

Test Report						
1. Client • Name : • Address :			nnology Co., Lt 2, Songdogwa	d. Ihak-ro, Yeonsu-gu,	Incheon, South	
2. Use of Repo		FCC Appro	oval			
 3. Sample Desc • Product Nar • Model Name 	ne :	X-POINTE XPG140N	R			
4. Date of Rece	eipt:	2022-10-	12			
5. Date of Test	:	2022-10-31 ~ 2022-11-03				
6. Test Method	•	FCC Part 15 Subpart C 15.247				
7. Test Results	:	Refer to th	Refer to the test results			
The results show	This test report must not be reproduced or reproduced in any way. The results shown in this test report are the results of testing the samples provided. This test report is prepared according to the requirements of ISO / IEC 17025.					
	Tested b	у	Yes	Technical Manager	1	
Affirmation	Yong-M	n, Won	(signature)	Jong-Myoung, Shin	DelScentine)	
				Nov 2	21, 2022	
			EMC Lab	s Co., Ltd.	不可以可以	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 1 / 37

36

<u>Contents</u>

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information	5
3.	Test Summary·····	6
4.	Used equipment on test······	7
5.	Antenna Requirement·····	8
6.	6 dB Bandwidth·····	9
7.	Maximum Peak Output Power	13
8.	Peak Power Spectral Density	16
9.	TX Radiated Spurious Emission and Conducted Spurious Emission	19
10.	Conducted Emission	33
	APPENDIX	
APP	ENDIX I TEST SETUP	34

APPENDIX II UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 2 / 37

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
KR0140-RF2211-001	Nov 03, 2022	Initial Issue
KR0140-RF2211-001-R1	Nov 21, 2022	 Modified the battery type on Test Summary Modified the typo in DCF Calculation for Radiated Spurious Emission

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 3 / 37

This test report shall not be reproduced except in full, Without the written approval.

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant	Chois Technology Co., Ltd.
Applicant Address	S-1404, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, South Korea
Contact Person	Daeheung, Son
Telephone No.	+82-70-5118-5568
Fax No.	+82-32-246-3406
E-mail	rnd1@choistec.com

1.2. Manufacturer Information

Manufacturer	Chois Technology Co., Ltd.		
Manufacturer Address	S-1404, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, South Korea		

1.3 Test Laboratory Information

Laboratory	EMC Labs Co., Ltd.
Laboratory Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of Korea
Contact Person	Yong-Min, Won
Telephone No.	+82-31-637-8895
Fax No.	+82-505-116-8895
FCC Designation No.	KR0140
FCC Registration No.	58000

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 4 / 37

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	X-POINTER
Model Name	XPG140N
FCC ID	RVBXPG140N
Power Supply	DC 3.0 V

2.2 Additional Information

Operating Frequency 2 402 MHz ~ 2 480 MHz	
Number of channel	40
Modulation Type GFSK	
Antenna Type PCB Pattern Antenna	
Antenna Gain	-1.794 dBi
Firmware Version	1.0
Hardware Version	1.0
Test software	nRF_DTM v2.4.0

2.3 Test Frequency

Test mode	Test Frequency (MHz)			
	Low Frequency	Middle Frequency	High Frequency	
BLE	2 402	2 442	2 480	

2.4 Used Test Software Setting Value

Test Mode	Setting Item	
	Power	
BLE	2	

2.5 Mode of operation during the test

- The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.6 Modifications of EUT

- None

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 5 / 37

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result
\square	15.203	_	Antenna Requirement		С
\square	15.247(a)	RSS-247 (5.2)	7 (5.2) 6 dB Bandwidth		С
	_	RSS GEN (6.7)	Occupied Bandwidth (99%)	Canduated	С
	15.247(b)	RSS-247 (5.4)	Maximum Peak Output Power		С
	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		С
\square	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission		С
\square	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission	Radiated	С
	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	NA ^{Note 2}

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: This product is only using Battery(1.5V AAA). So, AC conducted emission test has not been performed.

