

Shenzhen Huaxia Testing Technology Co., Ltd

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website:

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

FCC Test Report

Applicant:	SHENZHEN ZIJIANG ELECTRONICS CO., LTD
Address of Applicant:	Area A, 4/F, No. 20, Tongfucun Industrial Zone, Dalang Community, Dalang Street, LongHua New District, Shenzhen City, Guangdong Province, P.R. China
Manufacturer: Address of Manufacturer:	SHENZHEN ZIJIANG ELECTRONICS CO., LTD Area A, 4/F, No. 20, Tongfucun Industrial Zone, Dalang Community, Dalang Street, LongHua New District, Shenzhen City, Guangdong Province, P.R. China
Factory: Address of Factory:	SHENZHEN ZIJIANG ELECTRONICS CO., LTD Area A, 4/F, No. 20, Tongfucun Industrial Zone, Dalang Community, Dalang Street, LongHua New District, Shenzhen City, Guangdong Province, P.R. China
Equipment Under Test (E Product: Model No.: Test Model No.: Brand Name:	EUT): Portable Thermal Printer ZJ-5802LD, ZJ-5802DD, ZJ-5802LN, POS-5802LD, POS-5802DD, POS-5802LN ZJ-5802DD ZJiong [®]
FCC ID:	RVUZJ-5802DD
Standards:	47 CFR Part 15, Subpart C
Date of Test:	2017-05-25 to 2017-06-09
Date of Issue:	2017-06-09
Report No. :	CQASZ170501346EW-02
Test Result :	PASS*
Tested By:	(Aaron Ma)
Reviewed By:	Oven Zhou (Owen Zhou)
Approved By:	(Jack Ai)

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ170501346EW-02	Rev.01	Initial report	2017-06-09

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013 PASS	

4 Contents

			Page
1	СС	OVER PAGE	1
2	VE	ERSION	
		EST SUMMARY	
3			
4	CC	ONTENTS	4
5	GE	ENERAL INFORMATION	5
5	5.1	CLIENT INFORMATION	5
5	5.2	GENERAL DESCRIPTION OF EUT	5
5	5.3	TEST ENVIRONMENT	
5	5.4	DESCRIPTION OF SUPPORT UNITS	
-	5.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
-	5.6	TEST LOCATION	
-	5.7	TEST FACILITY	
	5.8	DEVIATION FROM STANDARDS	
	5.9	ABNORMALITIES FROM STANDARD CONDITIONS	
-	5.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
3	5.11	EQUIPMENT LIST	
6	TE	EST RESULTS AND MEASUREMENT DATA	
6	5.1	ANTENNA REQUIREMENT	
6	5.2	CONDUCTED EMISSIONS	
6	5.3	CONDUCTED PEAK OUTPUT POWER	
6	5.4	6DB OCCUPY BANDWIDTH	
	5.5	POWER SPECTRAL DENSITY	
	5.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	5.7	SPURIOUS RF CONDUCTED EMISSIONS	
6	5.8	RADIATED SPURIOUS EMISSION	
		8.1 Spurious Emissions	
6	5.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	HOTOGRAPHS - EUT TEST SETUP	
	7.1	CONDUCTED EMISSION	
7	7.2	RADIATED SPURIOUS EMISSION	
8	PH	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

5 General Information

5.1 Client Information

Applicant:	SHENZHEN ZIJIANG ELECTRONICS CO., LTD
Address of Applicant:	Area A, 4/F, No. 20, Tongfucun Industrial Zone, Dalang Community, Dalang Street, LongHua New District, Shenzhen City, Guangdong Province, P.R. China
Manufacturer:	SHENZHEN ZIJIANG ELECTRONICS CO., LTD
Address of Manufacturer:	Area A, 4/F, No. 20, Tongfucun Industrial Zone, Dalang Community, Dalang Street, LongHua New District, Shenzhen City, Guangdong Province, P.R. China
Factory:	SHENZHEN ZIJIANG ELECTRONICS CO., LTD
Address of Factory:	Area A, 4/F, No. 20, Tongfucun Industrial Zone, Dalang Community, Dalang Street, LongHua New District, Shenzhen City, Guangdong Province, P.R. China

5.2 General Description of EUT

Product Name:	Portable Thermal Printer
Model No.:	ZJ-5802LD, ZJ-5802DD, ZJ-5802LN, POS-5802LD, POS-5802DD, POS-5802LN
Test Model No.:	ZJ-5802DD
Trade Mark:	ZJiang®
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.0 BLE
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Test Software of EUT:	RF Test (manufacturer declare)
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	AC ADAPTER:
	MODEL: ZL-A015W0901500
	INPUT: 100-200V ~50/60Hz 0.5 Max, OUTPUT: DC9V 1.5A
	Li-ion Battery:
	Model: 58LYDD-ZJ, Vol: 7.4V/1500mAh/11.1Wh

Note: Only the model ZJ-5802DD was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Environment

Operating Environment:	Operating Environment:			
Temperature:	25.0 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	1010mbar			
Test Mode:	Use test software (RF test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. Note: In the process of transmitting of EUT, the duty cycle >98%.			

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
Adapter	UPRITE	ZL-A015W0901500	Provide by client	Verification

5.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Tongce Testing Lab** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	±3.92dB	(1)
Radiated Emission	Above 1GHz	±4.28dB	(1)
Conducted Disturbance	0.15~30MHz	±2.56dB	(1)

Hereafter the best measurement capability for **TCT** laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5.6 Test Location

Shenzhen Tongce Testing Lab,

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC – Registration No.: 572331

Shenzhen Tongce Testing Lab has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 572331

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

None.

5.10Other Information Requested by the Customer

None.

