

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-GEN AND RSS-210 CERTIFICATION TEST REPORT

FOR

802.11 a/b/g FIXED WIRELESS NODE

MODEL NUMBER: SKYACCESS DUALBAND

FCC ID: RV7-SC3110

REPORT NUMBER: 06U10713-1, REVISION B

ISSUE DATE: APRIL 12, 2007

Prepared for

SKYPILOT NETWORKS INC. 2055 LAURELWOOD ROAD 2nd FLOOR SANTA CLARA, CA 95054-2747

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, USA

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	3/26/07	Initial Issue	T. Chan
В	4/12/07	Combined with 5.8 GHz band results from CCS report 06U10324-1C.	M. Heckrotte

DATE: APRIL 12, 2007

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	5
2. T	EST METHODOLOGY	6
3. F.	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. E	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	<i>7</i>
5.2.	MAXIMUM OUTPUT POWER	7
<i>5.3</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	7
<i>5.4</i> .	SOFTWARE AND FIRMWARE	7
5.5.	WORST-CASE CONFIGURATION AND MODE	7
5.6.	DESCRIPTION OF 2.4 GHz BAND TEST SETUP	8
5.7.	DESCRIPTION OF 5.8 GHz BAND TEST SETUP	10
6. T	EST AND MEASUREMENT EQUIPMENT	12
7. L	IMITS AND RESULTS	13
7.1.	CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND	13
	1.1. 6 dB BANDWIDTH	
	1.2. 99% BANDWIDTH	
	1.3. PEAK OUTPUT POWER	
	1.5. AVERAGE POWER	
	1.6. PEAK POWER SPECTRAL DENSITY	
7.	1.7. CONDUCTED SPURIOUS EMISSIONS	49
7.2.	CHANNEL TESTS FOR THE 5725 TO 5850 MHz BAND	62
7.	2.1. 6 dB BANDWIDTH	62
	.2.2. 99% BANDWIDTH	
	.2.3. PEAK OUTPUT POWER	
	.2.4. MAXIMUM PERMISSIBLE EXPOSURE	
	2.6. PEAK POWER SPECTRAL DENSITY	
	2.7. CONDUCTED SPURIOUS EMISSIONS	
<i>7.3</i> .	RADIATED EMISSIONS FOR 2400 TO 2483.5 MHz BAND	93
7.	3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	3.2. TRANSMITTER ABOVE 1 GHz	
7.	3.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	115
	Page 3 of 139	

7.1	RADIATED EMISSIONS FOR 5725 TO 5850 MHz BAND	110
	1.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	1.2. TRANSMITTER ABOVE 1 GHz	
	4.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
7.5.	POWERLINE CONDUCTED EMISSIONS FOR 2400 - 2483.5 GHz BAND	128
7.6.	POWERLINE CONDUCTED EMISSIONS FOR 5725 – 5850 GHz BAND	132
8. SF	TUP PHOTOS	136

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SKYPILOT NETWORKS, INC.

2055 LAURELWOOD ROAD 2nd FLOOR

SANTA CLARA, CA 95054-2747

EUT DESCRIPTION: 802.11 a/b/g FIXED WIRELESS NODE

MODEL: SKYACCESS DUALBAND

SERIAL NUMBER: 102

DATE TESTED: JUNE 06 - 13, 2006 (5.8 GHz Band)

DECEMBER 07 – 12, 2006 (2.4 GHz Band)

APPLICABLE STANDARDS

STANDARD	TEST RESULTS						
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED						
RSS-GEN ISSUE 1	NO NON-COMPLIANCE NOTED						
IC RSS-210 ISSUE 6 ANNEX 8	NO NON-COMPLIANCE NOTED						
IC RSS-210 ISSUE 6 ANNEX 9	NO NON-COMPLIANCE NOTED						

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

William Shing

My

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

WILLIAM ZHUANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

DATE: APRIL 12, 2007

FCC ID: RV7-SC3110

Page 5 of 139

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: APRIL 12, 2007

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

SkyAccess DualBand is a dual-radio solution that combines SkyPilot's long-range, high-capacity 5 GHz mesh backhaul with a high-powered 802.11b/g access point that lets service providers and municipalities offer standard Wi-Fi to subscribers.

