Prüfbericht - Produkte *Test Report - Products*

CN22RMSW(FCC SAR)001 N/A Razer Inc. 9 Pasteur, Suite 100, Irvine, (Wireless Earphones 459 RC30-459XXXX-XXXX(X car Test Report for FCC SAR FCC 47 CFR §2.1093 ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13	Order no.: Auftragsdatum: 2 Order date: CA92618, USA the 0-9 or A-Z)	238549011		Seite 1 von 30 Page 1 of 30
Razer Inc. 9 Pasteur, Suite 100, Irvine, (Wireless Earphones 459 RC30-459XXXX-XXXX(X car Test Report for FCC SAR FCC 47 CFR §2.1093 ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13 A003355028-001	Order date: CA92618, USA	2022-10-21		
 Pasteur, Suite 100, Irvine, 0 Wireless Earphones 459 RC30-459XXXX-XXXX(X car Test Report for FCC SAR FCC 47 CFR §2.1093 ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13 A003355028-001 	n be 0-9 or A-Z)			
459 RC30-459XXXX-XXXX(X car Test Report for FCC SAR FCC 47 CFR §2.1093 ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13				
RC30-459XXXX-XXXX(X car Test Report for FCC SAR FCC 47 CFR §2.1093 ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13 A003355028-001				
FCC 47 CFR §2.1093 ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13	Procedures			
ANSI Std C95.1 EEE Std 1528:2013 EC/IEEE 62209-1528:2020 Published RF Exposure KDB 2022-10-13 A003355028-001	Procedures			
4003355028-001				
2022-10-18 - 2022-10-18				
EMC/RF Taipei Testing Site				
Taipei Testing Laboratories				
Pass		1.		
Morrison Huang	genehmigt von: authorized by:			
Morrison Huang	Issue date: 2022-	-10-27		in Chen
	Stending / Fosition.	·		Jeet Manager
gelivery: gut 3 = befriedigend	i est item complete al		-	5 = mangelhaft
Prüfgrundlage(n)F(ail) = entspricht re good3 = satisfactory		N/A = nicht an 4 = sufficient	nwendbar	N/T = nicht geteste 5 = poor N/T = not tested
	Taipei Testing Laboratories Pass Morrison Huang Project Engineer Morrison Fluang Project Engineer Morrison Huang Project Engineer Morrison Huang Project Engineer f(all) = entsprich to good 3 = satisfactory f(all) = failed a.m. t sich nur auf das o.g. Prüfme Itigt werden. Dieser Bericht b e a. m. test sample. Without pe	Taipei Testing Laboratories Pass Morrison Huong Morrison Huang Project Engineer Stellung / Position: Morrison Huang Project Engineer Stellung / Position: Stellung / Position: Indes bei Anlieferung: Indes bei Anlieferung: Prüfmuster vollständi Test item complete a gut 3 = befriedigend rüfgrundlage(n) F(all) = entspricht nicht o.g. Prüfgrundlage(n) good 3 = satisfactory t specification(s) F(ail) = failed a.m. test specification(s) t sich nur auf das o.g. Prüfmuster und darf ohne G Itigt werden. Dieser Bericht berechtigt nicht zur Ve e a. m. test sample. Without permission of the test centility	Taipei Testing Laboratories Pass Norrison Huang Morrison Huang Project Engineer Stellung / Position: Ausstellungsdatum: Issue date: 2022-10-27 Stellung / Position: Project Engineer Stellung / Position: Prüfmuster vollständig und unber Test item complete and undarea gut 3 = befriedigend 4 = ausreicher rüfgrundlage(n) F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/A = nicht ar god 3 = satisfactory 4 = sufficient v/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app t sich nur auf das o.g. Prüfmuster und darf ohne Genehmigun N/A = not app	Taipei Testing Laboratories Pass Pass Morrison Huang Morrison Huang Project Engineer Stellung / Position: Senior Pro Stellung / Position: Senior Pro Stellung / Position: Senior Pro Project Engineer Project Engineer Project Engineer Prüfmuster vollständig und unbeschädigt Test item complete and undamaged gut 3 = befriedigend rüfgrundlage(n) F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/A = nicht anwendbar good 3 = satisfactory

Prüfbericht - Nr.: CN22RMSW(FCC SAR)001 Test Report No.