5.11 Equipment List

					Calibration
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date
1	EMI Test Receiver	R&S	ESVD	100008	2017/08/11
2	Spectrum Analyzer	R&S	FSEM	848597/001	2017/08/11
3	Spectrum Analyzer	Agilent	N9020A	MY49100060	2017/08/12
		EM Electronics			
		Corporation			
4	Pre-amplifier	CO.,LTD	EM30265	07032613	2017/08/11
5	Pre-amplifier	HP	8447D	2727A05017	2017/08/11
6	Loop antenna	ZHINAN	ZN30900A	12024	2017/08/13
7	Broadband Antenna	R&S	VULB9163	340	2017/08/13
8	Horn Antenna	R&S	BBHA 9120D	631	2017/08/13
9	Horn Antenna	R&S	BBHA 9170	373	2017/08/13
10	Antenna Mast	CCS	CC-A-4M	N/A	N/A
	Coax cable				
11	(9KHz~40GHz)	тст	RE-low-01	N/A	2017/08/11
	Coax cable				
12	(9KHz~40GHz)	тст	RE-high-02	N/A	2017/08/11
	Coax cable				
13	(9KHz~40GHz)	тст	RE-low-02	N/A	2017/08/11
	Coax cable				
14	(9KHz~40GHz)	тст	RE-high-04	N/A	2017/08/11
15	Spectrum Analyzer	R&S	FSU	200054	2017/08/11
16	Antenna Connector	тст	RFC-01	N/A	2017/08/12
17	RF cable(9KHz~40GHz)	тст	RE-06	N/A	2017/08/12

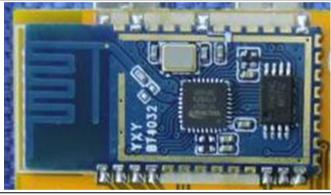
Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

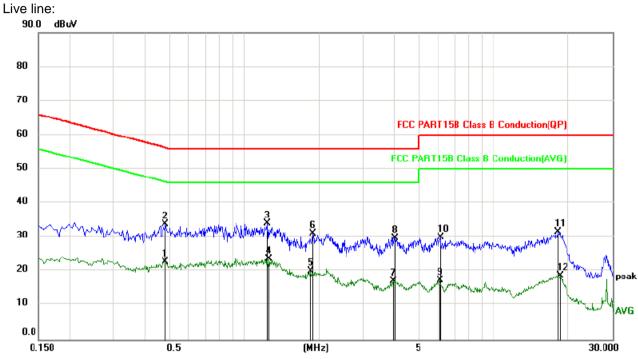
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

6.2 Conducted Emissions

Те		47 CEB Dort 15C Spotion 15 C	007			
	st Requirement:	47 CFR Part 15C Section 15.207				
	st Method:	ANSI C63.10: 2013				
	st Frequency Range:					
Lin	nit:	Frequency range (MHz)	Limit (d	,		
			Quasi-peak	Average		
		0.15-0.5	66 to 56*	56 to 46*		
		0.5-5	56	46		
		5-30 60 50				
		* Decreases with the logarithm				
Tes	st Procedure:	 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 				
Tes	st Setup:	Shielding Room	AE	Test Receiver		
Те	st Mode:	Transmitting with GFSK modu	lation.			
		Charge +Transmitting mode.				
Fi	nal Test Mode:	Found the Charge + Transmitt which it is worse case. Only the worst case is recorde		t channel:2480MHz)		



Instrument	Used: Refer to section 5.	10 for details.
Test Voltag	: AC 120V/60Hz	
Test Resul	Pass	

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.4819	13.07	9.74	22.81	46.31	-23.50	AVG
2	0.4859	24.11	9.74	33.85	56.24	-22.39	peak
3 *	1.2379	24.31	9.75	34.06	56.00	-21.94	peak
4	1.2579	13.90	9.75	23.65	46.00	-22.35	AVG
5	1.8580	10.30	9.76	20.06	46.00	-25.94	AVG
6	1.8900	21.48	9.76	31.24	56.00	-24.76	peak
7	3.9740	7.33	9.78	17.11	46.00	-28.89	AVG
8	4.0339	20.02	9.78	29.80	56.00	-26.20	peak
9	6.0618	7.54	9.79	17.33	50.00	-32.67	AVG
10	6.1258	20.29	9.79	30.08	60.00	-29.92	peak
11	18.0538	21.65	9.87	31.52	60.00	-28.48	peak
12	18.5259	9.00	9.87	18.87	50.00	-31.13	AVG

Report No.: CQASZ170501346EW-02

80 70 FCC PART15B Class B Conduction(QP) 60 FCC PART15B Class B Conduction(AVG) 50 40 manumm 30 10 20 peak 10 1,7110 AVG 0.0 0.5 (MHz) 0.150 5 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dB dBuV dBuV dB Detector 1 0.3034 12.78 9.80 22.58 50.15 -27.57 AVG 2 0.3140 24.58 9.80 34.38 59.86 -25.48 peak 3 0.5700 12.57 9.80 22.37 46.00 -23.63 AVG 4 * 0.5779 24.61 9.80 34.41 56.00 -21.59 peak

Notes:

5

6

7

8

9

10

11

12

1.1379

1.1539

1.3900

1.4619

6.5218

6.5300

17,7500

18,1178

24.12

13.21

12.97

23.69

4.37

18.15

18.39

0.76

1. The following Quasi-Peak and Average measurements were performed on the EUT:

9.82

9.82

9.84

9.84

9.84

9.84

9.88

9.88

33.94

23.03

22.81

33.53

14.21

27.99

28.27

10.64

56.00 -22.06

46.00 -22.97

46.00 -23.19

56.00 -22.47

50.00 -35.79

60.00 -32.01

60.00 -31.73

50.00 -39.36

peak

AVG

AVG

peak

AVG

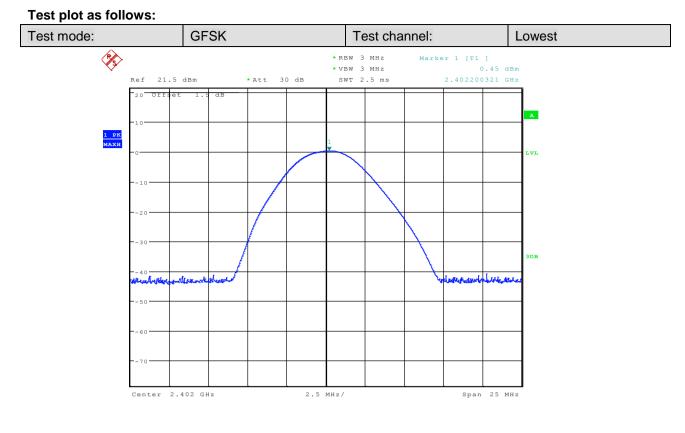
peak

peak

AVG

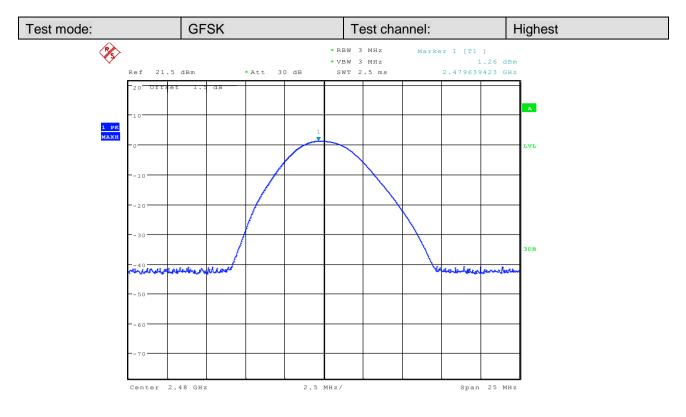
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