The model number was changed after testing commenced.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

2400 to 2483.5 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	18.16	65.46
2412 - 2462	802.11g	23.43	220.29

5725 to 5850 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5740 - 5835	802.11a	25.43	349.14

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dipole antenna with a maximum gain of 7.4 dBi in the 2.4 GHz band.

The radio utilizes a panel antenna with a maximum gain of 16.5 dBi in the 5.8 GHz band

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was SpCpeSw, rev. 4.

5.5. WORST-CASE CONFIGURATION AND MODE

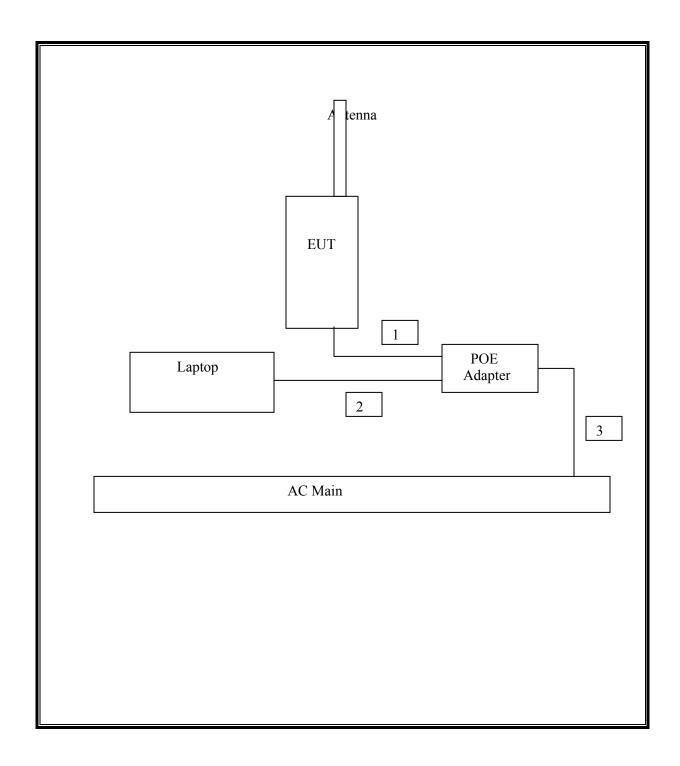
In our opinion the worst-case data rate is determined to be 1 Mb/s in the 802.1 b mode and 6 Mb/s in the 802.11g and 802.11a modes.

Page 7 of 139

5.6. DESCRIPTION OF 2.4 GHz BAND TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST										
Description	Description Manufacturer Model Serial Number FCC ID									
Laptop PC	QuickNote	A929	GAYR22190154	DoC						
PC AC Adapter	Lite-on Electronics	PA-1900-05	250109400C	DoC						
POE Adapter	SkyPilot	POE	640-00009-01	N/A						


I/O CABLES

	I/O CABLE LIST								
Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks			
		Ports							
1	LAN	1	RJ45	Unshielded	1m	N/A			
2	LAN	1	RJ45	Unshielded	1m	N/A			
3	AC	1	AC Power	Unshielded	1.8m	N/A			

TEST SETUP

The EUT is outside a host laptop computer via an ethernet cable and POE Adaptor during the tests. Test software exercised the radio card.

