

FCC PART 15.247 TEST REPORT

For

Winnix Technologies Co., Limited

4/F R2-B Building, Hi-tech Park, NanShan District, ShenZhen, GuangDong, China

FCC ID: RVZHYR810

Report Type:		Product Type:
Original Report		UHF Desktop Reader
Test Engineer:	Rocky Kang	Rocky Kang
Report Number:	RSZ130808004	-00
Report Date:	2013-11-08	
	Alvin Huang	Hucard
Reviewed By:	RF Leader	1
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Report No.: RSZ130808004-00

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	0
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
Support Equipment List and Details	6
EXTERNAL I/O CABLE	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
APPLICABLE STANDARD	9
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMITTEST RECEIVER SETUP	12
TEST F ROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
Test Results Summary	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	16
APPLICABLE STANDARD	16
MEASUREMENT UNCERTAINTY	16
EUT SETUP	16
EMITTEST RECEIVER & SPECTRUM ANALYZER SETUP Test Procedure	17
Corrected Amplitude & Margin Calculation	
TEST EQUIPMENT LIST AND DETAILS	17
Test Results Summary	
TEST DATA	18
FCC §15.247(a) (1) (i)-CHANNEL SEPARATION	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUITMENT LIST AND DETAILS	
ECC 815 247(a) (1) (i) $= 20$ dB EMISSION BANDWIDTH	22
$F \subset \{315, 277(a), (1), (1) = 20 up EVIISSION DATID WID III$	4J

FCC Part15.247

Page 2 of 36

Report No.: RSZ130808004-00

PRODUCT SIMILARITY DECLARATION LETTER	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
Applicable Standard Test Procedure	
FCC §15.247(d) - BAND EDGES	
TEST DATA	
TEST EQUIPMENT LIST AND DETAILS	
APPLICABLE STANDARD Test Procedure	
FCC §15.247(b) (2) - PEAK OUTPUT POWER MEASUREMENT	
TEST DATA	
TEST PROCEDURE	
APPLICABLE STANDARD	
FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)	
TEST DATA	
TEST EQUIPMENT LIST AND DETAILS	
APPLICABLE STANDARD Test Procedure	
FCC §15.247(a) (1) (i)-QUANTITY OF HOPPING CHANNEL	
TEST DATA	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
APPLICABLE STANDARD	23

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Winnix Technologies Co., Limited*'s product, model number: *HYR810 (FCC ID: RVZHYR810)* or the "EUT" in this report was a *UHF Desktop Reader*, which was measured approximately: 12.9 cm (L) x 8.0 cm (W) x 2.2 cm (H), rated with input voltage: DC 5V from USB port.

Note: The product, series model HYR810, UR810 and UR1 are electrically identical, they are just diffetent in model number due to market purposes, which was explained in the attached declaration letter that stated and guaranteed by the applicant. And the model HYR810 was selected for fully testing.

*All measurement and test data in this report was gathered from production sample serial number: 1308025 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2013-08-08.

Objective

This test report is prepared on behalf of *Winnix Technologies Co., Limited* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a testing mode which was controlled by Software.

Equipment Modifications

No modification was made to the EUT.

EUT Exercise Software

UHF RFID Demo V2.02

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	РС	127BP2X	N/A
DELL	Keyboard	L100	CNORH656658907BL04TY
DELL	Mouse	MOC5UO	G1B0096D
DELL	Monitor	E178WFPC	CN-OWY564-64180-7C4-2SQH

External I/O Cable

Cable Description	Length (m)	From/Port	То
Shielded Detachable K/B Cable	1.5	Host PC	Keyboard
Shielded Detachable USB Cable	1.5	Host PC	Mouse
Shielded Detachable VGA Cable	1.5	Host PC	Monitor
Unshielded Detachable USB Cable	1.4	EUT	PC