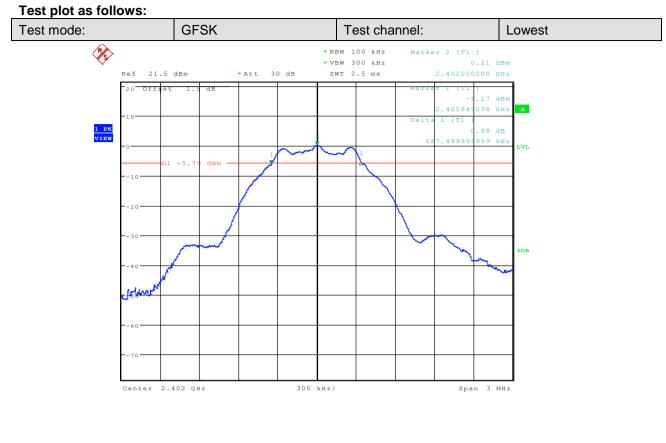
Neutral line: 90.0 dBuV

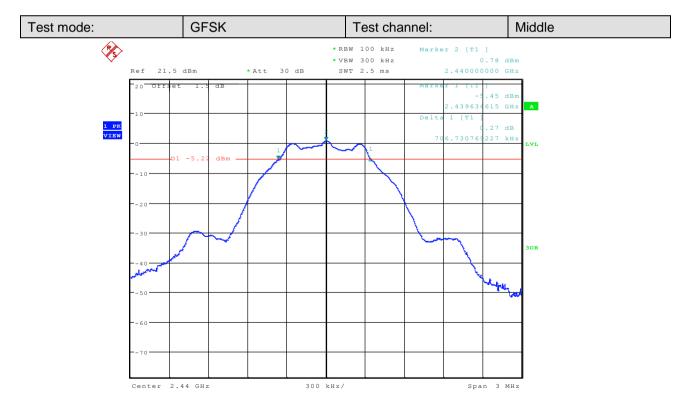

6.3 Conducted Peak Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	30dBm	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results: Pass		

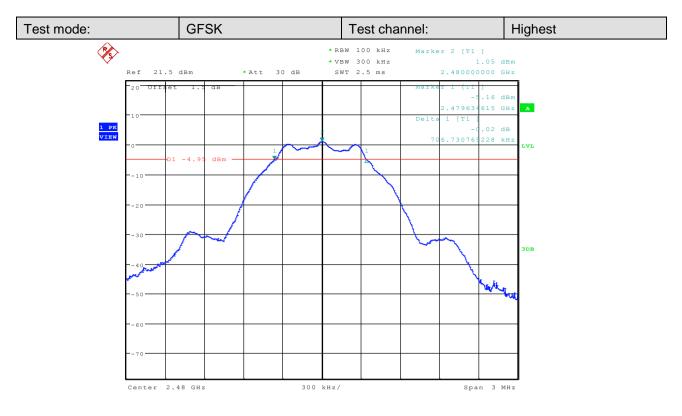
Measurement Data

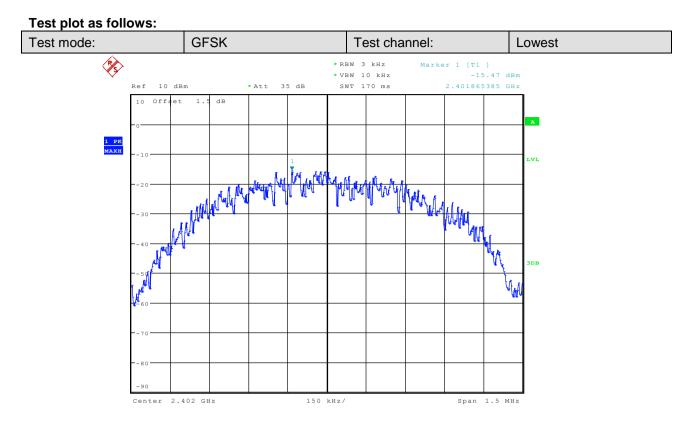

	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.45	30.00	Pass		
Middle	0.93	30.00	Pass		
Highest	1.26	30.00	Pass		

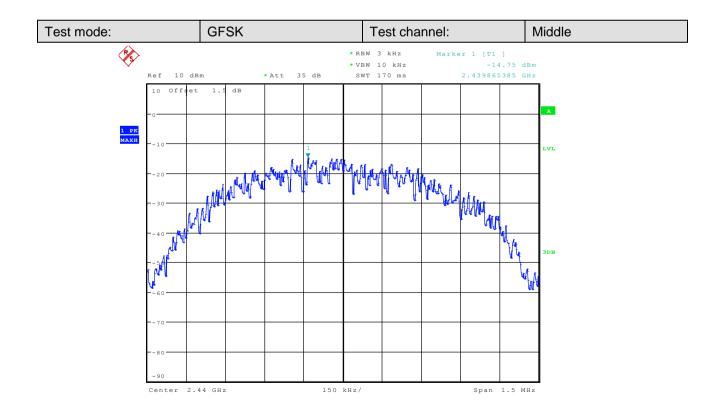

6.4 6dB Occupy Bandwidth


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit: ≥ 500 kHz		
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