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

4. Used equipment on test

Description	Manufacturer	Model Name	Serial Name	Next Cal.
TEMP & HUMID CHAMBER	JFM	JFMA-001	20200929-01	2022.12.17
CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2022.12.17
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2022.12.15
MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2022.12.15
SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2022.12.15
VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2022.12.15
BLUETOOTH TESTER	TESCOM	TC-3000A	3000A480088	2022.12.15
DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2022.12.15
ATTENUATOR	AGILENT	8493C	73193	2022.12.15
ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8GHz	A-0820.SM20.2	2023.04.11
TERMINATIOM	HEWLETT PACKARD	909D	07492	2022.12.15
POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2022.12.15
SLIDE-AC	DAEKWANG TECH	SV-1023	_	-
DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2022.12.15
ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2022.12.30
Biconilog ANT	Schwarzbeck	VULB 9160	3260	2023.02.03
Biconilog ANT	Schwarzbeck	VULB9168	902	2023.01.14
Horn Ant.	Schwarzbeck	BBHA9120D	974	2023.01.08
Horn Ant.	S/B	BBHA9120D	1497	2023.01.25
Amplifier	TESTEK	TK-PA18H	200104-L	2023.03.17
EMI TEST RECEIVER	ROHDE& SCHWARZ	ESW44	101952	2023.04.07
PROGRAMMABLE DC POWER SUPPLY	ODA	OPE-305Q	oda-01-09-23-1831	2023.01.10
DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2023.02.03
POWER SENSOR	AGILENT	U2001H	MY51140028	2023.02.19
Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2023.06.28
LISN	ROHDE & SCHWARZ	ENV216	100409	2023.01.10
PULSE LIMITER	lignex1	EPL-30	NONE	2023.01.24

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 7 / 37

5. Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a PCB Pattern Antenna. The directional peak gain of the antenna is -1.794 dBi.)

6. 6 dB Bandwidth

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

6.3 Test Procedure

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
 - Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW ≥ 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.


6.4 Test Result

Test Mode	Test Frequency	6 dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
	Low	0.699	1.056
BLE	Middle	0.697	1.059
	High	0.701	1.060

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 9 / 37

6.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 10 / 37



Occupied Bandwidth

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 11 / 37

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 12 / 37

7. Maximum Peak Output Power

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

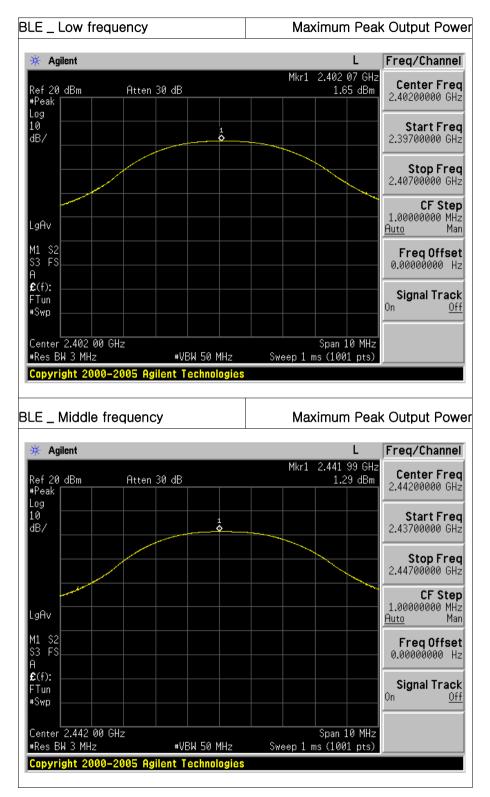
The maximum permissible conducted output power is 1 Watt.

7.3 Test Procedure

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set the RBW \geq DTS bandwidth
- 2. Set VBW \geq 3 x RBW
- 3. Set span \geq 3 x RBW.
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak search function to determine the peak amplitude level.

