23
6.3 DEVIATION FROM STANDARD	23
6.4 TEST SETUP	23
6.5 EUT OPERATION CONDITIONS	23
6.6 TEST RESULTS	23
7 . HOPPING CHANNEL SEPARATION	24
7.1 LIMIT	24
7.2 TEST PROCEDURE	24
7.3 DEVIATION FROM STANDARD	24
7.4 TEST SETUP	24
7.5 EUT OPERATION CONDITIONS	24
7.6 TEST RESULTS	24
8.BANDWIDTH	25
8.1 LIMIT	25
8.2 TEST PROCEDURE	25
8.3 DEVIATION FROM STANDARD	25
8.4 TEST SETUP	25
8.5 EUT OPERATION CONDITIONS	25
8.6 TEST RESULTS	25
9 . MAXIMUM OUTPUT POWER	26
9.1 LIMIT	26
9.2 TEST PROCEDURE	26
9.3 DEVIATION FROM STANDARD	26
9.4 TEST SETUP	26
9.5 EUT OPERATION CONDITIONS	26
9.6 TEST RESULTS	26
10. CONDUCTED SPURIOUS EMISSION	27
10.1 LIMIT	27
10.2 TEST PROCEDURE	27
10.3 DEVIATION FROM STANDARD	27
10.4 TEST SETUP	27

Table of Contents	Page
10.5 EUT OPERATION CONDITIONS	27
10.6 TEST RESULTS	27
11 . MEASUREMENT INSTRUMENTS LIST	28
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	30
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	33
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	38
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	41
APPENDIX E - NUMBER OF HOPPING FREQUENCY	66
APPENDIX F - AVERAGE TIME OF OCCUPANCY	68
APPENDIX G - HOPPING CHANNEL SEPARATION	73
APPENDIX H - BANDWIDTH	75
APPENDIX I - MAXIMUM OUTPUT POWER	77
APPENDIX J - CONDUCTED SPURIOUS EMISSION	81

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2202C029	R00	Original Report.	Mar. 22, 2022	Valid

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	FCC CFR Title 47, Part 15, Subpart C				
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emission	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	PASS		
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	PASS		
15.247(a)(1)	Hopping Channel Separation	APPENDIX G	PASS		
15.247(a)(1)	Bandwidth	APPENDIX H	PASS		
15.247(a)(1)	Maximum Output Power	APPENDIX I	PASS		
15.247(d)	Conducted Spurious Emission	APPENDIX J	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

- (1) "N/A" denotes test is not applicable in this test report
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China. BTL's Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

-	Test Site	Method	Measurement Frequency Range	U,(dB)
	DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30MHz ~ 200MHz	V	4.36
DG-CB03	CISPR	30MHz ~ 200MHz	Н	3.32
(3m)	CIOFIC	200MHz ~ 1,000MHz	V	4.08
		200MHz ~ 1,000MHz	Н	3.96

Test Site	Method Measurement Frequency Range		U,(dB)
DG-CB03	CISPR	1GHz ~ 6GHz	3.80
(3m)	CISER	6GHz ~ 18GHz	4.82

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03	CISPR	18 ~ 26.5 GHz	3.62
(1m)	CISER	26.5 ~ 40 GHz	4.00

C. Other Measurement:

Test Item	Uncertainty
Conducted Spurious Emission	±2.71 dB
Hopping Channel Separation	±53.46 Hz
Maximum Output Power	±0.95 dB
Number of Hopping Frequency	±53.46 Hz
Bandwidth	±3.8 %
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	19°C	51%	AC 120V/60Hz	Rod Tang
Radiated Emissions-9 kHz to 30 MHz	15°C	61%	DC 5V	Torocat Yuan
Radiated Emissions-30 MHz to 1000 MHz	19°C	58%	DC 5V	Lang Chen
Radiated Emissions-Above 1000 MHz	19°C	58%	DC 5V	Lang Chen
Number of Hopping Frequency	24°C	49%	DC 5V	King Huang
Average Time of Occupancy	24°C	49%	DC 5V	King Huang
Hopping Channel Separation	24°C	49%	DC 5V	King Huang
Bandwidth	24°C	49%	DC 5V	King Huang
Maximum Output Power	24°C	49%	DC 5V	King Huang
Conducted Spurious Emission	24°C	49%	DC 5V	King Huang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	USB WIRELESS TRANSCEIVER
Brand Name	RAZER
Test Model	RC30-0448
Series Model	RC30-0448XXXX-XXXX (X can be 0-9 or A-Z)
Model Difference(s)	The system model number is RZ04-0398XXXX-XXXX, this system consists of Gaming Headset (Model: RZ04-0398) and USB Wireless Transceiver (Model: RC30-0448), X can be 0-9 or A-Z.
Power Source	Supplied from USB port.
Power Rating	DC 5V
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK
Bit Rate of Transmitter	1Mbps, 2Mbps, 3Mbps
Max. Peak Output Power	3Mbps: 10.23 dBm (0.0105 W)
Max. Average Output Power	3Mbps: 8.00 dBm (0.0063 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

BIL

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	ONEWAVE	WAN3216F245H08	Chip	N/A	1.75

Note: The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 2	TX Mode_2Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		
Mode 4	TX Mode_3Mbps Channel 78		

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test		
Final Test Mode Description		
Mode 4 TX Mode_3Mbps Channel 78		

Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 4	TX Mode_3Mbps Channel 78		

Radiated emissions test - Above 1GHz			
Final Test Mode Description			
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 3 TX Mode_3Mbps Channel 00/39/78			

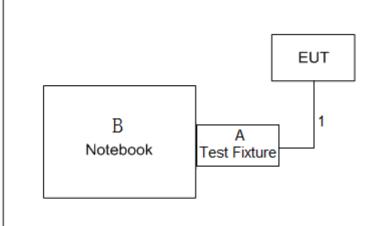
Maximum Output Power			
Final Test Mode Description			
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 2	TX Mode_2Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		

Other Conducted test			
Final Test Mode Description			
Mode 1 TX Mode_1Mbps Channel 00/39/78			
Mode 3 TX Mode_3Mbps Channel 00/39/78			

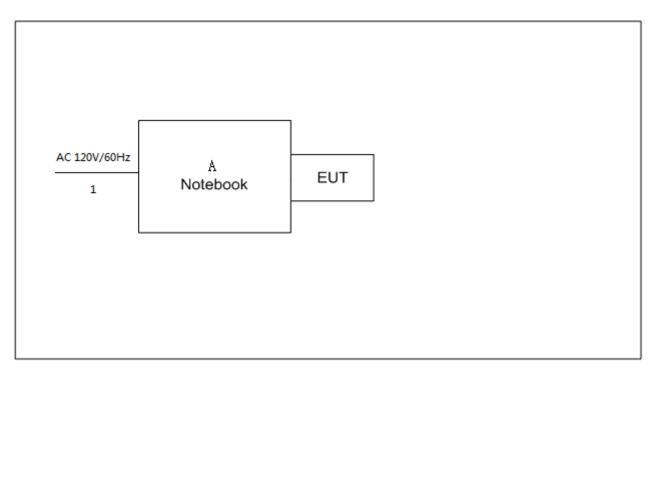
Note:

- (1) The measurements for Output Power were tested with DH1/3/5 during 1Mbps, 2Mbps and 3Mbps, the worst case were 1Mbps (DH5) and 3Mbps (DH5), only worst case were documented for other test items except Average Time of Occupancy.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) This product has the mode of BT AFH, which was considered during testing. 800/20/X(X = 2 of DH1, X = 4 of DH3 or X = 6 of DH5) with 20, 10 or 6.67 hops per second in a channel, and then multiply 0.4*20 (20 # of hopping). But this mode is not the worst case mode as duration of the packet is same, and this report only shows the worst case mode.
- (4) For AC power line conducted emissions and radiated spurious emissions below 1 GHz test, the 3Mbps Channel 78 is found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE


During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	AWRDLABV2(1.0.9.9)		
Frequency (MHz)	2402	2441	2480
1Mbps	0X02	0X02	0X02
2Mbps	0X02	0X02	0X02
3Mbps	0X02	0X02	0X02



2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

For AC Power Line Conducted Emissions

2.5 SUPPORT UNITS

For Radiated Emission – Blowe 1000 MHz

Item	Equipment	Brand	Model No.	Series No.
А	Test Fixture	N/A	N/A	N/A
В	Notebook	HONOR	NBLK-WAX9X	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	Data Cable	NO	NO	0.1m

For Radiated Emission – Above 1000 MHz

Item	Equipment	Brand	Model No.	Series No.
А	Test Fixture	N/A	N/A	N/A
В	Notebook	Lenovo	V310-14ISK	LR07GZNB

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	Data Cable	NO	NO	0.1m

For AC Power Line Conducted Emissions

Item	Equipment	Brand	Model No.	Series No.
А	Notebook	Lenovo	V310-14ISK	LR07GZNB

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	AC Cable	NO	NO	1.1m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

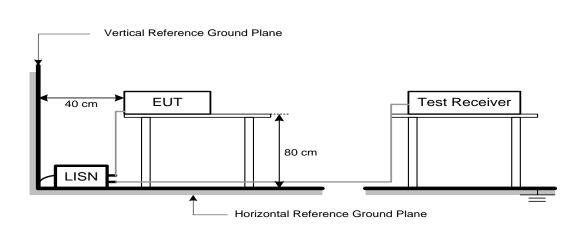
Eroquency of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