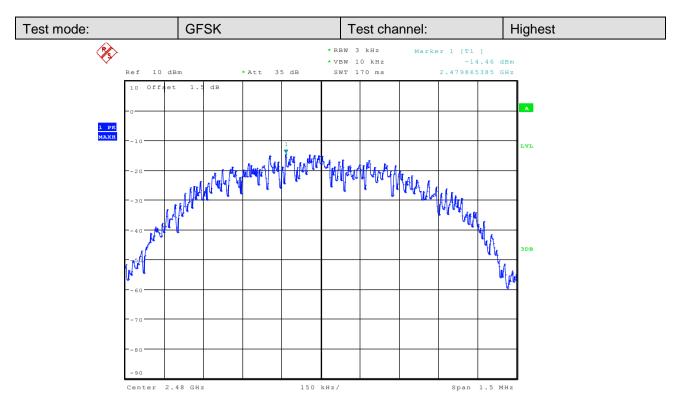
Measurement Data

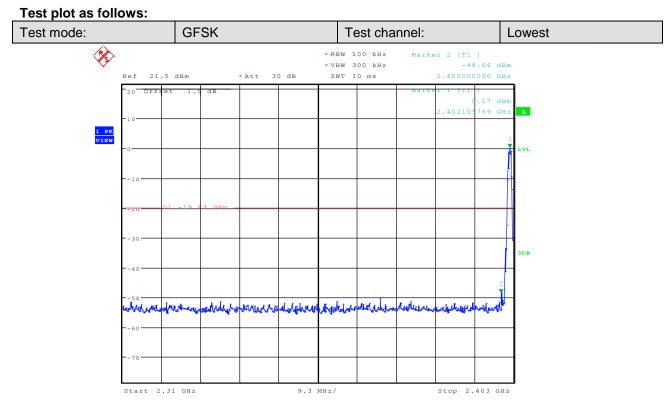

	GFSK mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	0.687	≥500	Pass		
Middle	0.707	≥500	Pass		
Highest	0.707	≥500	Pass		

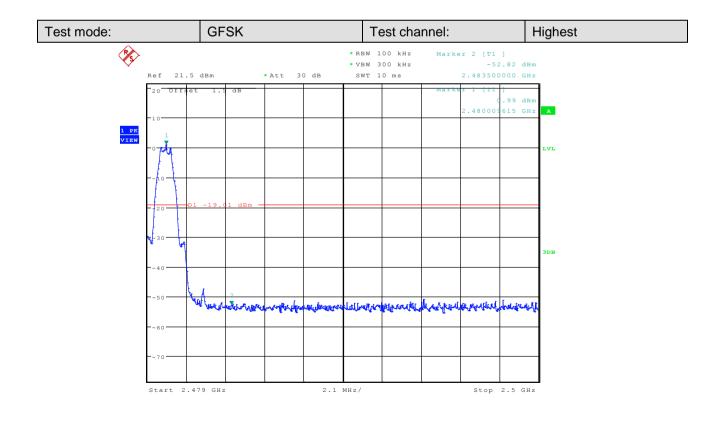

6.5 Power Spectral Density


Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit:	≤8.00dBm/3kHz	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

Measurement Data

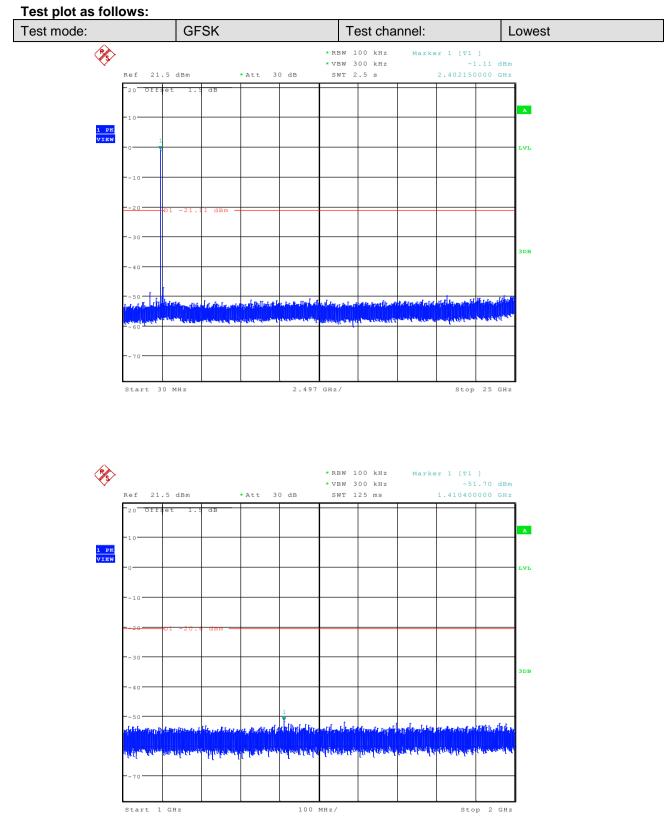

	GFSK mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-15.47	≤8.00	Pass		
Middle	-14.75	≤8.00	Pass		
Highest	-14.46	≤8.00	Pass		