7.4 Test Result


Test Mode	Test Frequency	Peak Out	out Power
Test Mode	rest Frequency	dBm	mW
	Low	1.65	1.46
BLE	Middle	1.29	1.35
	High	0.34	1.08

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 13 / 37

7.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 14 / 37

LE _ High frequenc	у	Maximum Peal	< Output Powe
* Agilent		L	Peak Search
Ref 20 dBm Atte #Peak	n 30 dB	Mkr1 2.480 18 GHz 0.34 dBm	
Log 10 dB/			Next Pk Right
			Next Pk Left
LgAv			Min Search
M1 S2 S3 FS A			Pk-Pk Search
£(f): FTun #Swp			Mkr → CF
Center 2.480 00 GHz #Res BW 3 MHz	#VBW 50 MHz	Span 10 MHz Sweep 1 ms (1001 pts)	More 1 of 2
Copyright 2000-2005 (Agilent Technologies		

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 15 / 37

8. Peak Power Spectral Density

8.1 Test Setup

Refer to the APPENDIX I.

8.2 Limit

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

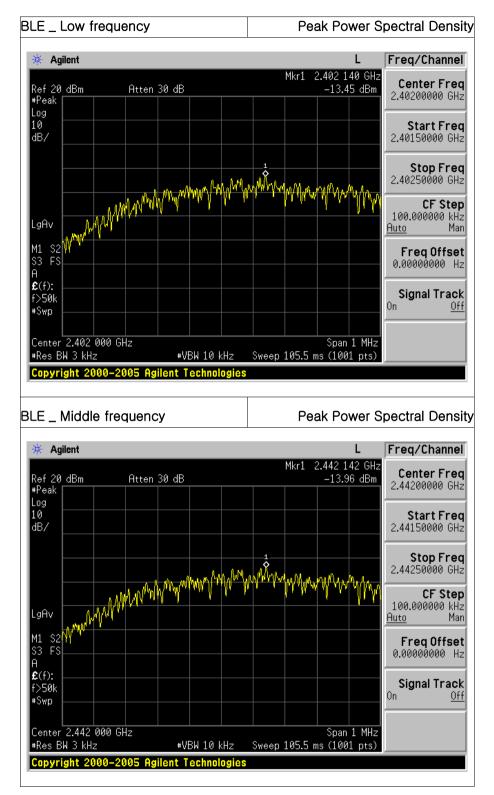
8.3 Test Procedure

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

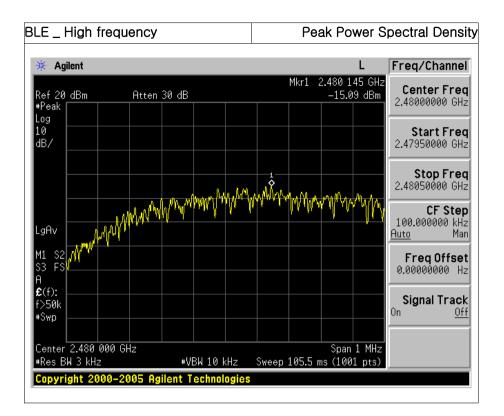
(ANSI C63.10-2013 _ Section 11.10.2 - Method PKPSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = Auto
- 7. Trace mode = Max Hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Mode	Test Frequency	Peak Power Spectral Density (dBm)
	Low	-13.45
BLE	Middle	-13.96
	High	-15.09


8.4 Test Result

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 16 / 37



8.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 17 / 37

9. TX Radiated Spurious Emission and Conducted Spurious Emission

9.1 Test Setup

Refer to the APPENDIX I.

9.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

	na otronigti iovolo opocinica in i	the following table
Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

radiator shall not exceed the field strength levels specified in the following table

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 ~ 0.110	16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
0.495 ~ 0.505	16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
2.1735 ~ 2.1905	16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
4.125 ~ 4.128	25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
4.17725 ~ 4.17775	37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
4.20725 ~ 4.20775	25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
4.17725 ~ 4.17775	74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
6.215 ~ 6.218	108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
6.26775 ~ 6.26825	149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
6.31175 ~ 6.31225	156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
8.291 ~ 8.294	156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
8.362 ~ 8.366	162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
8.37625 ~ 8.38675	3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
8.41425 ~ 8.41475	3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
12.51975 ~ 12.52025	3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
12.57675 ~ 12.57725	3600 ~ 4400	322 ~ 335.4	Above 38.6
13.36 ~ 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

9.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3.75 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. (The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

```
Peak Measurement
RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes
```

Average Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 21 / 37

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than tuming on and off with the transmit cycle, then no duty cycle correction is required for that emission.