Seite 2 von 30 Page 2 of 30

CONTENTS

HIST	ORY OF THIS TEST REPORT	4
1.	GENERAL INFORMATION	5
1.1	STATEMENT OF COMPLIANCE	
1.2	EQUIPMENT UNDER TEST (EUT) INFORMATION	
	2.1 GENERAL INFORMATION	
1.3	2.2 Wireless Technologies Maximum Conducted Power	
2.	TEST SITES	
2.1	Test Laboratory	
2.2	TEST FACILITIES	
2.3	LIST OF TEST AND MEASUREMENT INSTRUMENTS	
3.	MEASUREMENT UNCERTAINTY	9
4.	TEST SPECIFICATION, METHODS AND PROCEDURES	11
5.	RF EXPOSURE LIMITS	12
5.1	UNCONTROLLED ENVIRONMENT	12
5.2	CONTROLLED ENVIRONMENT	12
6.	SAR MEASUREMENT SYSTEM	13
6.1	DEFINITION OF SPECIFIC ABSORPTION RATE (SAR)	13
6.2	SPEAG DASY SYSTEM	
	2.1 Robot	
	 2.2 PROBES 2.3 DATA ACQUISITION ELECTRONICS (DAE) 	
	2.4 Phantoms	
	2.5 DEVICE HOLDER	
	 2.6 SYSTEM VALIDATION DIPOLES 2.7 TISSUE SIMULATING LIQUIDS 	
7 .	SAR MEASUREMENT PROCEDURE	
	AREA & ZOOM SCAN PROCEDURE	
7.2	Volume Scan Procedure	-
7.3	Power Drift Monitoring	-
7.4	SPATIAL PEAK SAR EVALUATION	
7.5	SAR AVERAGED METHODS	21
8.	SAR MEASUREMENT EVALUATION	22
8.1	EUT CONFIGURATION AND SETTING	22
	1.1 ANTENNA LOCATION	
8.2		
8.3	System Validation	24

Prüfbericht - Nr.:CN22RMSW(FCC SAR)001Seite 3 von 30
Page 3 of 30Test Report No.Page 3 of 30

Syste	EM CHECK PROCEDURE	24
8.4	SYSTEM VERIFICATION	25
8.5	MAXIMUM OUTPUT POWER	26
8.5	.1 MEASURED CONDUCTED POWER RESULT	26
8.6	SAR TESTING RESULTS	28
8.6	5.1 SAR TEST REDUCTION CONSIDERATIONS	28
8.6	5.2 SAR RESULTS FOR BODY EXPOSURE CONDITION (SEPARATION DISTANCE IS 0MM GAP).	28
9.	MULTIPLE TRANSMITTER EVALUATION	29
10.	APPENDIXES	30

APPENDIX A – SAR PLOTS OF SYSTEM VERIFICATION

APPENDIX B – SAR PLOTS OF SAR MEASUREMENT

APPENDIX C – CALIBRATION CERTIFICATE FOR PROBE AND DIPOLE

APPENDIX D – PHOTOGRAPHS OF THE TEST SET-UP

Produkte
Products

Prüfbericht - N Test Report No.	rüfbericht - Nr.: CN22RMSW(FCC SAR)001 est Report No.	
	HISTORY OF THIS TEST REPOR	т
Report No.	Description	Date Issued
CN22RMSW(FCC SAR)001	Original Release	2022-10-20
CN22RMSW(FCC SAR)002	Revise Series Model	2022-10-27

Seite 5 von 30 Page 5 of 30

Test Report No.

1. General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows:

Operating Mode	Highest Head SAR _{1g} (W/kg)
BT 3DH5	0.753
BLE	0.795

Note:

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg as averaged over any 1 gram of tissue; 10-gram SAR for Product Specific 10g SAR, limit: 4.0W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Prüfbericht - Nr.:

CN22RMSW(FCC SAR)001

Seite 6 von 30 Page 6 of 30

Test Report No.