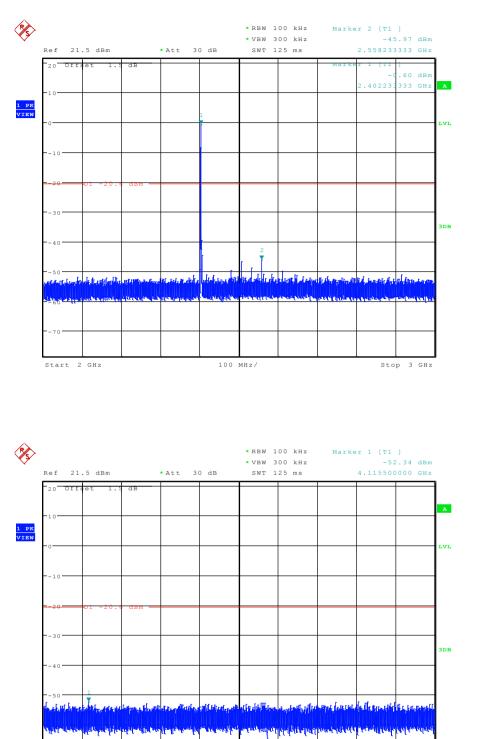



6.6 Band-edge for RF Conducted Emissions

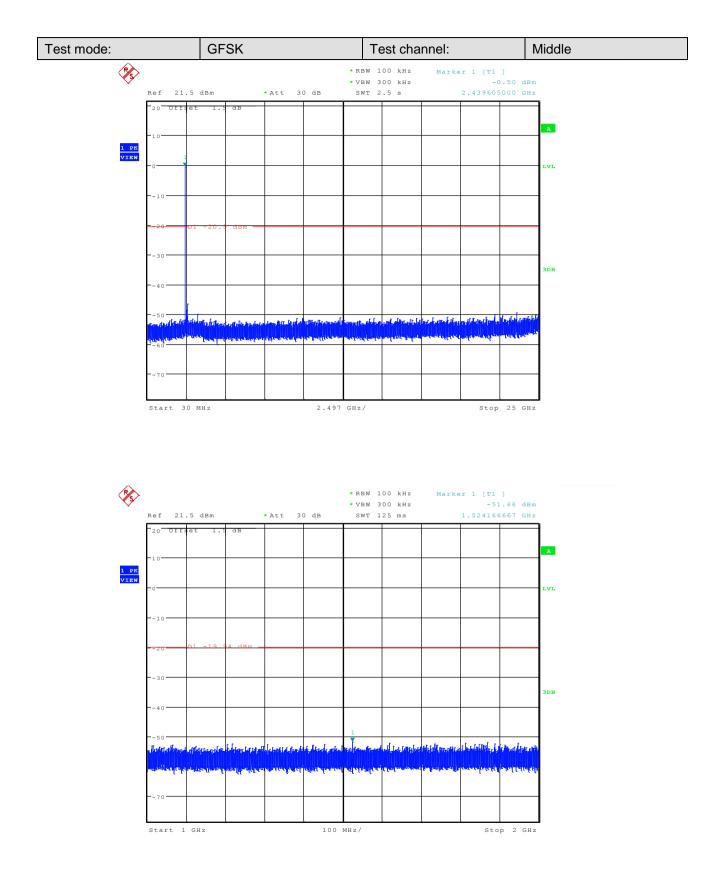
Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

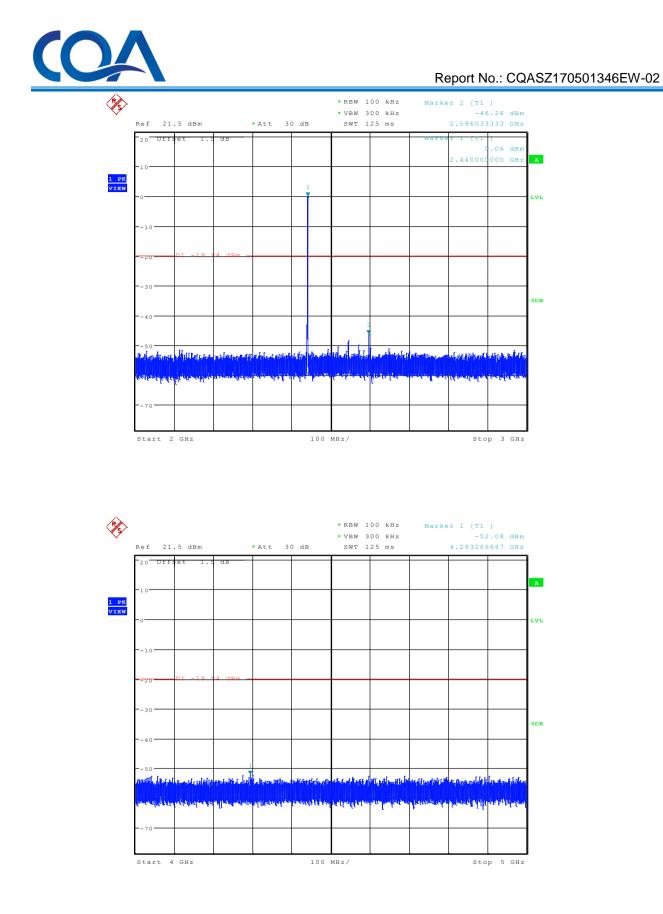
GFSK mode				
Test				
channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result
Lowest	2400	-48.66	-19.83	Pass
Highest	2483.5	-52.82	-19.01	Pass