9.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below. Frequency range: 30 MHz ~ 26.5 GHz
 RBW = 100 kHz, VBW = 300 kHz, Sweep Time = Auto, Detector = Peak, Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

9.5 Test Result

9 kHz \sim 25 GHz Data BLE

• Low frequency

Frequency	Rea	ding		.	0.05	Lin	nits	Re	sult	Mai	rgin
Fiequency	(dBu	V/m)	Pol.	T.F (dB)	DCF (dB)	(dBu	IV/m)	(dBu	V/m)	(d	в)
(MHz)	AV /	/ Peak		(48)	(00)	AV /	Peak	AV /	Peak	AV /	Peak
4 804.14	27.11	39.29	V	6.24	2.04	54.0	74.0	35.4	45.5	18.6	28.5

• Middle frequency

Fraguanay	Rea	ding			0.05	Lin	nits	Re	sult	Mai	rgin
Frequency	(dBu	V/m)	Pol.	T.F (dB)	DCF (dB)	(dBu	V/m)	(dBu	IV/m)	(d	в)
(MHz)	AV /	/ Peak		(42)	(00)	AV /	Peak	AV /	Peak	AV /	Peak
4 884.53	28.56	40.00	V	5.98	2.04	54.0	74.0	36.6	46.0	17.4	28.0

• High frequency

Fraguanay	Rea	ding			0.05	Lin	nits	Re	sult	Mai	gin
Frequency	(dBu	V/m)	Pol.	T.F (dB)	DCF (dB)	(dBu	IV/m)	(dBu	IV/m)	(d	в)
(MHz)	AV ,	/ Peak		(00)	(00)	AV /	Peak	AV /	Peak	AV /	Peak
4 960.86	28.64	40.42	V	6.15	2.04	54.0	74.0	36.8	46.6	17.2	27.4

Note 1: The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCF(Duty Cycle Factor)

- T_{on} = 0.391 ms / T_{off} = 0.235 ms

- Duty Cycle = T_{on} / (T_{on}+T_{off}) = 0.391 / (0.391+0.235) = 0.625

- DCF = $10 \times \log(1/\text{Duty Cycle}) \text{ dB} = 10 \times \log(1/0.625) \text{ dB} = 2.04 \text{ dB}$

Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCF

TF = Ant factor + Cable Loss + Filter Loss - Amp Gain + Distance Factor

Distance Factor = 20log(applied distance/required distance) = 20log(3.75m/3m) = 1.94

9.6 Test Plot for Radiated Spurious Emission

• BLE _ Low frequency

							Spuriou	
Multi¥iew 🕀 Sp.,um	Spm2	Spem3	Spem4	Spe_m5	Spem6	Spe_m7	X	▽
Ref Level 87.00 dB		• RBW 1 MHz	Mode Auto Sweep					040000 GHz
Input 1 A Frequency Sweep	AC PS Off	Notch Off					equency 1.0	• 1Pk Max
30 dBµV							M1[1] 4	39.29 dBµV 80414000 GHz
10 ubji v								
70 dBµV								
i0 dBµV								
0 dBµV								
0 dBµV				M1				
	New Schwart Ward	Whitehand	leventeralling		merrinduration	en Vehlander	understanding	whiteman
0 dBµV								
0 dBµV								
0 dBµV								
o uppv								
dBµV								
10 dBµV								
F 4.804 GHz		10	01 pts	1	.0 MHz/			Span 10.0 MHz
(ulti¥iew 📯 Sp.,um	Spm2	Spem3	Spem4	Spem5	Spemő		urious –	
NultiView S Spum Ref Level 87.00 dBµ Att 10 d	dB SWT 1.01 ms	Spem3 • RBW 1 MHz • VBW 3 MHz	Spem4	SGL	Spemó	Spe_m7	X	
Ref Level 87.00 dB	JV dB SWT 1.01 ms AC PS Off	• RBW 1 MHz		SGL	Spem6	Spe_m7	requency 4.80	⊽ 040000 GHz ● 1Rm Avg
Ref Level 87.00 dBµ Att 10 d Input 1 A Frequency Sweep	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spem6	Spe_m7	Equency 4.80	 040000 GHz
Ref Level 87.00 dBµ Att 10 d Input 1 A Frequency Sweep	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spemb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dBµ Att 10 c Input 1 f Frequency Sweep 0 dBµV	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spem8	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dBy Att 10 c Input 1 A Frequency Sweep 0 dBµV	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	() Spe.mb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 k Att 10 k Input 14 k Input	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	5 Spemb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 k Att 10 k Input 14 k Input	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spr.mk	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 c Input 1 H O dB, V 0 0 dB, V 0 0 dB, V 0 0 dB, V 0	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spemb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 K Input 1 K <	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spr.mb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 K Input 1 K <	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	5 Spe.m6	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 G Input 1 / G	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	5 Spemb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB; Att 10 C Input 1 / C	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	Spenne	Spe_m7	Equency 4.80	⊽ 040000 GHz 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB; Att 10 C Input 1 / C	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	5 Spe.mb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB, Att 10 C Input 1 / C Input 1 / C o dB, V 0 dB, V	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	5 Spr.mb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV
Ref Level 87.00 dB Att 10 c Input 1 A	JV dB SWT 1.01 ms AC PS Off	RBW 1 MHz VBW 3 MHz		SGL	5 Spe.mb	Spe_m7	Equency 4.80	▼ 040000 GHz • 1Rm Avg 27.11 dBµV