1.2 Equipment Under Test (EUT) Information

1.2.1 General Information

EUT Type	Wireless Earphones		
Brand Name	RAZER		
Model Name	459		
FCC ID	RWO-459		
Series Model	RC30-459XXXX-XXXX(X can be 0-9 or A-Z)		
Model Difference(s)	The system model number is RZ12-0459, RZ12-0459XXXX-XXXX. This system contains Wireless Earphones Model: 459 (contains left and right), a Charging Case Model:459C, RC30-459XXXX-XXXX(X can be 0-9 or A-Z) and a USB WIRELESS TRANSCEIVER (Model: RC30-0378).		
Antenna Gain:	-0.37dBi		
Battery	Model Name	CP1054 A5X	
Dattery	Power Rating	DC 3.7V 0.2Wh	

1.2.2 Wireless Technologies

Tx Frequency Bands (Unit: MHz)	Bluetooth:2400 ~ 2483.5 SRD2.4G:2400 ~ 2483.5	
Uplink Modulations	BT(GFSK/π/4-DQPSK/8-DPSK)	
	0-39-78 (2.4G SRD) 0-39-78 (BT) 0-19-39 (BLE)	

1.3 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mode	2.4G SRD	Bluetooth
1M	10	NA
2M	10	NA
3M	10	NA
DH5	NA	10
2DH5	NA	10
3DH5	NA	10
BLE(1M)	NA	9
BLE(2M)	NA	9

CN22RMSW(FCC SAR)001 Prüfbericht - Nr.:

Test Report No.

Seite 7 von 30 Page 7 of 30

2. Test Sites

2.1 Test Laboratory

Taipei Testing Laboratories

11F., No. 758, Sec. 4, Bade Rd., Songshan Dist., Taipei City 105 Taiwan (R.O.C.)

2.2 Test Facilities

Taipei Testing Laboratories

No. 458-18, Sec. 2, Fenliao Rd., Linkou Dist., New Taipei City 244 Taiwan (R.O.C.)

The tests at the test sites have been conducted under the supervision of a TÜV engineer.

Prüfbericht - Nr.:

CN22RMSW(FCC SAR)001

Seite 8 von 30 Page 8 of 30

Test Report No.

2.3 List of Test and Measurement Instruments

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
Data Acquisition Electronics	SPEAG	DAE4	855	Apr. 21, 2022	1 year
E-Field Probe	SPEAG	EX3DV4	7400	Apr. 29, 2022	1 year
System Validation Dipole	SPEAG	D2450V2	804	Mar. 24, 2022	1 year
ENA	Agilent	E5080A	MY55200677	Jan. 20, 2022	1 year
Signal Analyzer	R&S	FSV40	101502	Feb. 24, 2022	1 year
Signal Generator	R&S	SMB100A03	181334	Feb. 25, 2022	1 year
Power Meter	Anritsu	ML2495A	1901008	Mar. 15, 2022	1 year
Power Sensor	Anritsu	MA2411B	1725269	Mar. 15, 2022	1 year
Power Sensor	R&S	SMB100A03	181334	Feb. 25, 2022	1 year
Directional coupler	Fairview microwave	FMCP1025-20	A000553136- 001	N/A	N/A
Power Amplifier Mini circuit	mini-circuits	ZHL-42W	SN002101809	N/A	N/A
Power Amplifier Mini circuit	Emci	EMC2830P	980352	N/A	N/A
Digital Thermometer	Testo	608-H1	45197159	Nov. 26, 2021	1 year
Dielectric assessment Kit	SPEAG	DAK-3.5	1292	N/A	N/A
Phantom	SPEAG	SAM-Twin V5.0	1467	N/A	N/A

Test Report No.

Prüfbericht - Nr.: CN22RMSW(FCC SAR)001

Seite 9 von 30 Page 9 of 30

3. Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor(a)	1/k(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Seite 10 von 30 Page 10 of 30

Test Report No.

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Seite 11 von 30 Page 11 of 30

Test Report No.

4. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR §2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures & manufacturer KDB inquiries:

- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- KDB 447498 D04 Interim General RF Exposure Guidance v01
- KDB 690783 D01 SAR Listings on Grants v01r03

Test Report No.

Seite 12 von 30 Page 12 of 30

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

 Limits for Occupational/Controlled Exposure (W/kg)				
Whole-Body	Hands, Wrists, Feet and Ankles			
0.4	8.0	20.0		

Limits for General Population/Uncontrolled Exposure (W/kg)								
Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles						
0.08	1.6	4.0						

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is average over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Seite 13 von 30 Page 13 of 30

Test Report No.