The following table is the setting of the receiver:

Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of [Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
	Peak	Average
Above 1000	74	54

Note:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

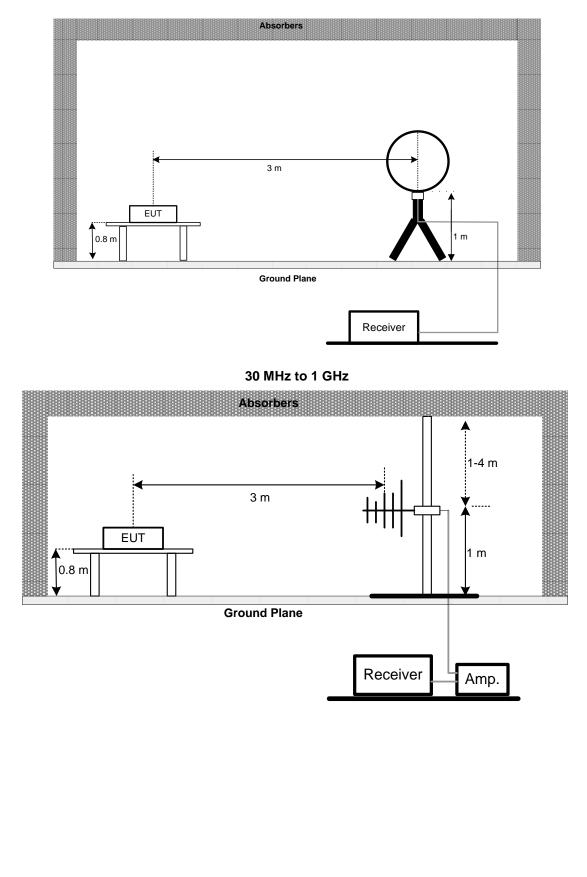
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

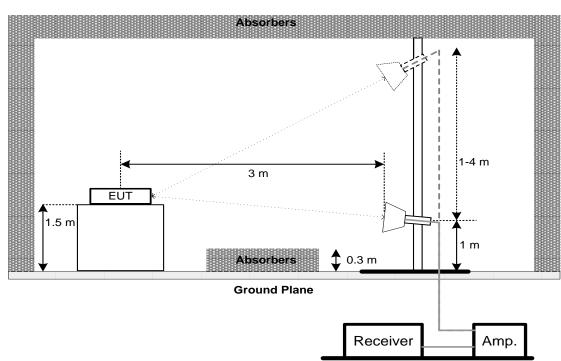
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

Spectrum Parameters	Setting	
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz	
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz	
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz	
Spectrum Parameters	Setting	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1 MHz / 3 MHz for PK value	
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value	
Spectrum Parameters	Setting	
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector	
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector	
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector	
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector	
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector	
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector	


4.3 DEVIATION FROM TEST STANDARD

No deviation.


4.4 TEST SETUP

9 kHz to 30 MHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

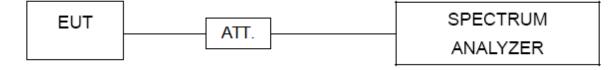
5. NUMBER OF HOPPING FREQUENCY

5.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii) Number of Hopping Frequency		15

5.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.


b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	> Operating Frequency Range
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

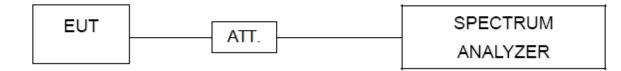
Please refer to the APPENDIX E.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

Section Test Item		Limit
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec

6.2 TEST PROCEDURE


- a. Set the EUT for DH1, DH3 and DH5 packet transmitting.
- b. Measure the maximum time duration of one single pulse.
- c. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- d. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- e. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- f. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- g. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Span Frequency	0 MHz			
RBW	1 MHz			
VBW	1 MHz			
Detector	Peak			
Trace Max Hold				
Sweep Time As necessary to capture the entire dwell time per hopping chan				

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

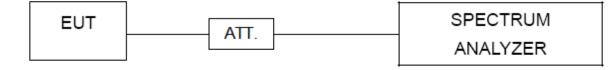
Please refer to the APPENDIX F.

7. HOPPING CHANNEL SEPARATION

7.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Span Frequency	Wide enough to capture the peaks of two adjacent channels		
RBW	30 kHz		
VBW	100 kHz		
Detector	Peak		
Trace Max Hold			
Sweep Time Auto			

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. BANDWIDTH

8.1 LIMIT

Section	Test Item	
FCC 15.247(a)(1)	Bandwidth	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Span Frequency	> Measurement Bandwidth			
RBW	30 kHz			
VBW	100 kHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MAXIMUM OUTPUT POWER

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)	Maximum Output Power	0.1250 Watt or 20.97 dBm

Note: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting	
Span Frequency	Approximately five times the 20 dB bandwidth, centered on a hopping channel.	
RBW	3 MHz	
VBW	3 MHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

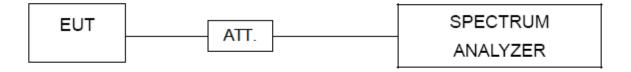
Please refer to the APPENDIX I.

10. CONDUCTED SPURIOUS EMISSION

10.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

10.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting				
Start Frequency	30 MHz				
Stop Frequency	26.5 GHz				
RBW	100 kHz				
VBW	100 kHz				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

11. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100382	Jan. 22, 2023	
2	LISN	EMCO	3816/2	52765	Jan. 23, 2023	
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Jan. 23, 2023	
4	50Ω Terminator	SHX	TF5-3	15041305	N/A	
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
6	Cable	N/A	RG223	12m	Mar. 09, 2022	
7	643 Shield Room	ETS	6*4*3	N/A	N/A	

	Radiated Emissions - 9 kHz to 30 MHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	MXE EMI Receiver	Keysight	N9038A	MY56400091	Jan. 22, 2023	
2*	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Aug. 23, 2024	
3	Cable	N/A	RG 213/U(9kHz~1GHz)	N/A	May 27, 2022	
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
5	966 Chamber Room	ETS	9*6*6	N/A	Jul. 17, 2022	

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022	
2	Amplifier	HP	8447D	2944A08742	Jan. 22, 2023	
3	Cable	emci	LMR-400	N/A	Nov. 30, 2022	
4	Controller	СТ	SC100	N/A	N/A	
5	Controller	MF	MF-7802	MF780208416	N/A	
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
7	Receiver	Agilent	N9038A	MY52130039	Jan. 22, 2023	
8	966 Chamber Room	RM	9*6*6	N/A	Jul. 24, 2022	

	Radiated Emissions - Above 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Apr. 21, 2022	
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022	
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022	
4	Controller	СТ	SC100	N/A	N/A	
5	Controller	MF	MF-7802	MF780208416	N/A	
6	Receiver	Agilent	N9038A	MY52130039	Jan. 22, 2023	
7	EXA Spectrum Analyzer	Keysight	N9010A	MY56480488	Jan. 22, 2023	
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330 -K	619413	Jul. 16, 2022	
9	Cable	N/A	A81-SMAMSMAM- 12.5M	N/A	Oct. 15, 2022	
10	Cable	Talent microwave	A40-2.92M2.92M-2. 5M	N/A	Nov. 30, 2022	
11	Filter	STI	STI15-9912	N/A	Jul. 10, 2022	
12	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
13	966 Chamber Room	RM	9*6*6	N/A	Jul. 24, 2022	
1	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Apr. 21, 2022	

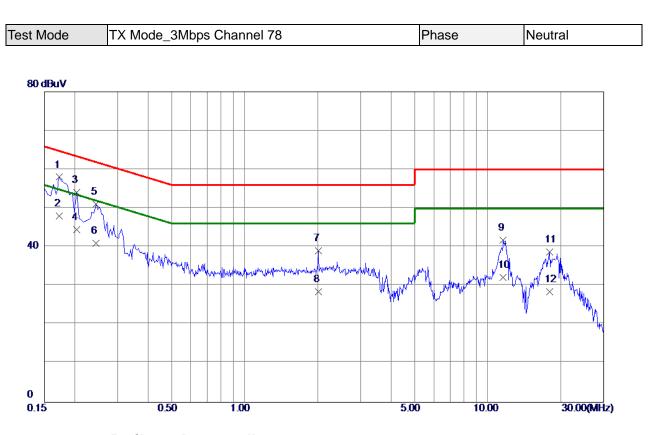
Number of Hopping Frequency & Average Time of Occupancy & Hopping Channel Separation & Bandwidth & Maximum Output Power & Conducted Spurious Emission								
Item	tem Kind of Equipment Manufacturer Type No. Serial No. Calibrated							
1	1 Spectrum Analyzer R&S FSP40 100185		100185	Jul. 10, 2022				
2	2 Attenuator WOKEN 6SM3502 VAS1214NL Feb. 07, 2022							
3	RF Cable	Tongkaichuan	N/A	N/A	N/A			
4	DC Block	Mini	N/A	N/A	N/A			

 $Remark \quad ``N/A" \ denotes \ no \ model \ name, \ serial \ no. \ or \ calibration \ specified.$

"*" calibration period of equipment list is three year.