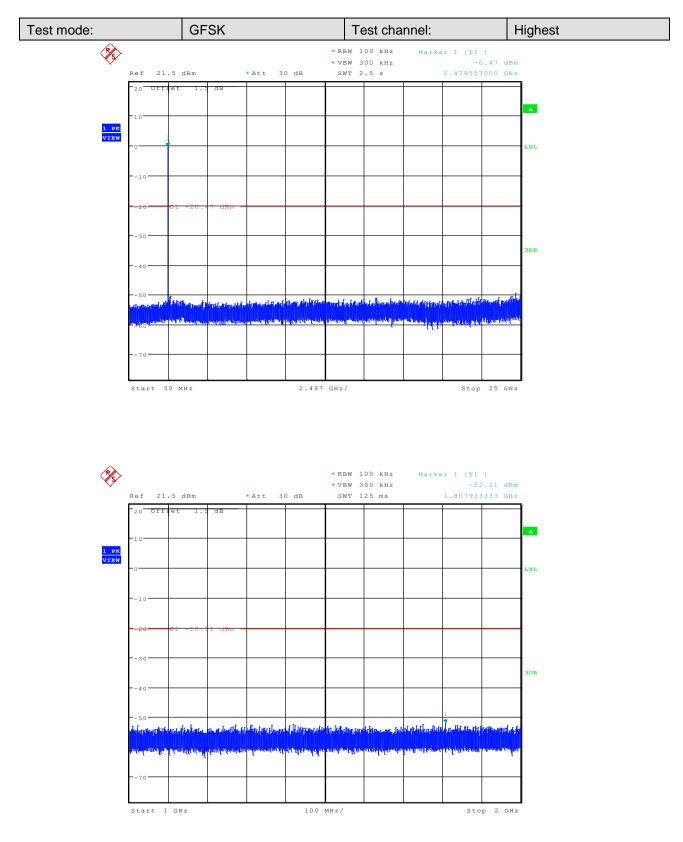

6.7 Spurious RF Conducted Emissions

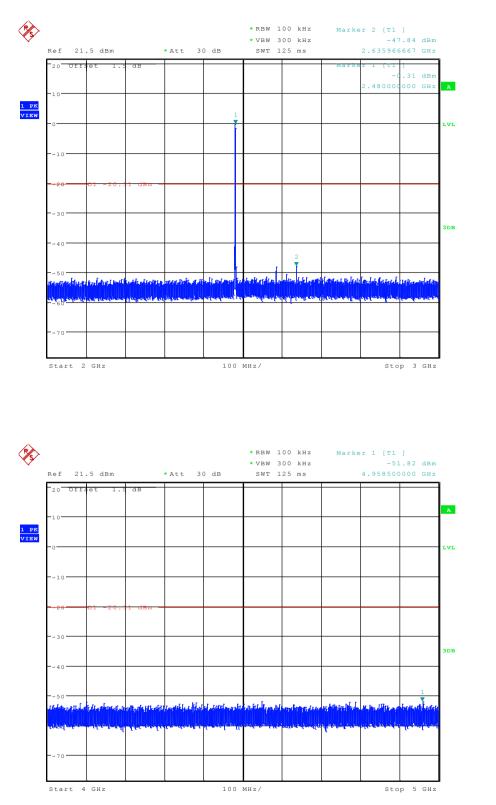
Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:	
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	


Start 4 GHz


Page:27 of 51

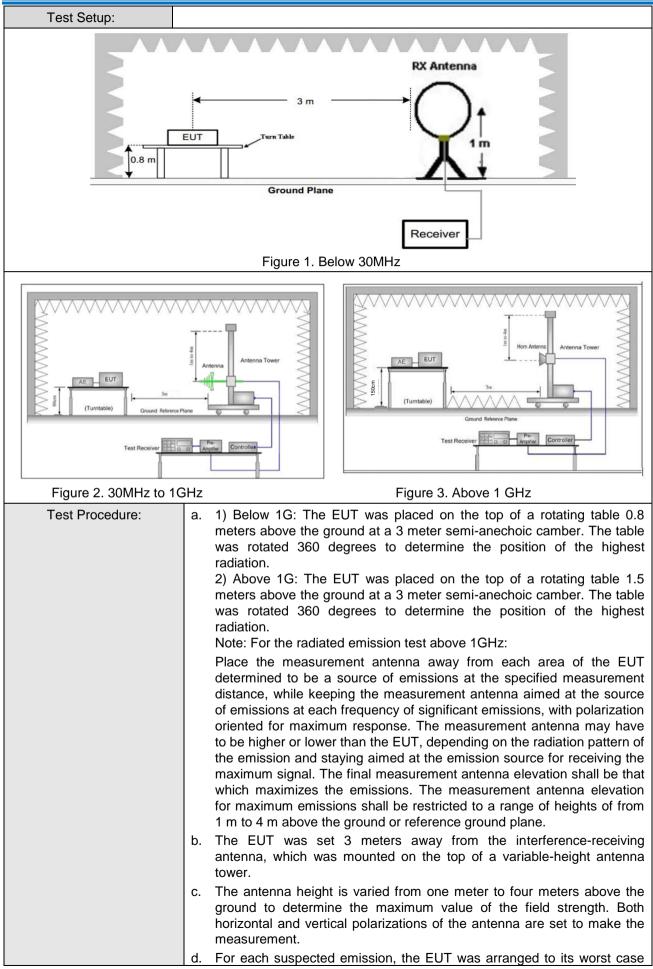
100 MHz/


Stop 5 GHz



Remark:

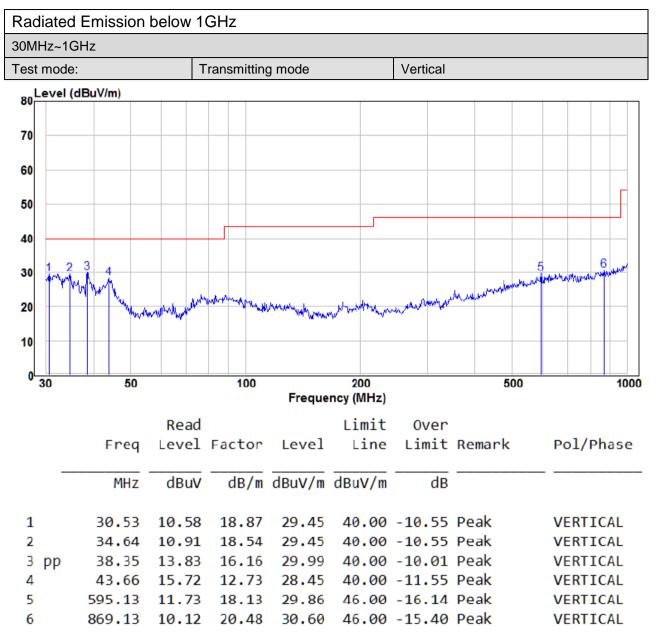
Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