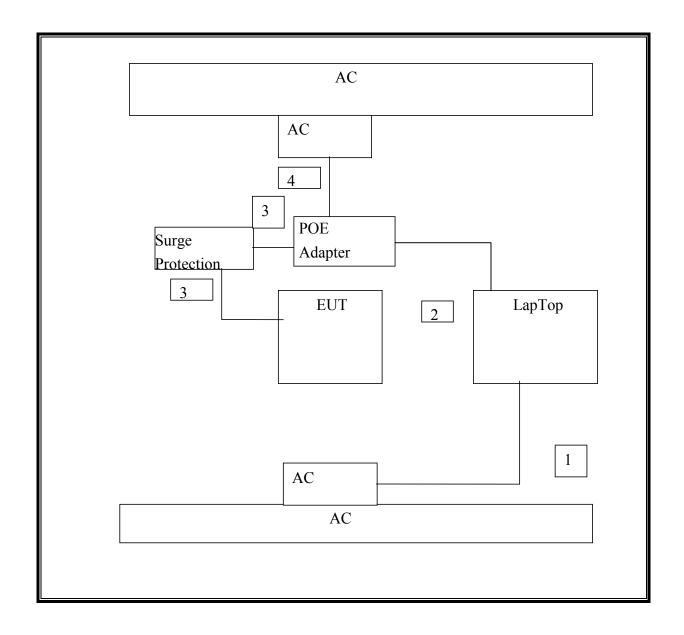
SETUP DIAGRAM FOR TESTS

Page 9 of 139

5.7. DESCRIPTION OF 5.8 GHz BAND TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop PC	QuickNote	A929	GAYR22190154	DoC			
PC AC Adapter	Lite-on	PA-1900-05	250109400C	N/A			
	Electronics						
EUT AC Adapter	UNIFIVE	UIB336-24	1567	N/A			
Mouse	Logitech	MUB48	LTC95102432	N/A			
POE Adapter	SkyPilot	POE	640-00009-01	N/A			


I/O CABLES

	I/O CABLE LIST								
Cable Port # of Connector Cable Cable Remarks									
No.		Identical Ports	Туре	Type	Length				
1	DC	1	1/8"	Unshielded	1.2m	NI/A			
1		1	· -		1.2111	N/A			
2	LAN	1	RJ45	Unshielded	1m	N/A			
3	DC	1	1/8"	Unshielded	1.2m	N/A			
4	AC	1	AC Power	Unshielded	1.8m	N/A			

TEST SETUP

The test software was utilitized to controls the EUT.

SETUP DIAGRAM FOR TESTS

Page 11 of 139

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the 2.4 GHz band tests documented in this report, which were performed during the period from December 7 to 12, 2006:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	Cal Due				
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY43360112	5/3/2007				
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007				
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007				
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2007				
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	8/30/2007				
EMI Test Receiver	R&S	ESHS 20	827129/006	6/3/2007				
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	2/4/2007				
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/2007				
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/2007				
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	4/22/2007				
Preamplifier, 1 ~ 26 GHz	Miteq	NSP2600-SP	924342	9/2/2007				

The following test and measurement equipment was utilized for the 5.8 GHz band tests documented in this report, which were performed during the period from June 6 to 13, 2006:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY43360112	5/3/2007		
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	4/22/2007		
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29310	4/22/2007		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	8/17/2006		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00931	6/24/2006		
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	2/4/2007		
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/2007		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/2006		
EMI Test Receiver	R&S	ESHS 20	827129/006	6/3/2007		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2006		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	8/30/2006		

DATE: APRIL 12, 2007

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND

7.1.1. 6 dB BANDWIDTH

LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

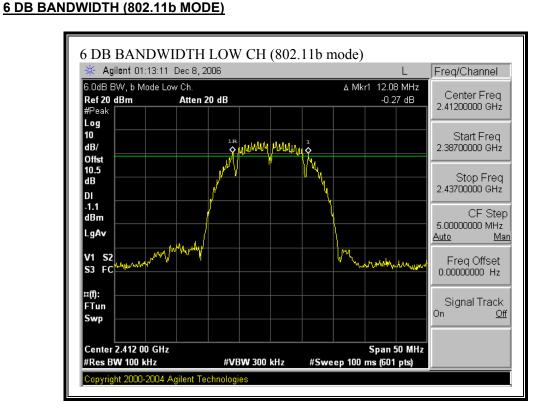
RSS-210 Clause A8.2 (1) The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

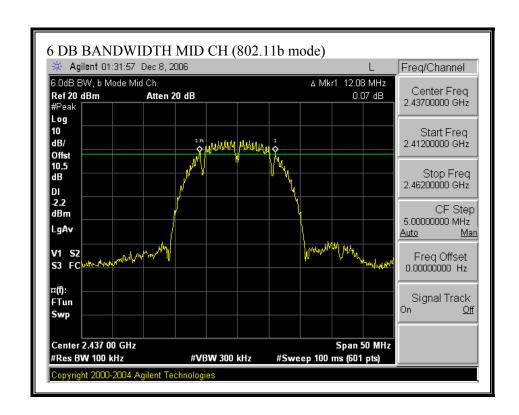
The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