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 24 / 37

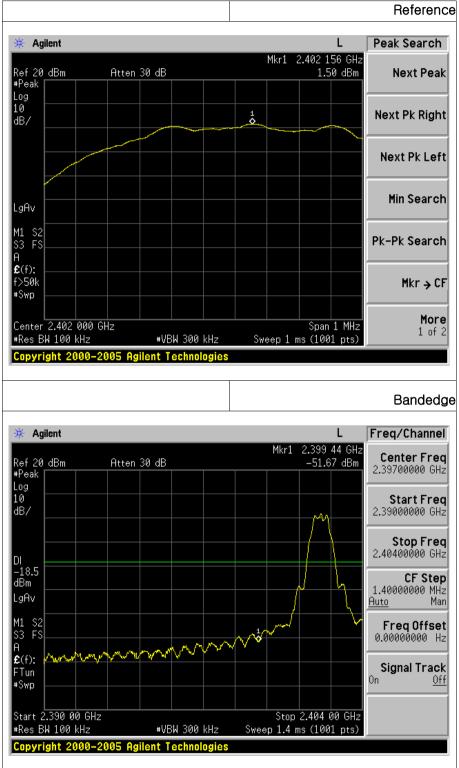
• BLE _ Middle frequency

									Spuriou	s – Pea
ulti¥iew 🔠 Sp	.um 🛛	Spm2	Spe.	m3	Spem4	Spem5	Spemő	Spe_m7	X	▽
Ref Level 87 Att Input		VT 1.01 ms	 RBW VBW Notch 	3 MHz Mode	e Auto Sweep			Fn	equency 4.88	340000 GH:
Frequency			Noteri	01					MILLI	 1Pk Max 40.00 dBµV
0 dBµV									M1[1] 4.	40.00 dBpv 88452900 GHz
0 dBµV										
0 dBµV										
o ubp v										
) dBµV										
						M1				
) dBµV			4	. hanne	manung	unirenturit	Municipalitica			
о dBµV	www.www.www.w	www.www.	www.www.w	an a				an water and	hand hand and hand hand hand hand hand h	man and a strength
ј ubµv										
) dBµV		_								
) dBµV										
dBµV										
ιο dBμV										
to dop i								1		
	<u> </u>			1001 pt	15	1	.0 MHz/	Spu	irious –	-
F 4.884 GHz							~		irious –	Averag
F 4.884 GHz	.um 🕅	Spm2	RBW	.m3 X	Spem4	Spem5	~	Spe_m7	irious –	Averag
Htview ES Sp Ref Level 87 Att input	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	RBW	1 MHz 3 MHz Mode	Spem4	Spem5 ∑	~	Spe_m7	irious –	Averac
F 4.884 GHz	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
Huview EE Sp Ref Level 87 Att Input Frequency	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
E 4.884 GHz	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
E 4.884 GHz	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
E 4.884 GHz	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
E 4.884 GHz	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averac 340000 GH • IRm Avg 28.56 dBp ¹
= 4.884 GHz начини :: [sp Ref Level 87 ttt Frequency) dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
attrium \$\$ attrium \$\$ Sef Level \$7 Attriput \$\$ Frequency \$\$ 0 dBµV 0 dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
attrium \$\$ attrium \$\$ Sef Level \$7 Attriput \$\$ Frequency \$\$ 0 dBµV 0 dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
abbview \$p abbview \$p sef_Level 87 Att input FFequency 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	Spem5	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
abbview \$p abbview \$p sef_Level 87 Att input FFequency 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	equency 4.88	Averag 340000 GH: 28.56 dBpt
wttview \$p wttview \$p seturiew \$p Att Input Frequency 0 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	Irious – equency 4.88	Averaç ▼ 340000 GH; ●1Rm Avg 28.56 dby 8425000 GH;
F 4.884 GHz wittriew \$\$\$ Ref Level 87 Att Input Frequency 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	Irious – equency 4.88	Averag 340000 GH: 28.56 dBµ 38425000 GH:
wttview \$p wttview \$p Ref Level 87 Input Frequency 0 dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	Irious – equency 4.88	Averaç ▼ 340000 GH; ●1Rm Avg 28.56 dby 8425000 GH;
attiview Sp settiview Sp Ref Level 87 Input Frequency o dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	Irious – equency 4.88	Averaç ▼ 340000 GH; ●1Rm Avg 28.56 dby 8425000 GH;
attiview Sp settiview Sp Ref Level 87 Input Frequency o dBµV 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	Irious – equency 4.88	Averag 340000 GH: 28.56 dBµ 38425000 GH:
wttview \$p wttview \$p seturiew \$p Att Input Frequency 0 0 dBµV	.um 22 .00 dBµV 10 dB SV 1 AC PS	VT 1.01 ms	 RBW VBW 	1 MHz 3 MHz Mode	Spem4	SGL Count 100/100	~	Spe_m7	Irious – equency 4.88	▼ 340000 GH: ● 1Rm Avg 28.55 dBµA 38425000 GH2