Report No.: RSZ130808004-00

Block Diagram of Test Setup

FCC Part15.247

Page 7 of 36

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b)(1), §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)(i)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)(i)	Channel Separation	Compliance
§15.247(a)(1)(i)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(i)	Quantity of hopping channel	Compliance
§15.247(b)(2)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

	(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)	
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f ²)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Calculated Data:

Frequency	Anten	ina Gain	Conduc	ted Power	Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)
902.75	3	1.995	17.32	53.95	20	0.0214	0.602
915.75	3	1.995	16.66	46.34	20	0.0184	0.610
927.25	3	1.995	15.91	38.99	20	0.0155	0.618

Result: Compliance

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has a circular polarized antenna which was permanently attached and the gain is 3dBi, fulfill the requirement of this section. Please refer to the internal photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between AMN/ISN and receiver, AMN/ISN voltage division factor, AMN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Port	Measurement uncertainty
AC Mains	3.26 dB (k=2, 95% level of confidence)
CAT 3	3.70 dB (k=2, 95% level of confidence)
CAT 5	3.86 dB (k=2, 95% level of confidence)
CAT 6	4.64 dB (k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part15.247

Page 11 of 36

The measurement procedure of EUT setup is according with ANSI C63.4-2009. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm

The host PC was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the host PC was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2013-06-17	2014-06-17
Rohde & Schwarz	1 st LISN	ENV216	3560.6650.12- 101613-Yb	2013-05-07	2014-05-07
Rohde & Schwarz	2 nd LISN	ESH2-Z5	892107/021	2013-08-22	2014-08-22
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2013-08-09	2014-08-08
Rohde & Schwarz	CE Test software	EMC 32	8.95	-	-

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, with the worst margin reading of:

2.0 dB at 18.082000 MHz in the Neutral conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

 $L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$

in BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Environmental Conditions

Temperature:	25°C
Relative Humidity:	54 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-26.

EUT operation mode: Transmitting

AC 120 V, 60 Hz, Line:

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.594000	35.0	19.5	56.0	21.0	QP
2.150000	27.5	19.5	56.0	28.5	QP
3.010000	29.0	19.6	56.0	27.0	QP
18.082000	49.1	20.0	60.0	10.9	QP
24.106000	48.5	20.2	60.0	11.5	QP
27.122000	39.2	20.3	60.0	20.8	QP
0.594000	30.8	19.5	46.0	15.2	Ave.
2.150000	20.6	19.5	46.0	25.4	Ave.
3.010000	23.2	19.6	46.0	22.8	Ave.
18.082000	47.5	20.0	50.0	2.5	Ave.
24.106000	47.4	20.2	50.0	2.6	Ave.
27.122000	37.8	20.3	50.0	12.2	Ave.

AC 120V, 60 Hz, Neutral:

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.554000	35.5	19.5	56.0	20.5	QP
2.038000	27.7	19.6	56.0	28.3	QP
2.706000	32.3	19.6	56.0	23.7	QP
18.082000	49.2	20.1	60.0	10.8	QP
24.106000	48.5	20.3	60.0	11.5	QP
27.122000	39.0	20.4	60.0	21.0	QP
0.554000	25.6	19.5	46.0	20.4	Ave.
2.038000	21.0	19.6	46.0	25.0	Ave.
2.706000	28.5	19.6	46.0	17.5	Ave.
18.082000	48.0	20.1	50.0	2.0	Ave.
24.106000	47.3	20.3	50.0	2.7	Ave.
27.122000	37.9	20.4	50.0	12.1	Ave.

Note:

1) Correction Factor =LISN/ISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation The corrected factor has been input into the transducer of the test software. 2) Corrected Amplitude = Reading + Correction Factor

3) Margin = Limit – Corrected Amplitude

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, and it will not be taken into consideration for the test data recorded in the report.