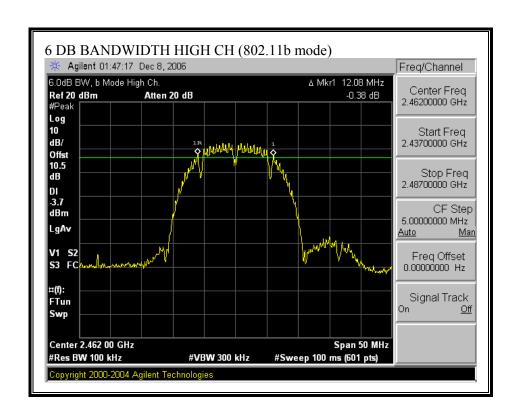
RESULTS

No non-compliance noted:

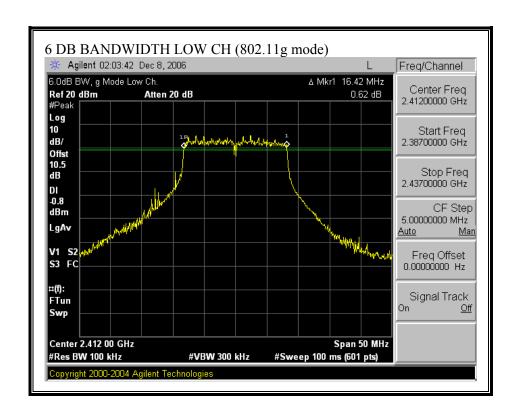

802.11b Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	12083.33	500	11583
Middle	2437	12083.33	500	11583
High	2462	12083.33	500	11583

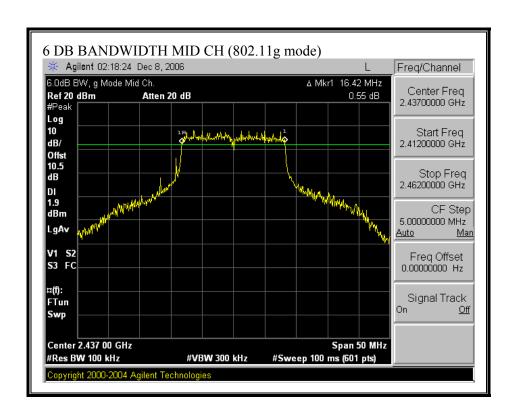

802.11g Mode

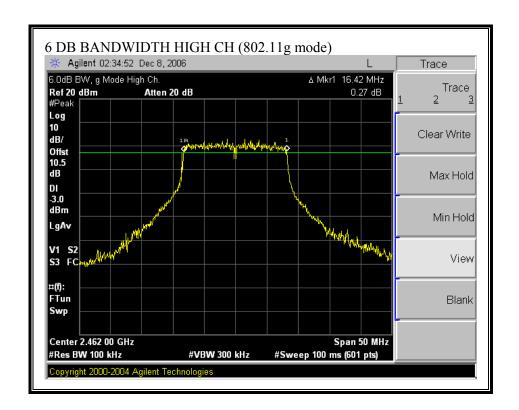

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	16416.67	500	15917
Middle	2437	16416.67	500	15917
High	2462	16416.67	500	15917

DATE: APRIL 12, 2007



DATE: APRIL 12, 2007





6 DB BANDWIDTH (802.11g MODE)

DATE: APRIL 12, 2007

7.1.2. 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

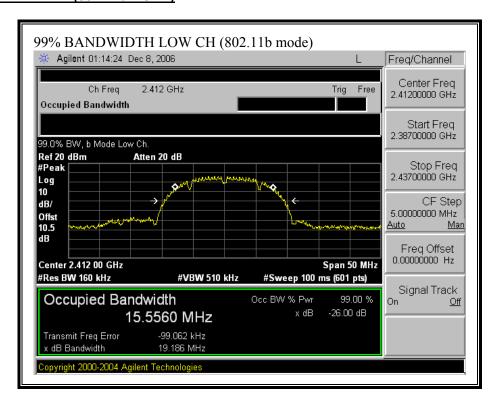
TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