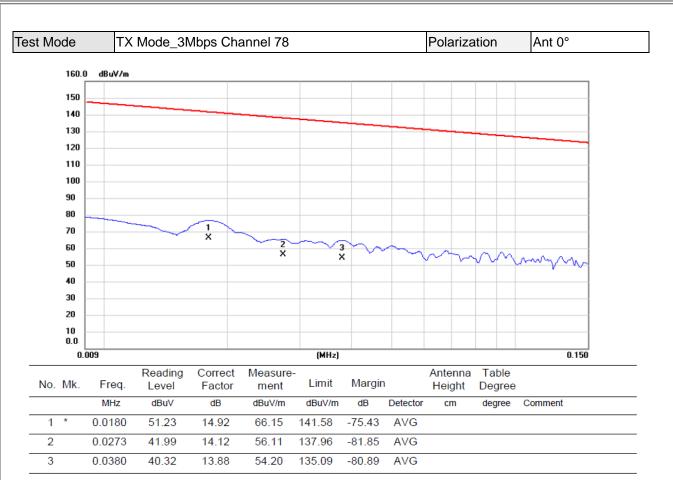
Except * item, all calibration period of equipment list is one year.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

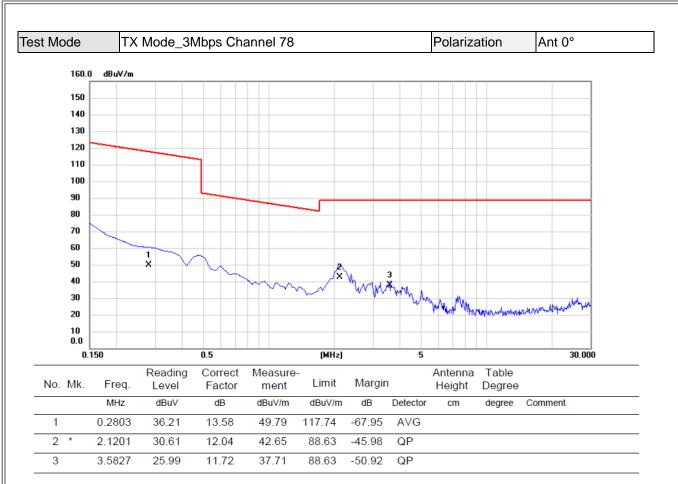


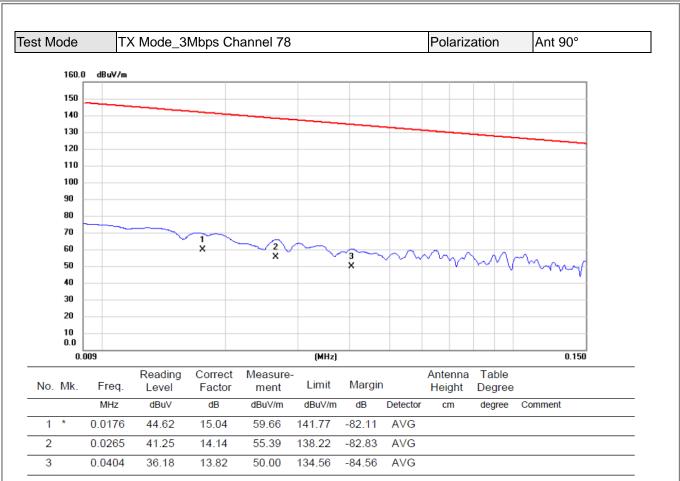
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1590	52.01	9.78	61.79	65.52	-3.73	QP	
2	0.1590	41.00	9.78	50.78	55.52	-4.74	AVG	
3	0.2400	41.68	9.82	51. 50	62.10	-10. 60	QP	
4	0.2400	30. 20	9.82	40.02	52.10	-12.08	AVG	
5	0.2714	38.98	9.82	48.80	61.07	-12.27	QP	
6	0.2714	27.60	9.82	37.42	51. 0 7	-13.65	AVG	
7	1.2345	26.11	10.09	36.20	56.00	-19.80	QP	
8	1.2345	15.19	10.09	25.28	46.00	-20. 72	AVG	
9	5. 4870	26.12	10.34	36.46	60.00	-23. 54	QP	
10	5. 4870	15. 59	10.34	25.93	50.00	-24. 07	AVG	
11	12. 3180	25.10	10. 49	35. <mark>59</mark>	60.00	-24. 41	QP	
12	12. 3180	14. 31	10. 49	24.80	50.00	-25. 20	AVG	

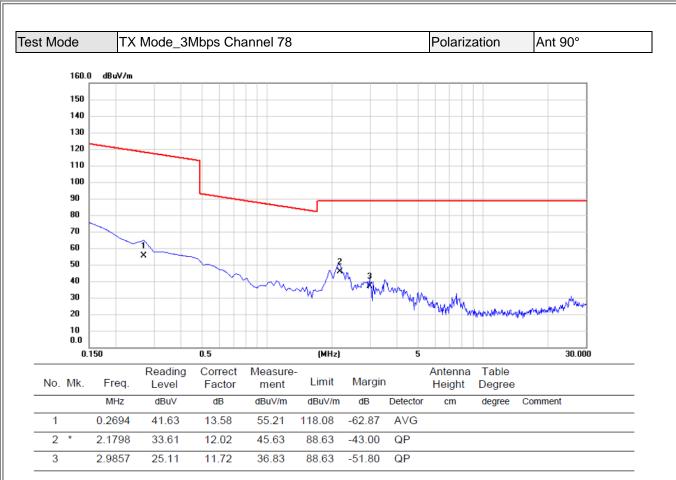
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1725	48.16	9.84	58. 00	64.84	- 6. 84	QP	
2	0.1725	38.10	9.84	47.94	54.84	-6. 90	AVG	
3	0.2040	44.28	9.85	54.13	63.45	-9.32	QP	
4	0.2040	34.60	9.85	44. 45	53.45	-9.00	AVG	
5	0.2445	41.19	9.86	51. 0 5	61.94	-10.89	QP	
6	0.2445	31.10	9.86	40.96	51. 94	-10. 98	AVG	
7	2.0085	28.77	10.22	38.99	56.00	-17.01	QP	
8	2.0085	18.30	10.22	28.52	46.00	-17.48	AVG	
9	11. 5890	31.19	10. 52	41.71	60.00	-18. 29	QP	
10	11. 5890	21.60	10. 52	32.12	50.00	-17.88	AVG	
11	17.9925	27.90	10.87	38.77	60.00	-21.23	QP	
12	17.9925	17.60	10.87	28.47	50.00	-21. 53	AVG	

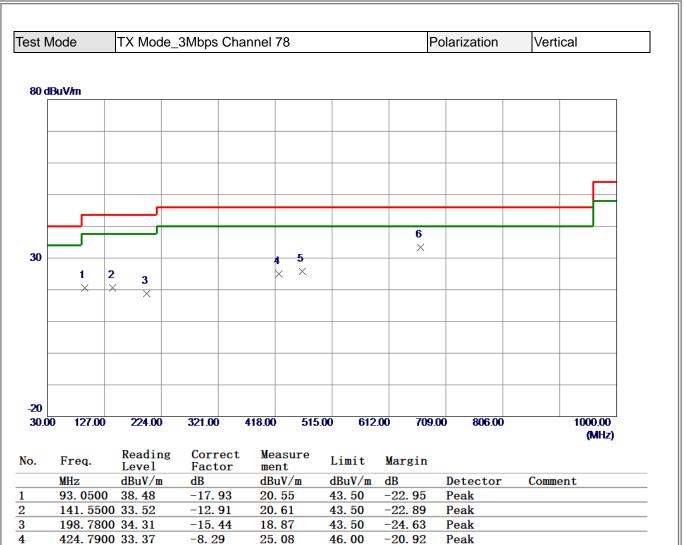
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

46.00

46.00

-20.12

-12.62

Peak

Peak

REMARKS:

5

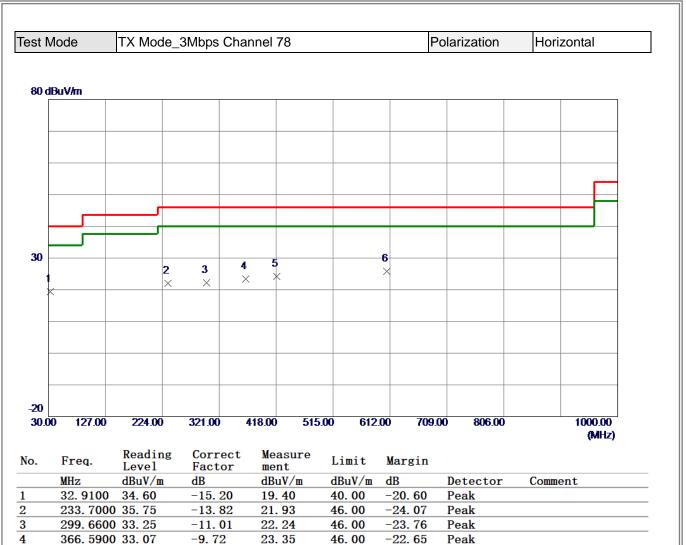
6 *

464. 5600 33. 25

666. 3200 37. 15

(1) Measurement Value = Reading Level + Correct Factor.