EUT Setup

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm

The host PC was connected to an AC 120V/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 10 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz - 1000 MHz	100 kHz	300 kHz	120kHz	QP
Abovo 1 CHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Test Procedure

For the radiated emissions test, the host PC and monitor were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss- Amplifier Gain Corrected Amplitude = Meter Reading + Corrected Factor

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	8447E	1937A01046	2012-11-24	2013-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2013-09-17	2014-09-17
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2013-04-03	2014-04-03
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part15.247

Test Results Summary

According to the recorded data in following table, with the worst margin reading of:

6.76 dB at 3611.0 MHz in the Vertical polarization

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m}$$
 + $U_{(L{\rm m})}$ \leq $L_{\rm lim}$ + $U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	54 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-26.

EUT operation mode: Transmitting

30 MHz ~10 GHz:

Fraguanay	Re	eceiver	Turntabla	Rx An	itenna	Corrected	Corrected	FC 15.247	C Part 7/205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (902.75 MHz)								
198.8	44.34	QP	171	1.4	V	-15.1	29.24	43.5	14.26
902.75	109.28	QP	259	1.5	Н	-4.0	105.28	/	/
902.75	107.84	QP	31	1.3	V	-4.0	103.84	/	/
901.2	39.36	QP	27	1.0	V	-4.1	35.26	46	10.74
1805.0	45.42	РК	324	1.2	Н	2.63	48.05	74	25.95
1805.0	38.70	Ave.	324	1.2	Н	2.63	41.33	54	12.67
2708.2	42.62	РК	293	1.3	Н	7.93	50.55	74	23.45
2708.2	35.92	Ave.	293	1.3	Н	7.93	43.85	54	10.15
3611.0	44.01	РК	259	1.2	V	9.68	53.69	74	20.31
3611.0	37.56	Ave.	259	1.2	V	9.68	47.24	54	6.76
4513.8	40.77	PK	178	1.3	Н	12.14	52.91	74	21.09
4513.8	31.80	Ave.	178	1.3	Н	12.14	43.94	54	10.06

Report No.: RSZ130808004-00

Fraguanay	R	eceiver	Turntabla	Rx Ar	itenna	Corrected	Corrected	FC 15.247	C Part //205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
			Middle Cl	hannel (915.75 1	MHz)			
198.8	45.20	QP	192	1.3	V	-15.1	30.10	43.5	13.40
915.75	114.12	QP	1	1.4	Н	-4.0	110.12	/	/
915.75	109.38	QP	215	1.4	V	-4.0	105.38	/	/
901.8	37.88	QP	72	1.0	V	-4.1	33.78	46	12.22
1831.5	44.26	РК	333	1.4	Н	2.63	46.89	74	27.11
1831.5	37.32	Ave.	333	1.4	Н	2.63	39.95	54	14.05
2747.2	42.64	PK	72	1.4	Н	7.93	50.57	74	23.43
2747.2	35.42	Ave.	72	1.4	Н	7.93	43.35	54	10.65
3671.0	42.28	РК	45	1.4	V	9.79	52.07	74	21.93
3671.0	36.84	Ave.	45	1.4	V	9.79	46.63	54	7.37
4578.8	39.10	PK	225	1.4	Н	12.21	51.31	74	22.69
4578.8	30.24	Ave.	225	1.4	Н	12.21	42.45	54	11.55
			High Cha	annel (9	27.25 M	IHz)			
198.8	45.82	QP	173	1.3	V	-15.1	30.72	43.5	12.78
927.75	109.91	QP	156	1.2	Н	-3.5	106.41	/	/
927.75	107.68	QP	78	1.2	V	-3.5	104.18	/	/
940.0	38.22	QP	65	1.0	V	-3.3	34.92	46	11.08
1855.0	44.62	РК	102	1.4	Н	2.63	47.25	74	26.75
1855.0	38.12	Ave.	102	1.4	Н	2.63	40.75	54	13.25
2783.2	43.16	PK	353	1.3	V	8.62	51.78	74	22.22
2783.2	35.40	Ave.	353	1.3	V	8.62	44.02	54	9.98
3709.0	42.57	РК	20	1.3	V	9.77	52.34	74	21.66
3709.0	36.47	Ave.	20	1.3	V	9.77	46.24	54	7.76
4638.8	40.01	РК	247	1.5	Н	12.22	52.23	74	21.77
4638.8	30.29	Ave.	247	1.5	Н	12.22	42.51	54	11.49