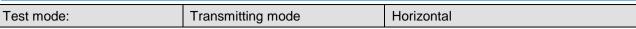


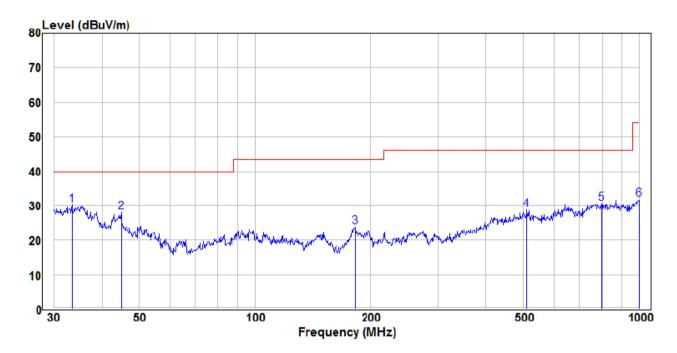
6.8 Radiated Spurious Emission

6.8.1 Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	1	
	0.009MHz-0.090MHz		Peak	10kHz	z	30kHz	Peak		
	0.009MHz-0.090MHz Average		10kHz		30kHz	Average	-		
	0.090MHz-0.110MHz Quasi-peak		10kHz	z	30kHz	Quasi-peak	-		
	0.110MHz-0.490MHz Peak		10kHz	z	30kHz	Peak			
	0.110MHz-0.490MHzAverage0.490MHz -30MHzQuasi-peak30MHz-1GHzQuasi-peak		10kHz	10kHz 30kHz		Average			
			10kHz	10kHz 30kHz		Quasi-peak			
			100 kH	100 kHz 300kHz		Quasi-peak			
	Above 1GHz		Peak 1Mł		2	3MHz	Peak		
			Peak	1MHz	2	10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	R	lemark	Measureme distance (n		
	0.009MHz-0.490MHz	2400/F(kHz)		-	-		300		
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-		30		
	1.705MHz-30MHz		30	-	-		30		
	30MHz-88MHz	100 150 200		40.0	Quasi-peak		3		
	88MHz-216MHz			43.5	Quasi-peak		3		
	216MHz-960MHz			46.0	Quasi-peak		3		
	960MHz-1GHz	500		54.0	Quasi-peak		3		
	Above 1GHz	500		54.0	54.0 Average		3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								




	 and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. 		
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.		
Final Test Mode:	Transmitting with GFSK modulation.		
	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case.		
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.		
	Only the worst case is recorded in the report.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		



Report No.: CQASZ170501346EW-02

	Freq	Read	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHz	dBuV			dBuV/m	dB		
1 pp	33.44	11.69	18.63	30.32	40.00	-9.68	Peak	HORIZONTAL
2	44.74	15.94	12.06	28.00	40.00	-12.00	Peak	HORIZONTAL
3	182.56	15.46	8.32	23.78	43.50	-19.72	Peak	HORIZONTAL
4	510.04	11.51	17.23	28.74	46.00	-17.26	Peak	HORIZONTAL
5	796.18	9.99	20.68	30.67	46.00	-15.33	Peak	HORIZONTAL
6	1000.00	8.91	22.94	31.85	54.00	-22.15	Peak	HORIZONTAL

Ant. Pol.

Transmitter Emission above 1GHz

Worse	case	mode:	: GFSK			Test channel:		Lowest				
Freque	ncy	Meter Readin		Factor		mission Level	Limits		Over	П	etector	
			<u> </u>		1						CICCIO	-

	Ŭ.					DCICCIO	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4804	49.25	-5.18	44.07	74	-29.93	peak	Н
4804	38.40	-5.18	33.22	54	-20.78	AVG	Н
7206	48.36	-6.45	41.91	74	-32.09	peak	Н
7206	36.56	-6.45	30.11	54	-23.89	AVG	н
4804	48.81	-5.18	43.63	74	-30.37	peak	V
4804	37.12	-5.18	31.94	54	-22.06	AVG	V
7206	50.03	-6.45	43.58	74	-30.42	peak	V
7206	35.67	-6.45	29.22	54	-24.78	AVG	V

1	Norse case mode:	GFSK

Test channel:

Middle

Meter Emission Frequency Limits Ant. Pol. Reading Factor Level Over Detector H/V (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) Туре 4880 49.56 -5.19 44.37 74 <u>-29.</u>63 Н peak 4880 36.00 AVG Н -5.19 30.81 54 -23.19 7320 48.78 42.31 Н -6.47 74 -31.69 peak 7320 36.59 -6.47 30.12 54 -23.88 AVG Н 4880 48.90 -5.19 43.71 74 -30.29 peak V 4880 32.24 V 37.43 -5.19 54 -21.76 AVG 7320 48.81 42.34 74 -31.66 V -6.47 peak 7320 35.38 -6.47 54 AVG V 28.91 -25.09

Worse case mode:

			1	1			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4960	50.60	-5.2	45.40	74	-28.60	peak	н
4960	38.31	-5.2	33.11	54	-20.89	AVG	н
7440	49.93	-6.47	43.46	74	-30.54	peak	н
7440	36.03	-6.47	29.56	54	-24.44	AVG	н
4960	50.82	-5.2	45.62	74	-28.38	peak	V
4960	38.24	-5.2	33.04	54	-20.96	AVG	V
7440	50.40	-6.47	43.93	74	-30.07	peak	V
7440	36.43	-6.47	29.96	54	-24.04	AVG	V

GFSK

Test channel: Highest

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

6.9 Restricted bands around fundamental frequency

6.9 Restricted band	as around fundame	illai ilequency						
Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205						
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chamber	r)					
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
		74.0	Peak Value					
Toot Sotup								
Test Setup:								
AE EUT A Tenna Antenna Tower A Test Receiver Angelee Controlles Test Receiver Controlles Controlle								
Figure 1. 30MH		Figure 2. Above EUT was placed on the to						
 Test Procedure: a. 1) Below 1G: The EUT was placed on the top of a rotating table meters above the ground at a 3 meter semi-anechoic camber. table was rotated 360 degrees to determine the position of the hig radiation. 2) At 1G: The EUT was placed on the top of a rotating table 1.5 me above the ground at a 3 meter semi-anechoic camber. The table rotated 360 degrees to determine the position of the highest radiati Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the 1 determined to be a source of emissions at the specified measurer distance, while keeping the measurement antenna aimed at the so of emission at each frequency of significant emissions, polarization oriented for maximum response. The measurer antenna may have to be higher or lower than the EUT, depending the radiation pattern of the emission and staying aimed at the emiss source for receiving the maximum signal. The final measurer antenna elevation shall be that which maximizes the emissions, measurement antenna elevation for maximum emissions shall restricted to a range of heights of from 1 m to 4 m above the groun reference-receiving antenna, which was mounted on the top variable-height antenna tower. b. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. If horizontal and vertical polarizations of the antenna are set to make measurement. 								