-7.37


-3.77

25.88

33.38

(2) Margin Level = Measurement Value - Limit Value.

46.00

46.00

-21.80

-20. 21

Peak

Peak

REMARKS:

5

6 *

418.9700 32.64

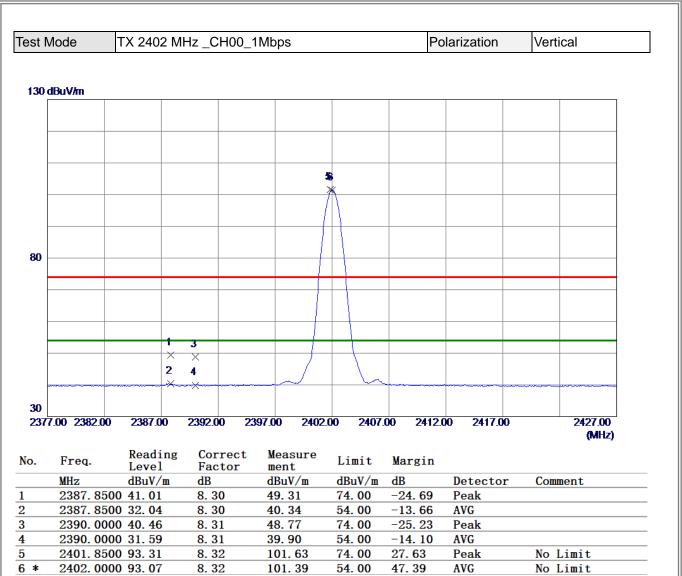
606. 1800 30. 53

(1) Measurement Value = Reading Level + Correct Factor.

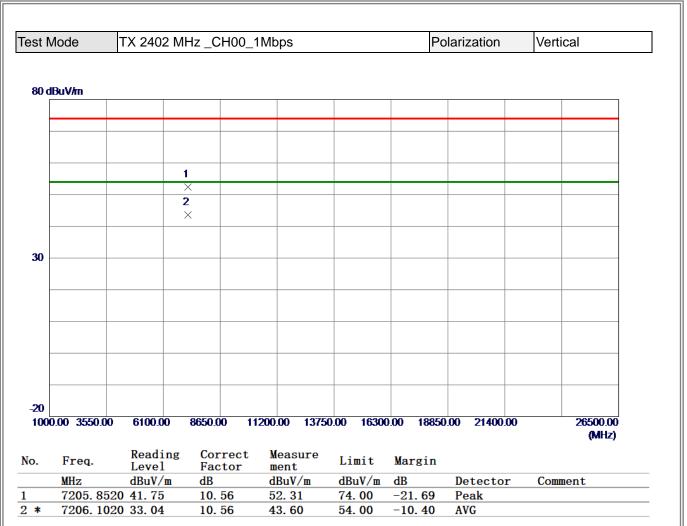
-8.44

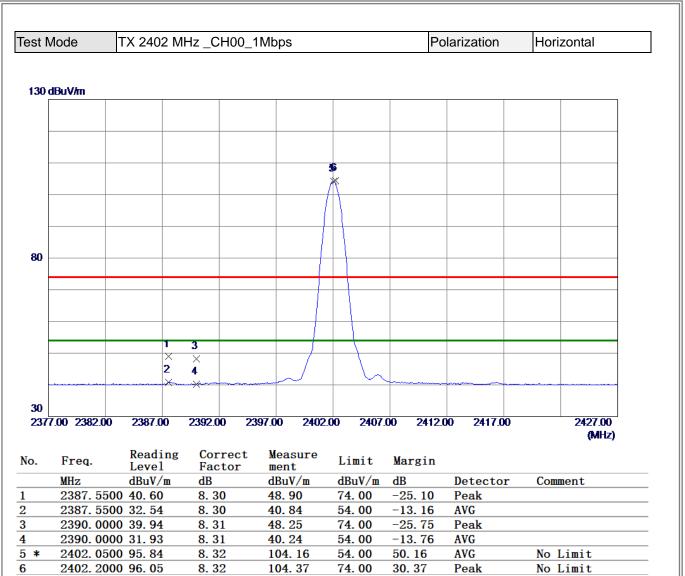
-4.74

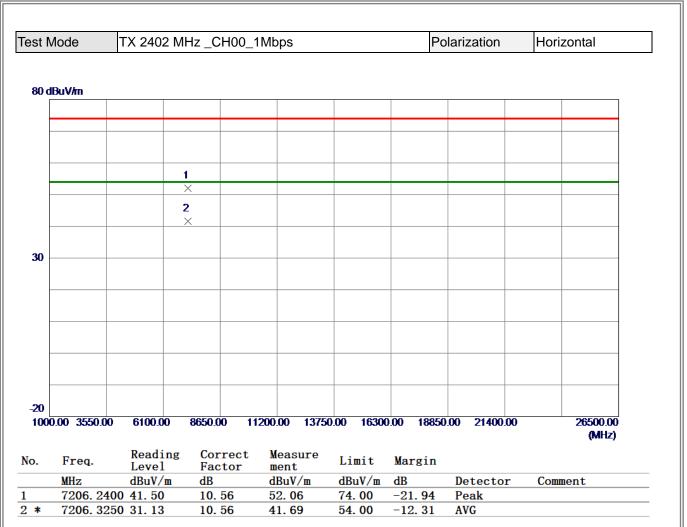
24.20

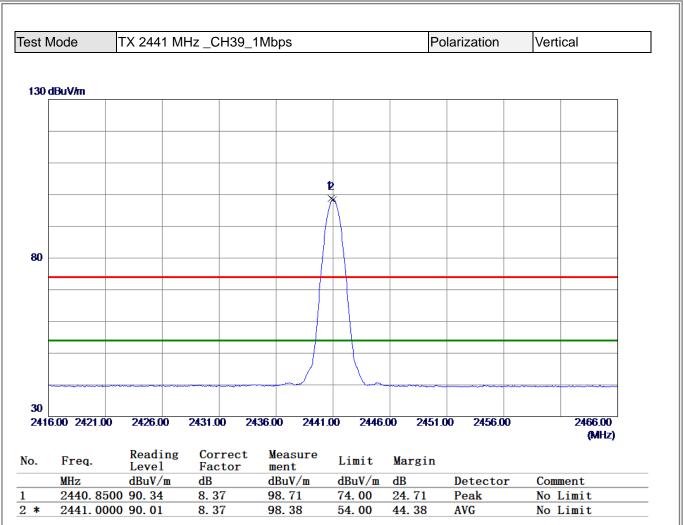

25.79

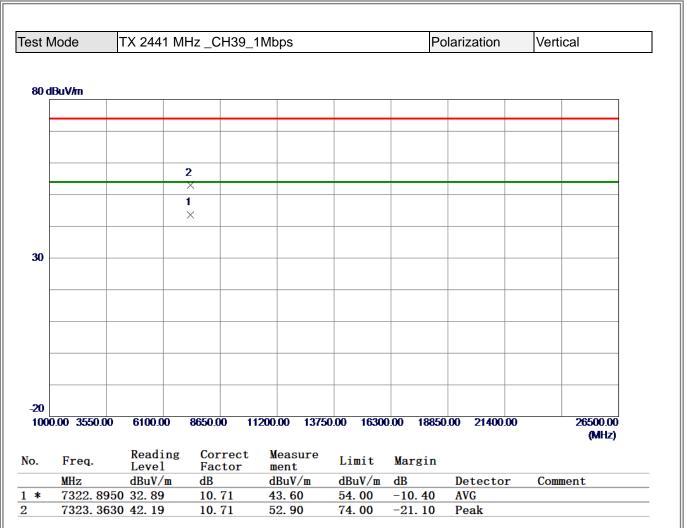
(2) Margin Level = Measurement Value - Limit Value.