6. SAR Measurement System

6.1 Definition of Specific Absorption Rate (SAR)

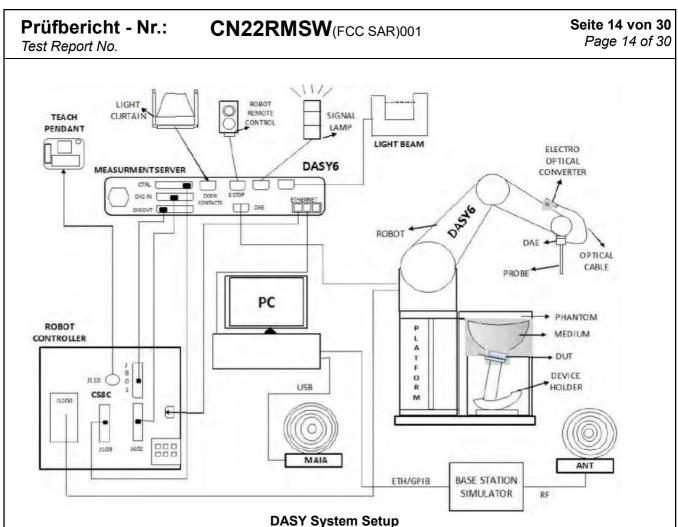
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

6.2 SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY6 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

6.2.1 Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY6: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ± 0.035 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Prüfbericht - Nr.:

CN22RMSW(FCC SAR)001

Seite 15 von 30 Page 15 of 30

Test Report No.

6.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
	Symmetrical design with triangular core. Built-in shielding against	
Construction	static charges. PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE).	
Frequency	4 MHz to 10 GHz	
Frequency	Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis)	
Directivity	± 0.5 dB in tissue material (rotation normal to probe axis)	
Dunamia Danga	10 μW/g to 100 mW/g	
Dynamic Range	Linearity: ± 0.2 dB (noise: typically < 1 µW/g)	
	Overall length: 337 mm (Tip: 20 mm)	
Dimensions	Tip diameter: 2.5 mm (Body: 12 mm)	
	Typical distance from probe tip to dipole centers: 1 mm	

6.2.3 Data Acquisition Electronics (DAE)

Model	DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement	-100 to +300 mV (16 bit resolution and two range settings: 4mV,	
Range	400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

Prüfbericht - Nr.: Test Report No.

CN22RMSW(FCC SAR)001

Seite 16 von 30 Page 16 of 30

6.2.4 **Phantoms**

Material

Shell Thickness

Dimensions

Filling Volume

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEC/IEEE 62209-1528. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	
Model	ELI	
Construction	Phantom for compliance testing of handheld and body- mounted wireless devices in the frequency range of 4 MHz to 10 GHz. ELI is fully compatible with the IEC/IEEE 62209-1528 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of	

the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric

probes and dipoles.

Major axis: 600 mm

Minor axis: 400 mm

approx. 30 liters

2.0 ± 0.2 mm (bottom plate)

Vinylester, glass fiber reinforced (VE-GF)

Prüfbericht - Nr.: C

Test Report No.

CN22RMSW(FCC SAR)001

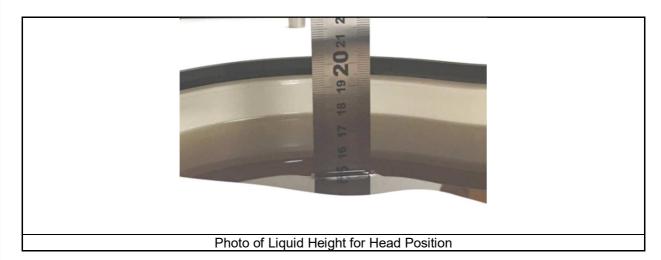
Seite 17 von 30 Page 17 of 30

6.2.5 Device Holder

Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	
Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC/IEEE 62209-1528 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

6.2.6 System Validation Dipoles

Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	300 MHz to 10 GHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	



Seite 18 von 30 Page 18 of 30

Test Report No.

6.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

CN22RMSW(FCC SAR)001

Seite 19 von 30 Page 19 of 30

Prüfbericht - Nr.: Test Report No.

Frequency (MHz)	Target Permittivity	Range of ±5%	Target Conductivity	Range of ±5%
(For Head	j	
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
6500	34.5	32.8 ~ 36.2	6.07	6.04 ~ 6.11

Seite 20 von 30 Page 20 of 30

Test Report No.

7. SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

7.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	≤ 2GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	\leq 15mm	\leq 12 mm	\leq 12 mm	\leq 10 mm	\leq 10 mm
Zoom Scan (Δx, Δy)	\leq 8 mm	\leq 5 mm	\leq 5 mm	\leq 4 mm	\leq 4 mm
Zoom Scan (Δz)	\leq 5 mm	\leq 5 mm	\leq 4 mm	≦3 mm	\leq 2 mm
Zoom Scan Volume	\ge 30 mm	\ge 30 mm	\ge 28 mm	\geq 25 mm	\geq 22 mm

Note:

When zoom scan is required and report SAR is ≤ 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3 GHz): ≤ 8 mm, 3-4 GHz: ≤ 7 mm, 4-6 GHz: ≤ 5 mm) may be applied.

7.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Seite 21 von 30 Page 21 of 30

Test Report No.

7.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

7.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

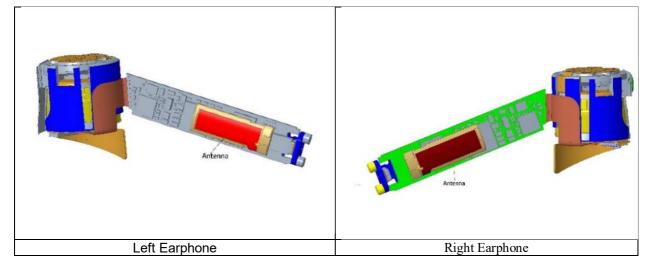
The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

7.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.



Prüfbericht - Nr.:
Test Report No.CN22RMSW(FCC SAR)001Seite 22 von 30
Page 22 of 30

8. SAR Measurement Evaluation

8.1 EUT Configuration and Setting

8.1.1 Antenna Location

	Duty Cy	/cle					Duty (
BT						BLE					
	76.74	%					99.4	1%			
		R 		Ma							
Spectrum		Marker 3		Mari	Spectrum			Mark	er 3	×	
RefLevel -10.00 dBm Att 10 dB ⊕	RBW 3 MHz SWT 20 ms VBW 3 MHz	16.986 ms		_	Ref Level -10. Att	.00 dBm 10 dB ⊜ SWT 7 m	RBW 3 MHz s VBW 3 MHz	5.833	3 ms		
SGL • 1AP Cirw				Mari	SGL 1AP Cirw						P
-20 dBm		M3[1] M1[1]	-38.83 dBm 16.9855 ms -39.13 dBm 2.2319 ms	Mari	-20 dBm			M3[1]		-40.74 dBm 5.8333 ms -40.75 dBm 2.0826 ms	
-30 dBm				Moi Mark	-40 dBm	мі			M2 M3		2
-60 dBm				Mai Norm Mai	-60 dBm						
-80 dBm				t Tra Mai	-80 dBm	angkiliger.			Malitation		
-100 dBm CF 2.402 GHz	691 pts		2.0 ms/	Wiz Maj	-100 dBm CF 2.402 GHz		691 pts			700.0 µs/	F
M2 1 16.	alue Y-value Fi 2319 ms - 39.13 dBm 9986 ms - 38.80 dBm 9855 ms - 38.83 dBm	unction Fun	ction Result	Moi 1/:	Marker Type Ref Trc M1 1 M2 1 M3 1	2.0826 ms 4.9609 ms	Y-value -40.75 dBm -40.79 dBm -40.74 dBm	Function	Function F	tesult	
		Ready	(111111) #	10.08.2	· · · V			-	teady		1

Seite 23 von 30 Page 23 of 30

Test Report No.

8.2 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Tissue Type	Oxidized mineral oil	Tween20	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	44	-	0.2	-	56.0	-	42.1	-
H835	44	48.4	0.2	1.3	57.0	-	41.1	-
H900	44	48.4	0.2	1.4	58.0	-	40.2	-
H1450	44	-	-	0.6	-	-	56.1	-
H1640	44	-	-	0.5	-	-	53.7	-
H1750	44	45.3	-	0.4	-	-	52.6	-
H1800	44	45.3	-	0.5	-	-	55.2	-
H1900	44	45.3	-	0.2	-	-	55.3	-
H2000	44	45.3	-	0.1	-	-	55.4	-
H2300	44	-	-	0.1	-	-	55.0	-
H2450	44	-	-	0.1	-	-	54.9	-
H2600	44	-	-	0.1	-	-	54.8	-
H3500	44	-	-	0.2	-	20.0	71.8	-
H4000	44	-	-	-	-	-	56.0	-
H5G	44	-	-	-	-	17.2	65.5	17.2
H6G	44	-	-	-	-	-	56.0	-