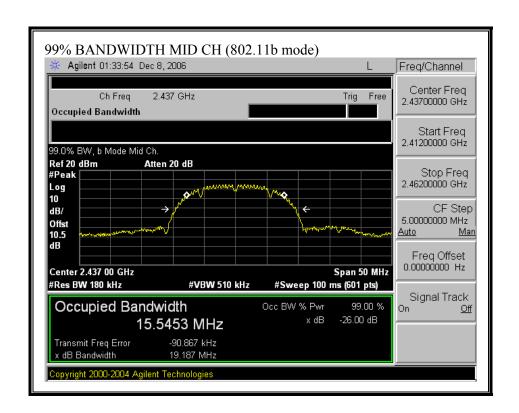
RESULTS

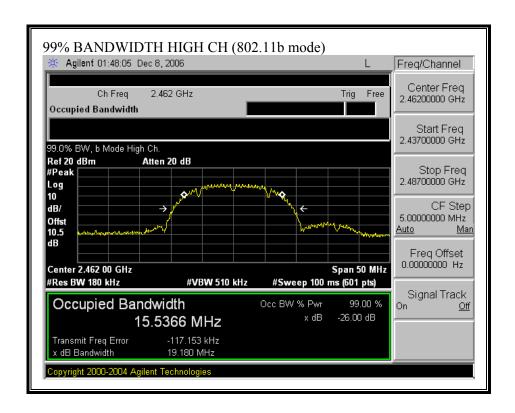
No non-compliance noted:

802.11b Mode

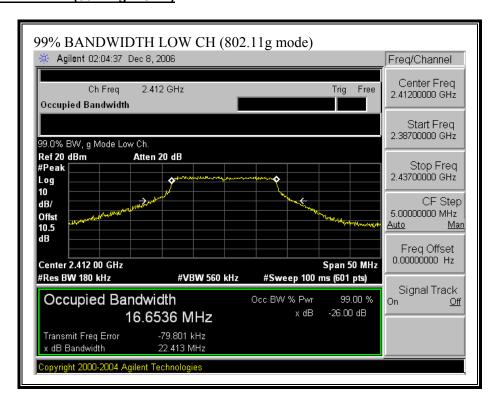

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	15.556
Middle	2437	15.545
High	2462	15.537

802.11g Mode

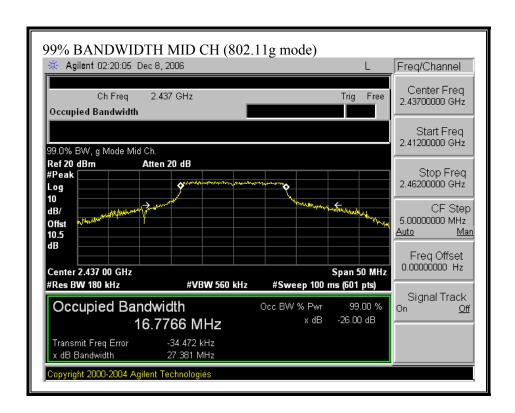

002:118 1/1046				
Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	16.654		
Middle	2437	16.777		
High	2462	16.655		

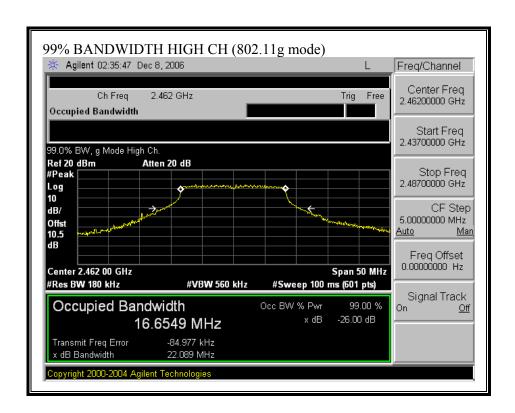

DATE: APRIL 12, 2007

99% BANDWIDTH (802.11b MODE)



DATE: APRIL 12, 2007





99% BANDWIDTH (802.11g MODE)

DATE: APRIL 12, 2007

7.1.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

\$15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

§15.247 (b) (4) (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

RSS-210 Issue 6 Clause A8 4

(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands, the maximum peak conducted power shall not exceed 1 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen)

(5) Systems in the 2400-2483.5 MHz and 5725-5850 MHz which have an e.i.r.p. above 4 W are permitted only for point-to-point systems (i.e. point-to-multipoint systems and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p.).

Point-to-point systems in these two bands may use higher e.i.r.p. as necessary for satisfactory operation provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. However, remote stations of point-to-multipoint systems shall be allowed to operate under the same condition as point-to-point systems.