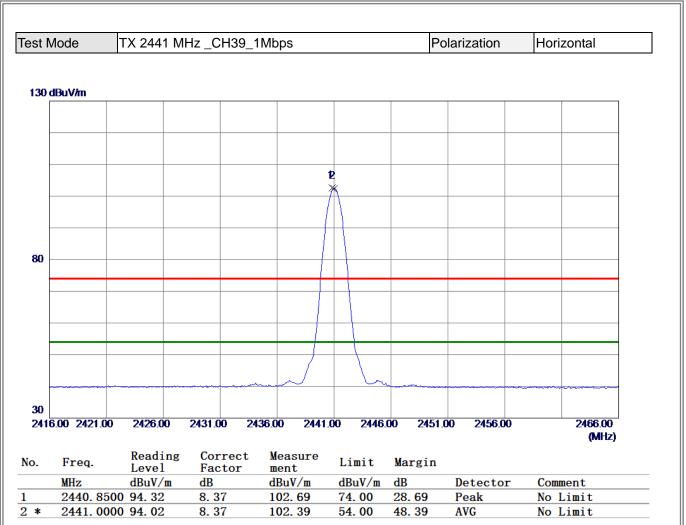

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

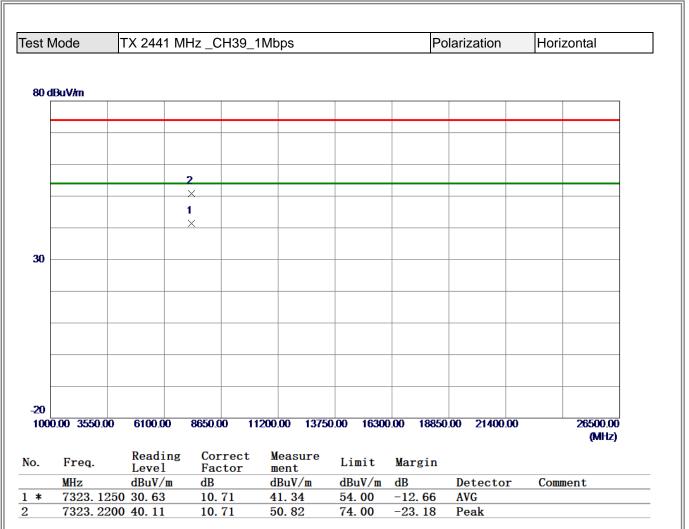

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

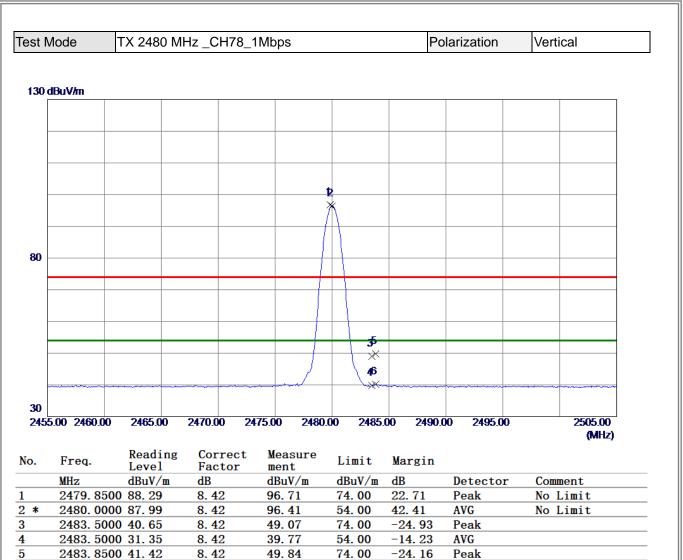

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

6

2483.8500 31.79

(1) Measurement Value = Reading Level + Correct Factor.

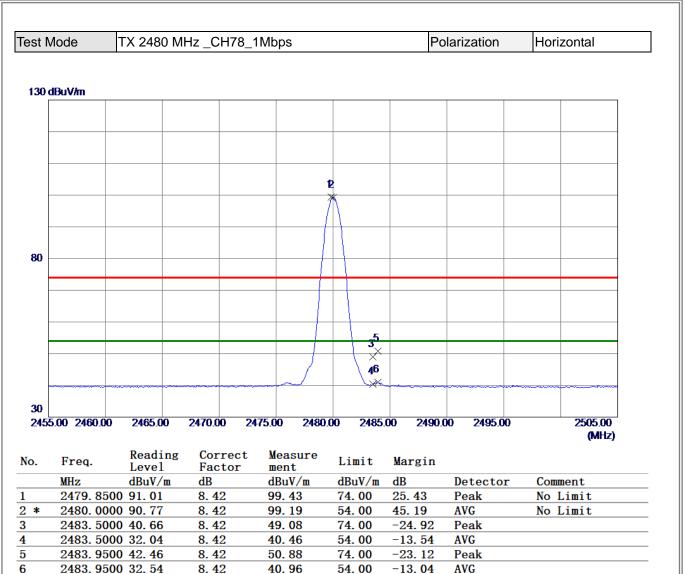
8.42

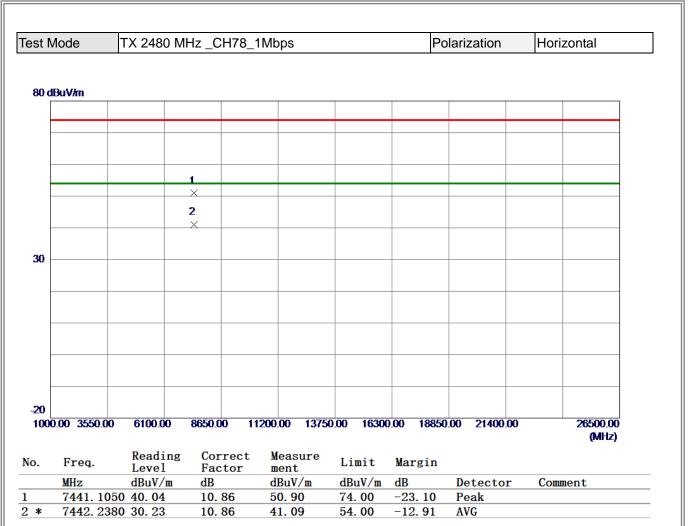
40.21

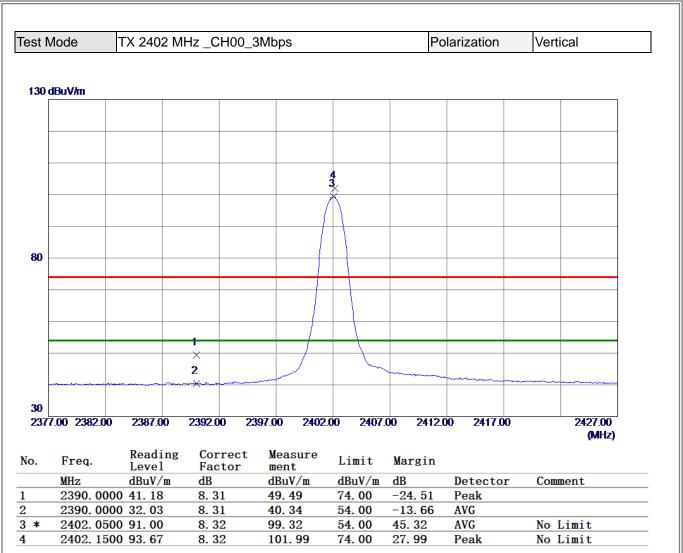
54.00

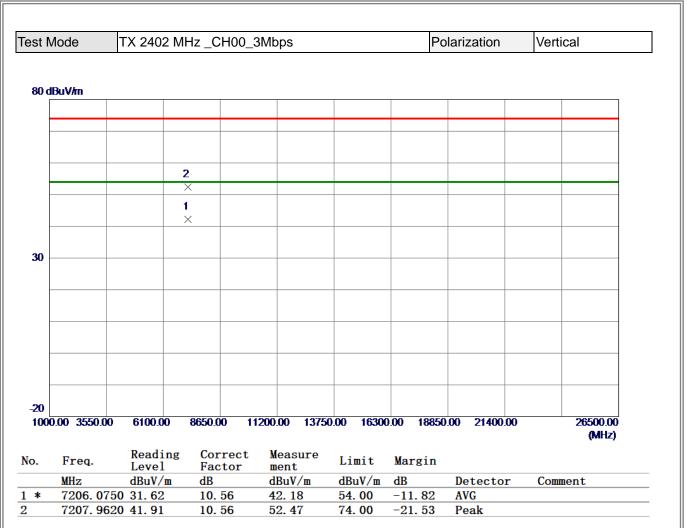
-13.79

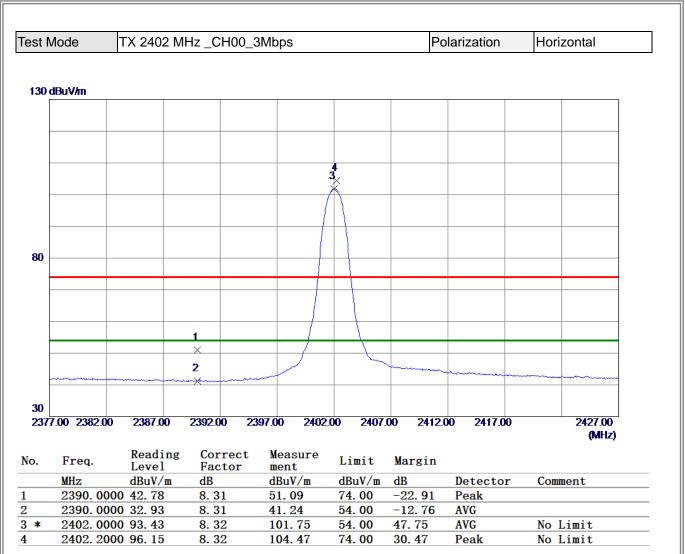
AVG

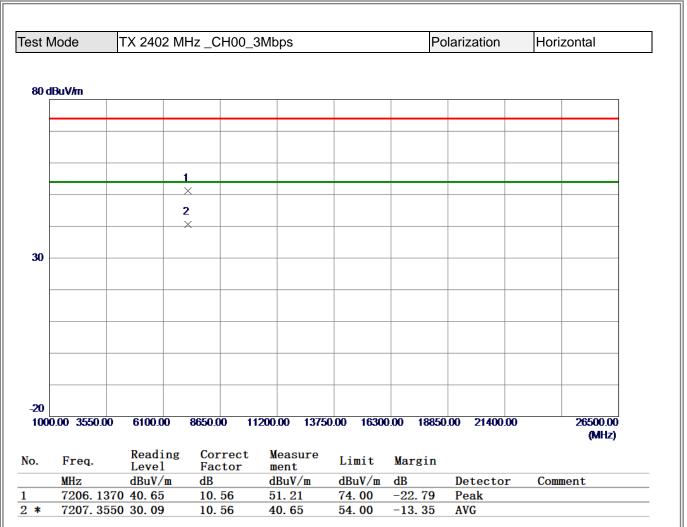

(2) Margin Level = Measurement Value - Limit Value.