Recipes of Tissue Simulating Liquid

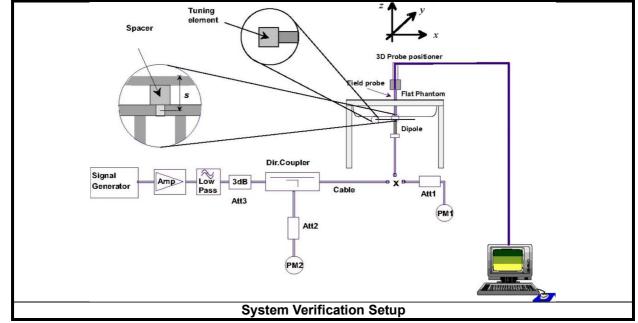
Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16M +resistivity HEC: Hydroxyethyl Cellulose; Sorbitan monolaurate(Tween 20) ;Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] ;Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether.

The measuring results for tissue simulating liquid are shown as below.

	Test Date	Tissue Type	Frequency (MHz)	Measured Conductivity (σ)	Measured Permittivity (ɛ _r)	Target Conductivity (σ)	5	Conductivity Deviation (%)	Permittivity Deviation (%)
Oct.	18, 2022	Head	2450	1.806	40.660	1.80	39.2	0.33	3.72

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within ± 2 °C.


Seite 24 von 30 Page 24 of 30

Test Report No.

8.3 System Validation

System check Procedure

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Seite 25 von 30 Page 25 of 30

Test Report No.

8.4 System Verification

The measuring results for system check are shown as below.

Test Date	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Oct. 18, 2022	2450	51.90	13.20	52.80	1.73	804	7400	855

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Seite 26 von 30 Page 26 of 30

Test Report No.

8.5 Maximum Output Power

8.5.1 Measured Conducted Power Result

All Rate have been tested, the Worst average power (Unit: dBm) is shown as below.

<SRD2.4G>

1. Conducted power measurements of 2.4G SRD

Left Earphone

Mada	Frequency	Channal		Average power (dBm)					
Mode	(MHz)	Channel	1Mbps	2Mbps	3Mbps				
SRD2.4G	2402	0	8.49	8.64	8.66				
	2441	39	8.64	8.83	8.88				
	2480	78	8.49	8.78	8.74				
Tune-up			10.00	10.00	10.00				

Right Earphone

Mada	Frequency	Channal	Average power (dBm)						
Mode	(MHz)	Channel	1Mbps	2Mbps 3Mbps					
SRD2.4G	2402	0	8.53	8.76	8.80				
	2441	39	8.35	8.61	8.70				
	2480	78	8.23	8.41	8.34				
Tune-up			10.00	10.00	10.00				

Note:

1) The Average conducted power of 2.4G SRD is measured with RMS detector.

2) The tested channel results are marks in bold.

Prüfbericht - Nr.: CN22RMSW(FCC SAR)001

Seite 27 von 30 Page 27 of 30

Test Report No.

<BT>

1. Conducted power measurements of BT

Left Earphone

Mode	Frequency	Channel	Average power (dBm)					
Mode	(MHz)	Channel	DH5(1Mbps)	2DH5(2Mbps)	3DH5(3Mbps)			
	2402	0	8.61	8.76	8.78			
ВТ	2441	39	8.68	8.95	8.97			
	2480	78	8.53	8.82	8.86			
Tune-up			10.00	10.00	10.00			

Mode	Frequency	Channel	Channel Average power (dBm) 1Mbps	
Mode	(MHz)	Channel		
	2402	0	7.27	7.31
BLE	2440	19	7.37	7.42
	2480	39	7.22	7.25
	Tune-up		9.00	9.00

Right Earphone

Mode	Frequency	Channel	Average power (dBm)					
Mode	(MHz)	Channel	DH5(1Mbps)	2DH5(2Mbps)	3DH5(3Mbps)			
	2402	0	8.65	8.88	8.92			
ВТ	2441	39	8.39	8.73	8.74			
	2480	78	8.11	8.45	8.46			
Tune-up			10.00	10.00	10.00			

Mode	Frequency	Channel	Average po	ower (dBm)
Mode	(MHz)	Channel	Average power (dBm) 1Mbps 2Mbps 7.33 7.37 7.37 7.13 7.22 7.35	2Mbps
	2402	0	7.33	7.37
BLE	2440	19	7.37	7.13
	2480	39	7.22	7.35
	Tune-up		9.00	9.00

Note:

1) The Average conducted power of BT is measured with RMS detector.