Note: "Fixed, point-to-point operation", excludes point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

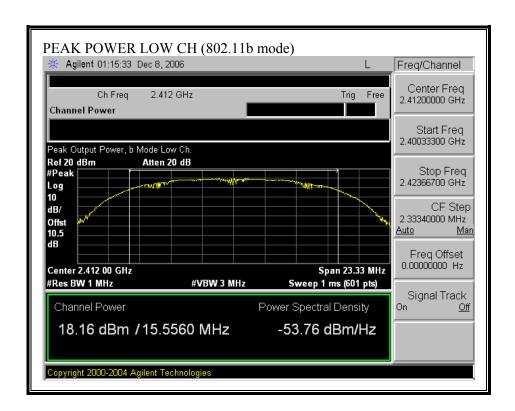
Page 27 of 139

RESULTS

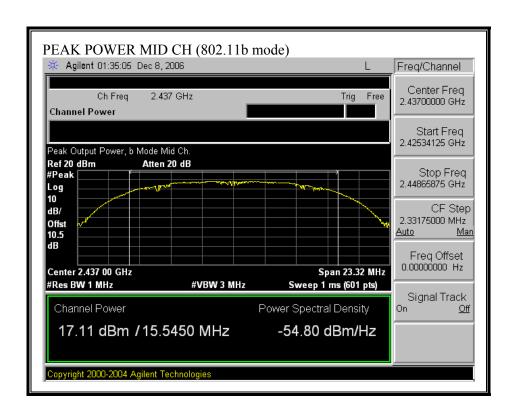
The maximum antenna gain is 7.4 dBi exclusively for fixed, point-to-point operations, therefore the limit is 29 dBm.

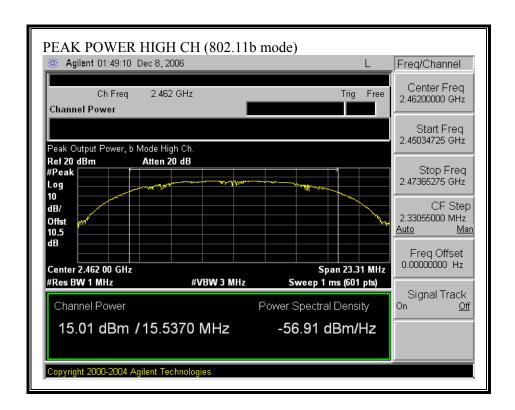
No non-compliance noted:

802.11b Mode

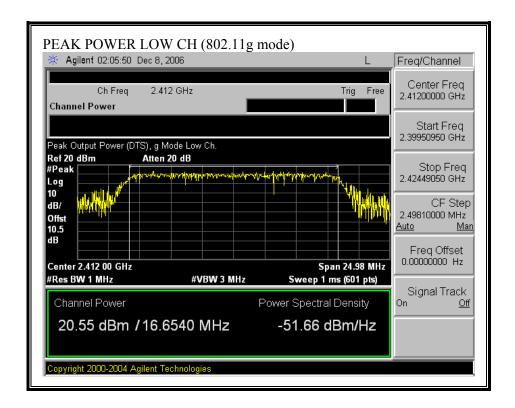

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	18.16	29	-10.84
Middle	2437	17.11	29	-11.89
High	2462	15.01	29	-13.99

802.11g Mode

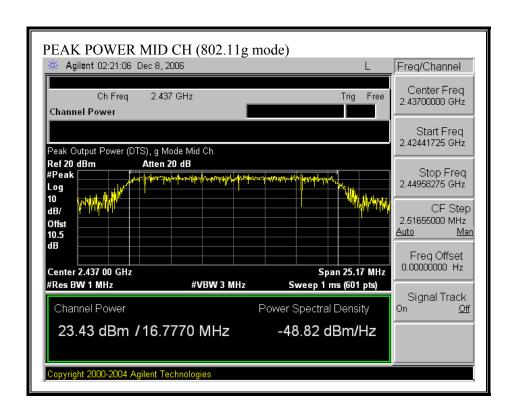

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	20.55	29	-8.45
Middle	2437	23.43	29	-5.57
High	2462	18.48	29	-10.52