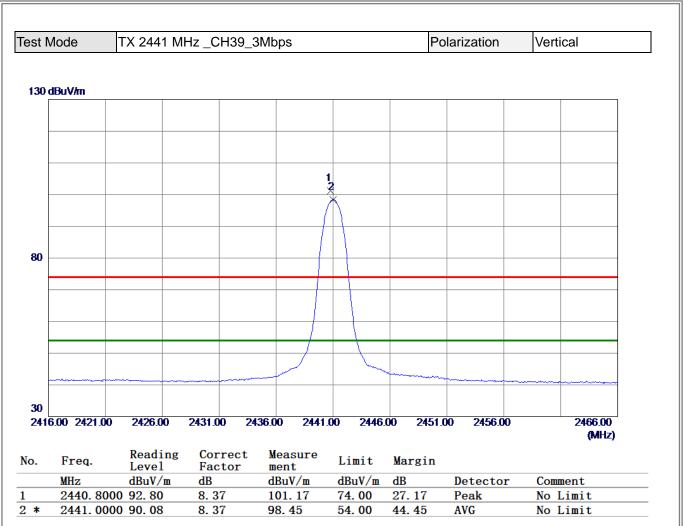

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

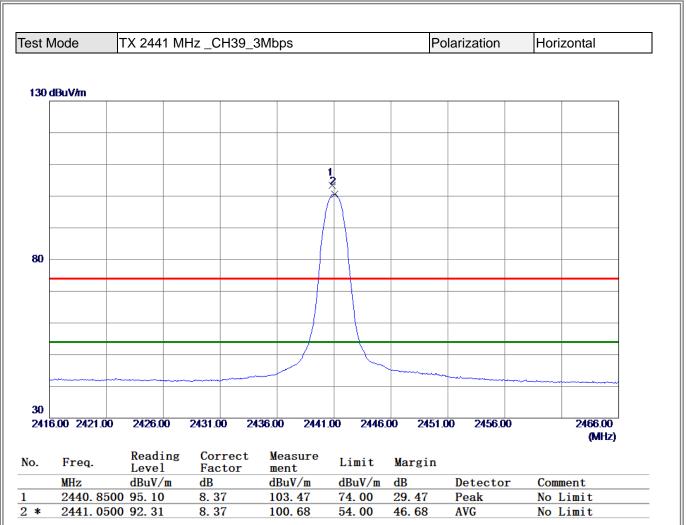

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

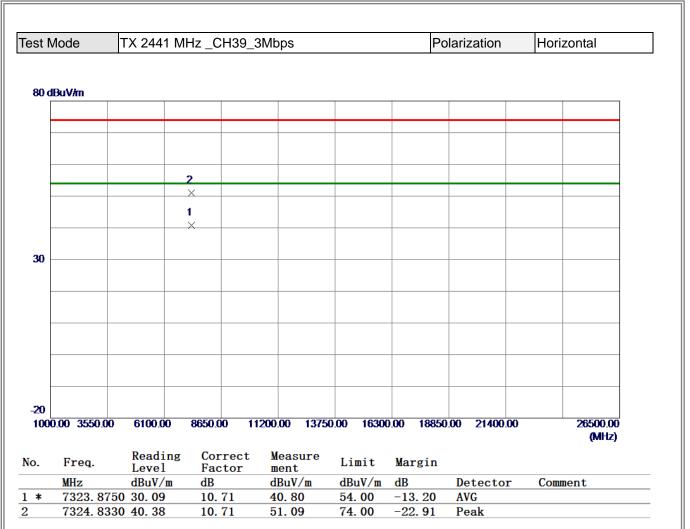

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

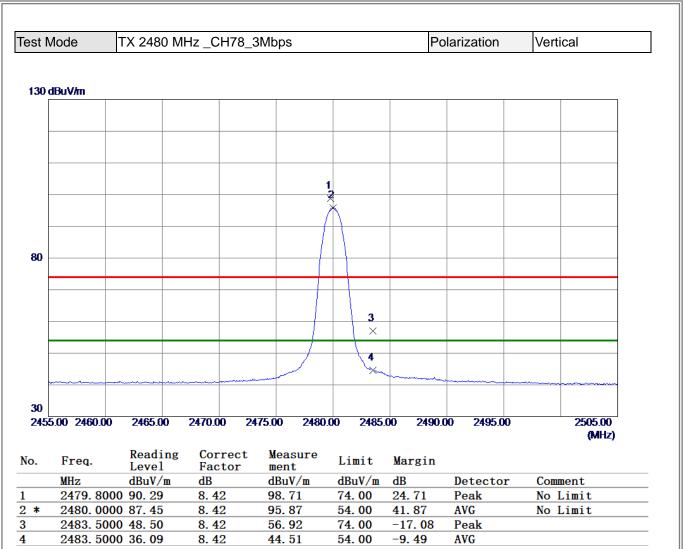

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

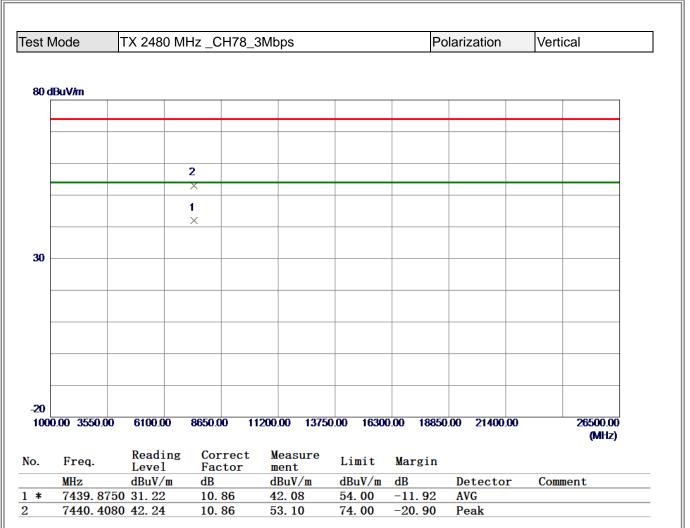

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

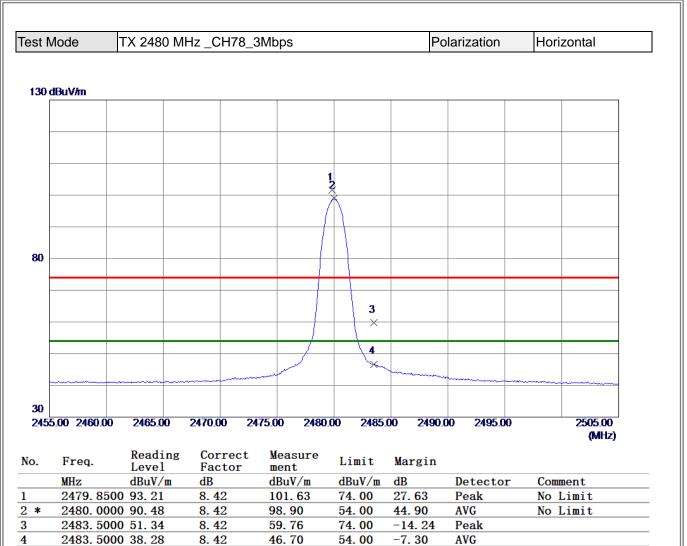
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