2) The tested channel results are marks in bold.

Seite 28 von 30 Page 28 of 30

Test Report No.

8.6 SAR Testing Results

8.6.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

1) Per KDB447498 D04, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.

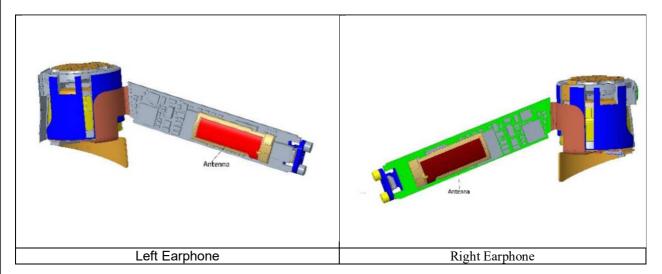
2) Per KDB447498 D04, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

3) Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/kg; if the deviation among the repeated measurement is \leq 20%, and the measured SAR <1.45W/kg, only one repeated measurement is required.

Plot No.	Mode	Test Position	Data Rate	Duty Cycle (%)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Tune-up Scaling Factor	Duty Cycle (%)	Power Drift (dB)	Measured SAR-1g (W/kg)	Measured SAR-10g (W/kg)	Reported SAR-1g (W/kg)
1	BT 3DH5	Left Earphone	3M	99.41	8.97	10.00	1.268	1.006	-0.13	0.075	0.037	0.096
2	BT 3DH5	Right Earphone	3M	99.41	8.92	10.00	1.282	1.006	-0.15	0.126	0.055	0.163
3	BT 3DH5	Rear Face_ Left Earphone	3M	99.41	8.97	10.00	1.268	1.006	0.15	0.256	0.109	0.326
4	BT 3DH5	Rear Face_ Right Earphone	3M	99.41	8.92	10.00	1.282	1.006	-0.18	0.584	0.231	0.753
5	BT 3DH5	Rear Face_ Right Earphone	3M	99.41	8.74	10.00	1.337	1.006	0.07	0.533	0.190	0.717
6	BT 3DH5	Rear Face_ Right Earphone	3M	99.41	8.46	10.00	1.426	1.006	-0.13	0.512	0.186	0.734
7	BLE	Left Earphone	2M	76.74	7.42	9.00	1.439	1.303	0.12	0.089	0.038	0.167
8	BLE	Right Earphone	2M	76.74	7.37	9.00	1.455	1.303	-0.09	0.103	0.051	0.195
9	BLE	Rear Face_ Left Earphone	2M	76.74	7.42	9.00	1.439	1.303	0.08	0.357	0.125	0.669
10	BLE	Rear Face_ Right Earphone	2M	76.74	7.37	9.00	1.455	1.303	-0.11	0.419	0.167	0.795
11	BLE	Rear Face_ Right Earphone	2M	76.74	7.13	9.00	1.538	1.303	-0.13	0.388	0.153	0.778
12	BLE	Rear Face_ Right Earphone	2M	76.74	7.35	9.00	1.462	1.303	0.18	0.379	0.150	0.722

8.6.2 SAR Results for Body Exposure Condition (Separation Distance is 0mm Gap)

Note: The value with boldface is the maximum SAR Value of each test band.


Seite 29 von 30 Page 29 of 30

Test Report No.

9. Multiple Transmitter Evaluation

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498 D04 Interim General RF Exposure Guidance v01.

The location of the antennas inside the EUT is shown as below picture

Note: The EUT only has one antenna and does not have synchronous transmission function.

Prüfbericht - Nr.: CN22RMSW(FCC SAR)001

Test Report No.

10. Appendixes

Appendix A – SAR Plots of System Verification

Appendix B – SAR Plots of SAR Measurement

Appendix C – Calibration Certificate for Probe and Dipole

Appendix D – Photographs of the Test Set-Up

---END----

Seite 30 von 30 Page 30 of 30