Exploratory Test Mode:	 and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. e. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel f. Test the EUT in the lowest channel , the Highest channel g. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. h. Repeat above procedures until all frequencies measured was complete.
	Transmitting mode.
Final Test Mode:	Transmitting with GFSK modulation. Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Worse case mode:	GFSK	Test channel:	Lowest

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390	48.75	-4.36	44.39	74	-29.61	peak	н
2390	35.97	-4.36	31.61	54	-22.39	AVG	н
2400	53.99	-4.36	49.63	74	-24.37	peak	Н
2400	40.45	-4.36	36.09	54	-17.91	AVG	н
2390	45.90	-4.36	41.54	74	-32.46	peak	V
2390	35.38	-4.36	31.02	54	-22.98	AVG	V
2400	54.81	-4.36	50.45	74	-23.55	peak	V
2400	40.79	-4.36	36.43	54	-17.57	AVG	V

Worse case mode: GFSK

Test channel: Highest

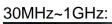
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.5	60.77	-4.22	56.55	74	-17.45	peak	Н
2483.5	47.07	-4.22	42.85	54	-11.15	AVG	Н
2483.5	61.26	-4.22	57.04	74	-16.96	peak	V
2483.5	45.88	-4.22	41.66	54	-12.34	AVG	V

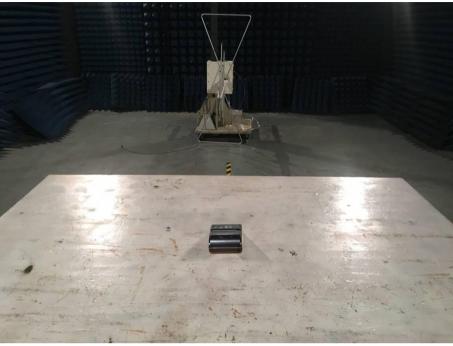
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

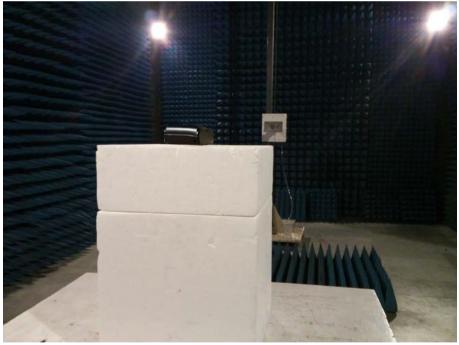
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

7 Photographs - EUT Test Setup

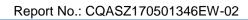

7.1 Conducted Emission



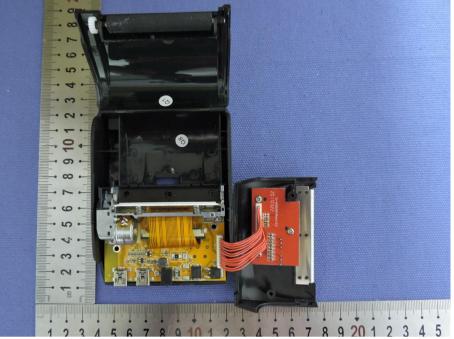
7.2 Radiated Spurious Emission

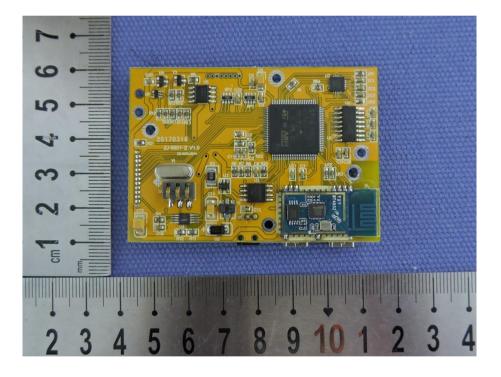

9KHz~30MHz:

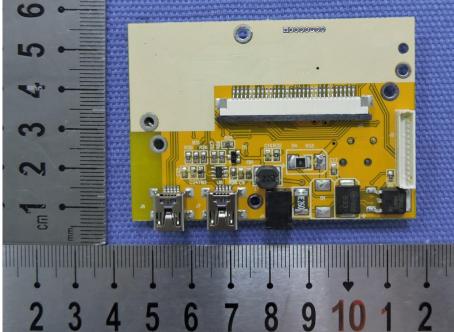
Above 1GHz:

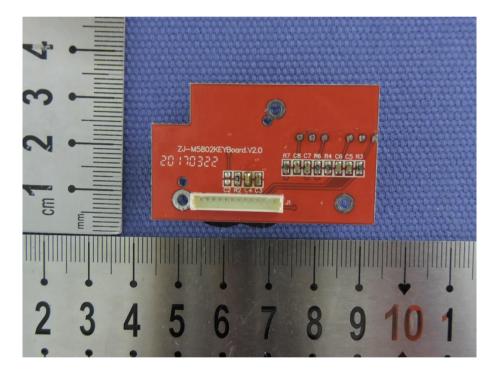


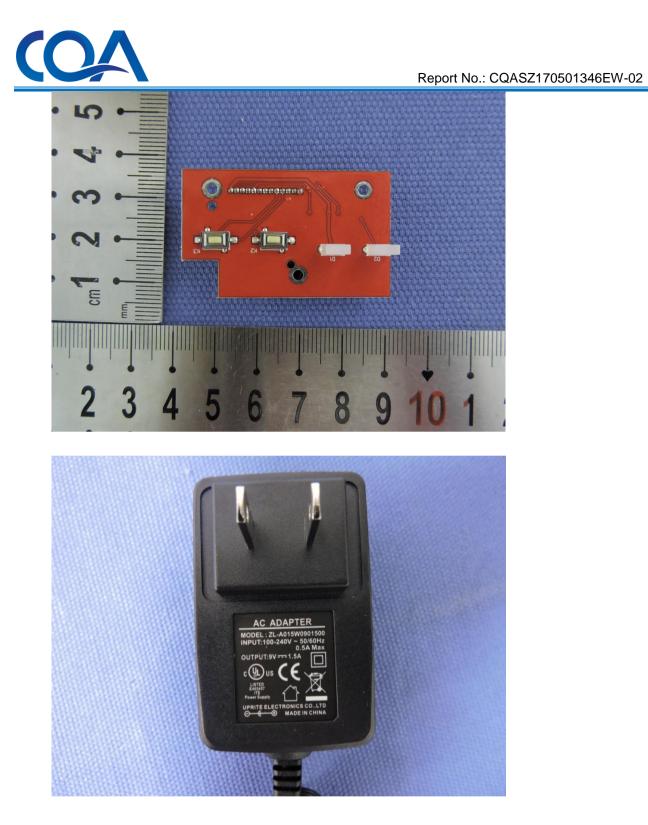
8 Photographs - EUT Constructional Details


Report No.: CQASZ170501346EW-02




Report No.: CQASZ170501346EW-02





Report No.: CQASZ170501346EW-02

END OF THE REPORT