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 25 / 37

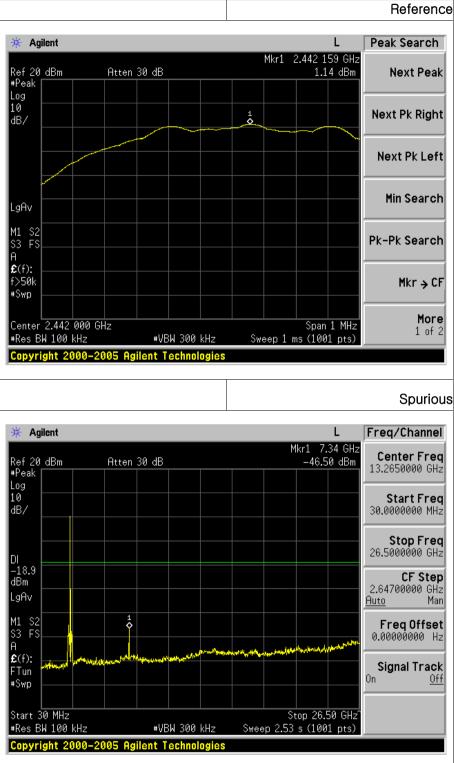
• BLE _ High frequency

							i	Spuriou	12 - LG
liti¥iew 🔠 Sp.	um	Spm2	Spem3	Spem4	Spem5	Spemő	Spe_m7	X	▽
Ref Level 87 Att			W 1 MHz W 3 MHz Mode	Auto Sween			En		600000 GH
Input Frequency	1 AC PS	Off No	tch Off					equency 4.5	• 1Pk Max
								M1[1]	40.42 dBµ 1.96085900 GH
O dBµV−−−−									
) dBµV									
I dBµV									
I dBµV									
					M1				
) dBμV			monulan	a Murral many	ann an the second se	aboundance	11. 000 A. A. I.		
) dBµV	and the associated	Hard and the second	and the second second				anow a vilion low	and and an	all managed and the second
) dBµV									
10.41									
I dBµV−−−−									
dBµ∨									
n albuss									
				S	1	.0 MHz/	Spu		-
E 4.96 GHz								irious -	Span 10.0 MH
F 4,96 GHz			5pem3 ☑	Spem4	Spem5 2		Spe_m7	irious -	- Averag
Htview E Sp Ref Level 87 Att input		\cup	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5		Spe_m7	irious -	- Averac
F 4.96 GHz		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
Hand the second		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
E 4.96 GHz		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averaç (- 600000 GH
E 4.96 GHz		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
E 4.96 GHz		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
4.96 GHz Iteview E Sef Level 87 Att input Frequency dBμV 0 dBμV 0 dBμV		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
E 4.96 GHz attriev		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
E 4.96 GHz states sta		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
4.96 GHz Iвчее 5 Ref Level 87 5 Ref Level 87 1 Input Frequency 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
4.96 GHz Iвчее 5 Ref Level 87 5 Ref Level 87 1 Input Frequency 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV 0 dBµV		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Spem5 2		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