Note:

Corrected Factor=Antenna factor (RX) +cable loss – amplifier factor
Corrected Amplitude = Corrected Factor + Receiver Reading
Margin = Limit- Corrected Amplitude

FCC §15.247(a) (1) (i)-CHANNEL SEPARATION

Applicable Standard

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace
- 3. Measure the channel separation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-27.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	902.75	0.501	0.0449	Daga
Adjacent	903.25	0.301	0.0448	r ass
Middle	915.75	0.502	0.0460	Degg
Adjacent	916.25	0.303	0.0460	Pass
High	926.75	0.501	0.0420	Degg
Adjacent	927.25	0.301	0.0430	rass

Low Channel

FCC Part15.247

Middle Channel

High Channel

FCC Part15.247

Page 22 of 36

FCC §15.247(a) (1) (i) – 20 dB EMISSION BANDWIDTH

Applicable Standard

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-27.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Channel	Frequency (MHz)	20 dB Emission Bandwidth (kHz)	≤Limit (kHz)
Low	902.75	44.8	250
Middle	915.75	46.0	250
High	927.25	43.0	250

Low Channel

FCC Part15.247

Page 24 of 36

Middle Channel

High Channel

FCC Part15.247

Page 25 of 36

FCC §15.247(a) (1) (i)-QUANTITY OF HOPPING CHANNEL

Applicable Standard

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-27.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
902-928	50	≥50

Number of Hopping Channels

FCC Part15.247

Page 27 of 36

FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 20 (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell time = Pulse time*8/1000S

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-11-05.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Report No.: RSZ130808004-00

Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result
Low	19.44	0.156	0.4	Pass
Note: Dwell time = Pulse time*8/1000 S				

Note: It employs 8 hoppings per 20 second.

Transmission Number within 50 milliseconds, Low Channel

Pulse time=3.41ms+20.14ms-4.11ms=19.44ms

FCC §15.247(b) (2) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to \$15.247(b)(2), for frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of FCC \$15.247.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	55 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-27.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Channel	annel Frequency Conducted Output Power		Limit	
Channel	(MHz)	(dBm)	(mW)	(dBm)
Low	902.75	17.32	53.95	30
Middle	915.75	16.66	46.34	30
High	927.25	15.91	38.99	30

Low Channel

FCC Part15.247

Page 31 of 36

Middle Channel

High Chanel

FCC Part15.247

FCC §15.247(d) - BAND EDGES

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

According to FCC public notice DA 00-705 released on March 30, 2000.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 300 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	55 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-09-27.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

Frequency Band	Delta Peak to band emission (dBc)	≥Limit (dBc)	Result
Left band	48.83	20	Pass
Right band	54.64	20	Pass

Band Edge-Left Side

FCC Part15.247

Band Edge-Right Side

FCC Part15.247

Page 35 of 36

PRODUCT SIMILARITY DECLARATION LETTER

Winnix Technologies Co., Limited 4/F R2-B Building,Hi-tech Park,NanShan District,ShenZhen,GuangDong518057,China Tel:0755-86503650 Fax:0755-86503650

2013-8-12

Product Similarity Declaration

To Whom It May Concern,

We, Winnix Technologies Co., Limited hereby declare that our UHF Desktop Reader, Model Number: UR810, UR1 are electrically identical with HYR810 that was certified by BACL. They are just different in model numbers due to marketing purposes.

Please contact me if you have any question.

Victorica Lee GM

Victoriatee

***** END OF REPORT *****

FCC Part15.247