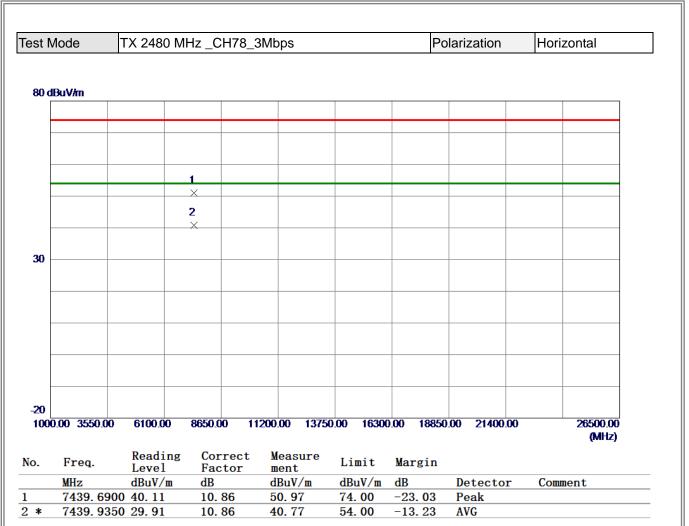

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

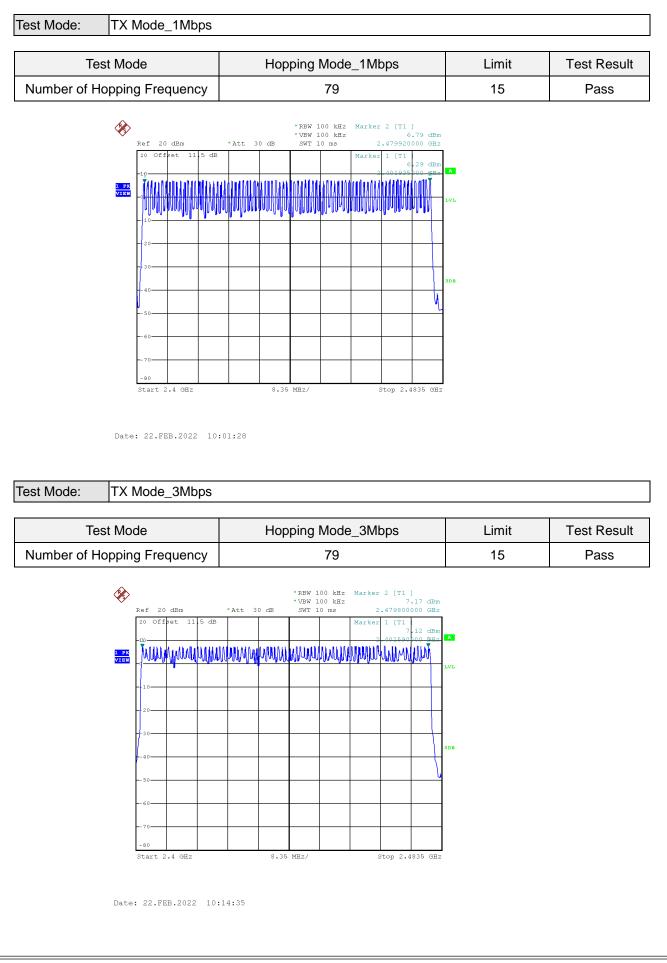

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX E - NUMBER OF HOPPING FREQUENCY

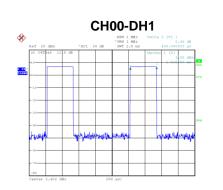
APPENDIX F - AVERAGE TIME OF OCCUPANCY

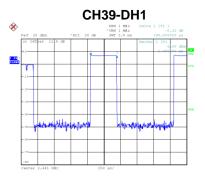
Test Result

Test Mode		Hopping Mode_1Mbps							
	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)				
	DH1	2402	0.4000	0.1280	0.4000				
	DH3	2402	1.6600	0.2656	0.4000				

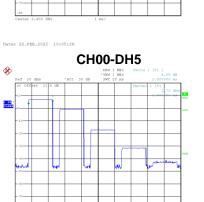
	1	((-)	(-/	
DH1	2402	0.4000	0.1280	0.4000	Pass
DH3	2402	1.6600	0.2656	0.4000	Pass
DH5	2402	2.9200	0.3115	0.4000	Pass
DH1	2441	0.3950	0.1264	0.4000	Pass
DH3	2441	1.6600	0.2656	0.4000	Pass
DH5	2441	2.9200	0.3115	0.4000	Pass
DH1	2480	0.3950	0.1264	0.4000	Pass
DH3	2480	1.6600	0.2656	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass

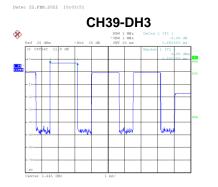
here manuf men profiles be

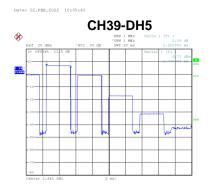

CH78-DH1

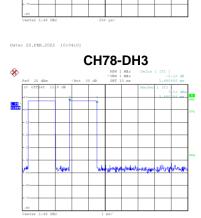

RBW 1 MHz VBW 1 MHz SWT 2.5 mm

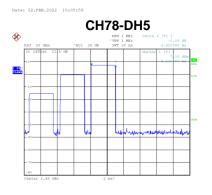
8


1 98









and Hallana mill

Date: 22.FEB.2022 10:06:30

Date: 22.FEB.2022 10:06:50

Date: 22.FEB.2022 10:07:03

Fest Mode	Hopping Mode_3Mbps						
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result		
3DH1	2402	0.4000	0.1280	0.4000	Pass		
3DH3	2402	1.6600	0.2656	0.4000	Pass		
3DH5	2402	2.9200	0.3115	0.4000	Pass		
3DH1	2441	0.4050	0.1296	0.4000	Pass		
3DH3	2441	1.6600	0.2656	0.4000	Pass		
3DH5	2441	2.8800	0.3072	0.4000	Pass		
3DH1	2480	0.3750	0.1200	0.4000	Pass		
3DH3	2480	1.6600	0.2656	0.4000	Pass		
3DH5	2480	2.9200	0.3115	0.4000	Pass		

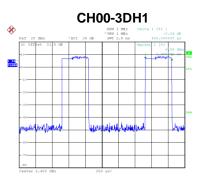
CH78-3DH1

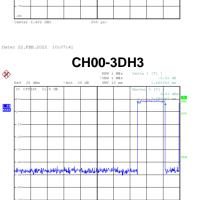
RBW 1 MHz VBW 1 MHz SWT 2.5 m

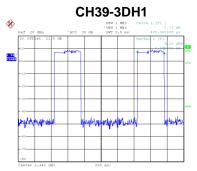
A

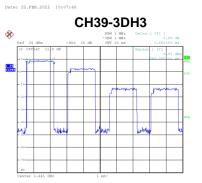
the wh

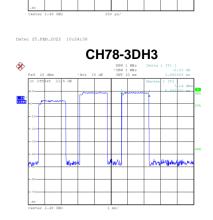
8

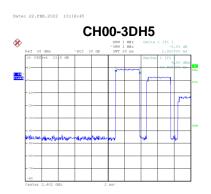

1 28


ad.




8

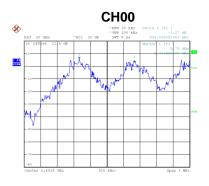

1 PR MARK

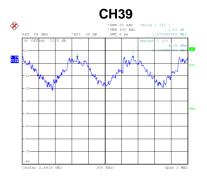




Date: 22.FEB.2022 10:16:51 CH39-3DH5 8 . МП МП 1 PR ~ h J

Date: 22.FEB.2022 10:18:01

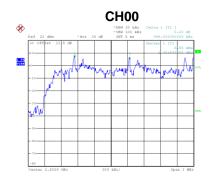

Date: 22.FEB.2022 10:18:07




APPENDIX G - HOPPING CHANNEL SEPARATION

Test Mode Hopping Mod		Hopping Mode	_1Mbps		
	Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
	00	00 2402 0.994		0.641	Pass
	39	2441	1.015	0.571	Pass
	78 2480		0.996	0.611	Pass

Date: 22.FEB.2022 09:57:29


Date: 22.FEB.2022 09:58:36

Date: 22.FEB.2022 09:59:40

Test Mode Hopping Mode_3Mbps

Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
00	2402	0.996	0.851	Pass
39	2441	1.151	0.838	Pass
78	2480	1.008	0.867	Pass

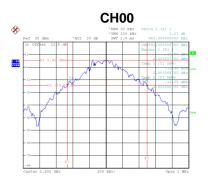
CH39

Date: 22.FEB.2022 10:10:34

Date: 22.FEB.2022 10:11:43

8

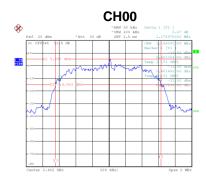
Date: 22.FEB.2022 10:12:47



APPENDIX H - BANDWIDTH

Те	st Mode	TX Mode _1Mbps		
[Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
	00	2402	0.961	0.892
Ī	39	2441	0.856	0.868
Ī	78	2480	0.916	0.872

Date: 22.FEB.2022 09:36:27


Date: 22.FEB.2022 09:38:56

Date: 22.FEB.2022 09:39:47

Test Mode TX Mode _3Mbps

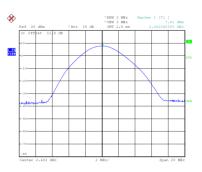
Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
00	2402	1.276	1.196
39	2441	1.257	1.188
78	2480	1.300	1.196

CH39

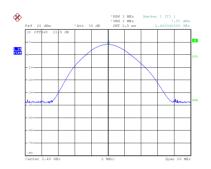
Date: 22.FEB.2022 09:49:27

Date: 22.FEB.2022 09:51:58

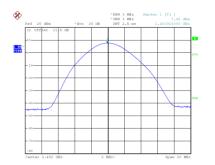
Date: 22.FEB.2022 09:52:49


APPENDIX I - MAXIMUM OUTPUT POWER

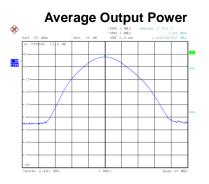
TX Mode _1Mb		lbps			
Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	7.61	20.97	0.1250	Pass
39	2441	7.72	20.97	0.1250	Pass
78	2480	7.97	20.97	0.1250	Pass


Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	7.48	20.97	0.1250	Pass
39	2441	7.58	20.97	0.1250	Pass
78	2480	7.84	20.97	0.1250	Pass

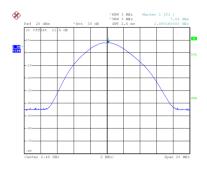
CH00



CH78



Date: 25.FEB.2022 10:45:58

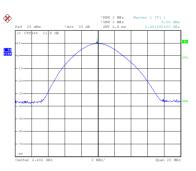


Date: 25.FEB.2022 10:46:26

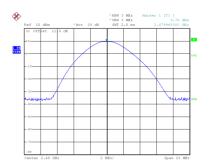
Date: 25.FEB.2022 10:48:12

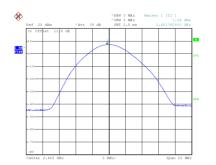
Date: 25.FEB.2022 10:48:53

Date: 25.FEB.2022 10:47:44

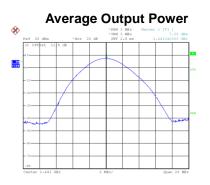

Date: 25.FEB.2022 10:49:34

est Mode	TX Mode _2M	bps			
Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	9.56	20.97	0.1250	Pass
39	2441	9.75	20.97	0.1250	Pass
78	2480	9.78	20.97	0.1250	Pass

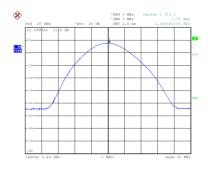

Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	7.24	20.97	0.1250	Pass
39	2441	7.38	20.97	0.1250	Pass
78	2480	7.78	20.97	0.1250	Pass



CH78



Date: 25.FEB.2022 10:53:52

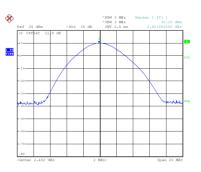


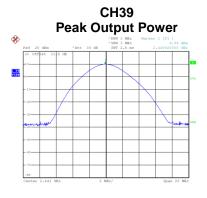
Date: 25.FEB.2022 13:47:39

Date: 25.FEB.2022 11:45:35

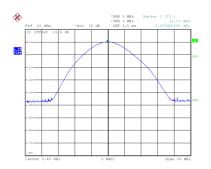
Date: 25.FEB.2022 11:47:34

Date: 25.FEB.2022 13:42:14

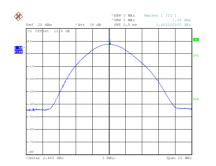

Date: 25.FEB.2022 13:44:53



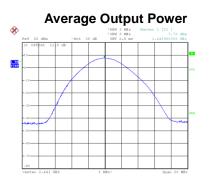
est Mode	TX Mode _3M	ops			
Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	10.10	20.97	0.1250	Pass
39	2441	9.99	20.97	0.1250	Pass
78	2480	10.23	20.97	0.1250	Pass


Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	7.39	20.97	0.1250	Pass
39	2441	7.70	20.97	0.1250	Pass
78	2480	8.00	20.97	0.1250	Pass

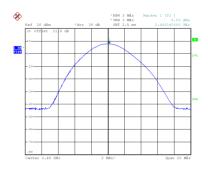
CH00



CH78



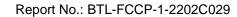
Date: 25.FEB.2022 11:48:19



Date: 25.FEB.2022 10:54:20

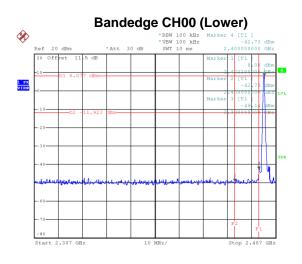
Date: 25.FEB.2022 13:50:56

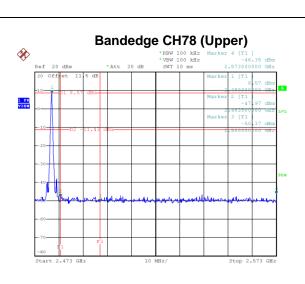
Date: 25.FEB.2022 13:43:51

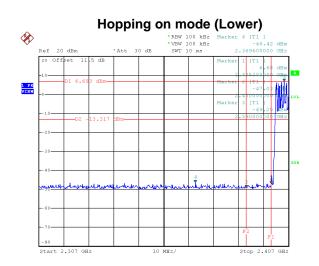


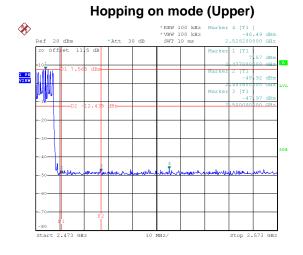
Date: 25.FEB.2022 11:46:03

Date: 25.FEB.2022 11:46:40

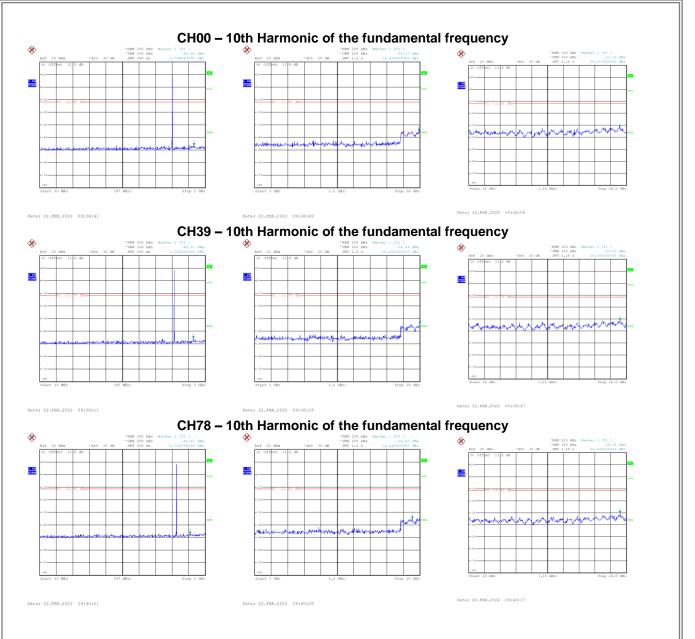



APPENDIX J - CONDUCTED SPURIOUS EMISSION




Test Mode TX Mode _1Mbps

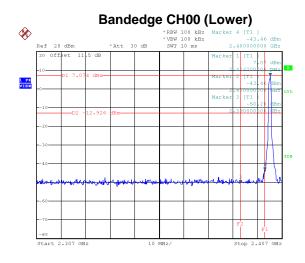
Date: 22.FEB.2022 09:36:02

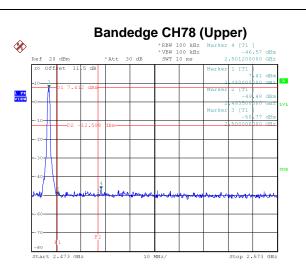


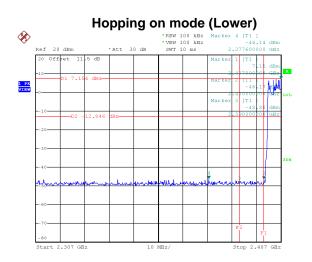
Date: 22.FEB.2022 10:02:02

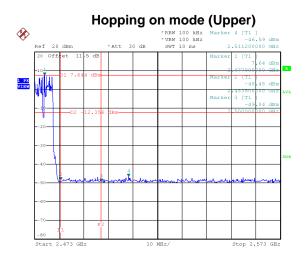
Date: 22.FEB.2022 10:02:38

Date: 22.FEB.2022 09:39:22

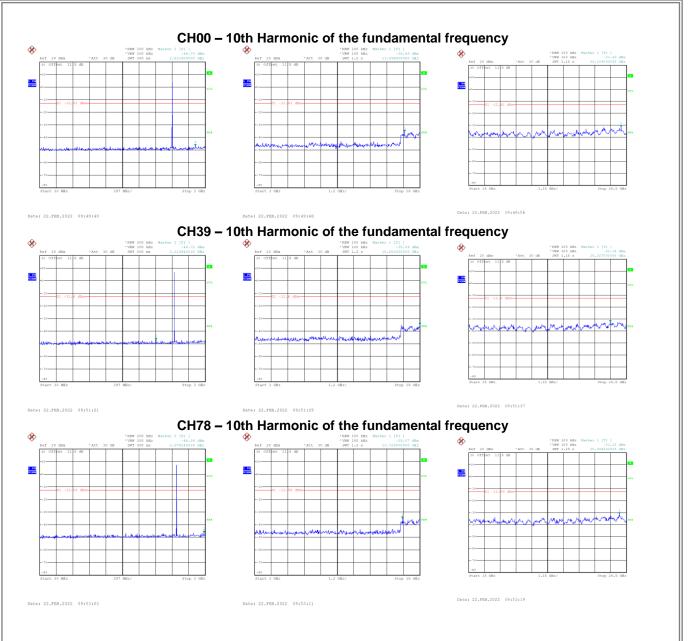

BTL






Test Mode TX Mode _3Mbps

Date: 22.FEB.2022 09:49:05



Date: 22.FEB.2022 10:15:10

Date: 22.FEB.2022 10:15:45

Date: 22.FEB.2022 09:52:30

BTL