4.96 GHz вичее 5 Ref Level 87 5 Xtt 1 Input Frequency 0 dBµV		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Sol. Count 100/100		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
atoriev E 4.96 GHz atoriev E 5e Ref Level 87 Att 10put Frequency 0 dBµV 0 dBµV 0		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Sol. Count 100/100		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
4.96 GHz вичее 5 Ref Level 87 5 Xtt 1 Input Frequency 0 dBµV		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Sol. Count 100/100		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
4.96 GHz IBVIEW SP Xef Level S7 Xtt Input Frequency dBµV 0 dBµV		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Sol. Count 100/100		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ
■ 4.96 GHz #89/ew ● sp 2kef Level 87 2kef Level 87 1 dbµv 0 dbµv		• RE T 1.01 ms • VB	spe_m3 ☑ ₩ 1 MHz ₩ 3 MHz Mode	Spem4	Sol. Count 100/100		Spe_m7	equency 4.9	- Averag ⊽ 6000000 GH •18m Avg 28.64 dBµ

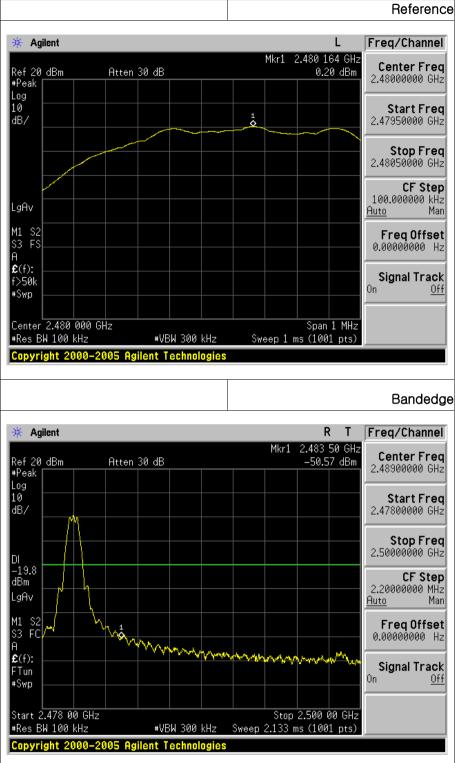

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 26 / 37

9.7 Test Plot for Conducted Spurious Emission

BLE _ Low frequency


EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 27 / 37

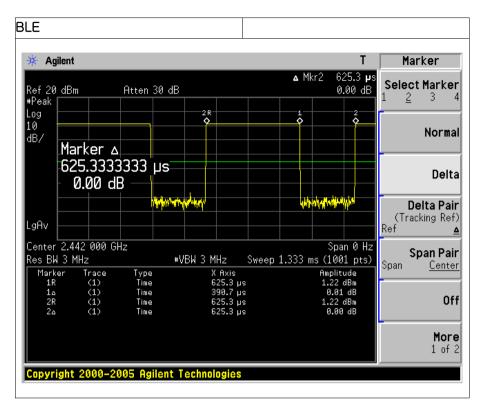
🔆 Agilent				L	Freq/Channe
Ref 20 dBm #Peak	Atten 30 dB		M	kr1 7.20 GHz -42.35 dBm	Center Fred 13.2650000 GH
Log 10 dB/					Start Free 30.0000000 MH
					Stop Fred 26.5000000 GH
-18.5 dBm _gAv	1				CF Stej 2.64700000 GH <u>Auto</u> Ma
M1 S2 S3 FS		1 ANI (14	مليني جريب معيرينية	Hower and the second second second	Freq Offse 0.00000000 H
€(f): FTun #Swp	a, ing t, <mark>bibliographin Malant 1</mark> 540 min apada ang Pen		^ا روستر الاروم المراجع ا المراجع المراجع		Signal Tracl On <u>Of</u>
Start 30 MHz ≉Res BW 100 kHz		W 300 kHz		op 26.50 GHz s (1001 pts)	


BLE _ Middle frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 29 / 37

BLE _ High frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 30 / 37


🗧 Agilent				L	Freq/Channe
ef 20 dBm ^D eak	Atten 30 dB			Mkr1 7.44 GHz -49.42 dBm	Center Fre 13.2650000 GH
99 0 3/					Start Fre 30.0000000 MH
					Stop Fre 26.5000000 GF
19.8 3m gAv					CF Ste 2.64700000 GH <u>Auto</u> Ma
1 S2 3 FS	1	, deseture	مېرىرىيە يەر يېرىمى يەلمۇرىي	لارم میروند. مراجع میروند او کم و مدو مال او مار مور مدو مال او	FreqOffse 0.00000000 H
(f): Tun Swp	and and a start of the start of	hele and the hele of the hele			Signal Trac On <u>O</u>
tart 30 MHz Res BW 100 kHz		 BW 300 kHz		Stop 26.50 GHz^ 3 s (1001 pts)	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 31 / 37

This test report shall not be reproduced except in full, Without the written approval.

9.8 Test Plot for Duty Cycle

10. Conducted Emission

10.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

10.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)		
Fieque		Quasi-Peak	Average
	0.15 ~ 0.5	66 to 56 *	56 to 46 *
	0.5 ~ 5	56	46
	5~30	60	50

* Decreases with the logarithm of the frequency

10.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

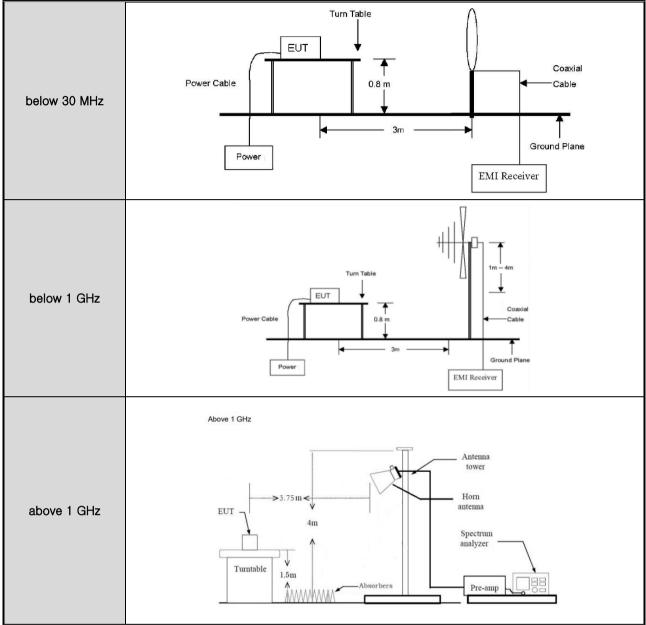
- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

10.4 Test Result

Not Applicable

(This products is only using Coin Battery power. So, AC conducted emission test has not been perfomed.)

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 33 / 37


APPENDIX I

TEST SETUP

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 34 / 37

Radiated Measurement

• Conducted Measurement

Conducted	EUT	Attenuator	Spectrum Analyzer

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 35 / 37

APPENDIX II

UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 36 / 37

Measurement Item	Expanded Uncertainty U = <i>k</i> Uc (<i>k</i> =2)
Conducted RF power	0.32 dB
Conducted Spurious Emissions	0.32 dB
Radiated Spurious Emissions	6.34 dB
Conducted Emissions	1.74 dB