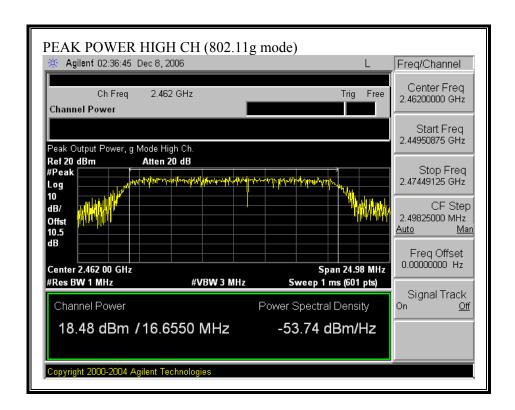

DATE: APRIL 12, 2007

OUTPUT POWER (802.11b MODE)



DATE: APRIL 12, 2007





OUTPUT POWER (802.11g MODE)

DATE: APRIL 12, 2007

7.1.4. MAXIMUM PERMISSIBLE EXPOSURE

FCC LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

^{* =} Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d (cm) = 100 * d (m)

yields

 $d = 100 * \sqrt{(30 * (P / 1000) * G) / (3770 * S)}$

 $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

 $P (mW) = 10 ^ (P (dBm) / 10)$ and

 $G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$

yields

 $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

LIMITS

From §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$

IC LIMITS

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003-1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

DATE: APRIL 12, 2007 FCC ID: RV7-SC3110

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

and

$$S = E ^2 / 377$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in watts/square meter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (377 * S))}$$

Changing Power to units of mW and Distance to units of cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = 100 * d(m)$$

yields

$$d = 100 * \sqrt{(30 * (P / 1000) * G) / (377 * S)}$$

$$d = 0.892 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in W/m^2$

Substituting the logarithmic form of power and gain using:

$$P (mW) = 10 ^ (P (dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$$

yields

$$d = 0.892 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in W/m^2$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.795 * 10 ^ ((P + G) / 10) / (d^2)$$

DATE: APRIL 12, 2007 FCC ID: RV7-SC3110

LIMITS

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11b	20.0	18.16	7.40	0.07
802.11g	20.0	23.43	7.40	0.24

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

DATE: APRIL 12, 2007

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	14.70	
Middle	2437	13.87	
High	2462	12.33	

802.11g Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	15.42
Middle	2437	17.41
High	2462	12.45

DATE: APRIL 12, 2007

7.1.6. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RSS-210 A8.2 (2) The transmitter power spectral density (into the antenna) shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration. This power spectral density shall be determined in accordance with the provisions of Section A8.4 below. The same method of determining the conducted output power shall be used to determine the power spectral density.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

RESULTS

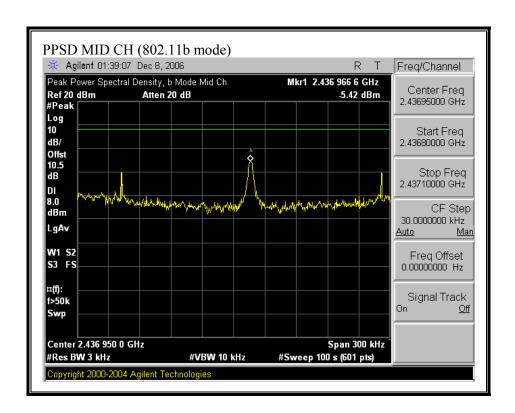
No non-compliance noted:

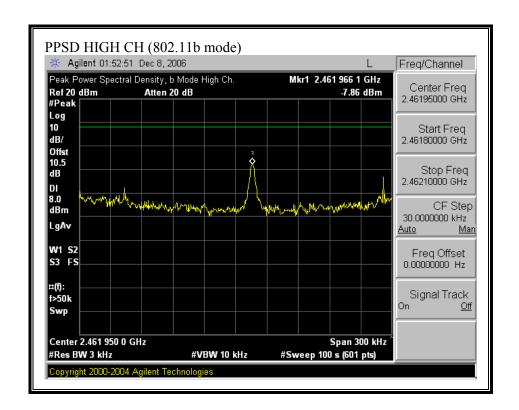
802.11b Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-4.22	8	-12.22
Middle	2437	-5.42	8	-13.42
High	2462	-7.86	8	-15.86

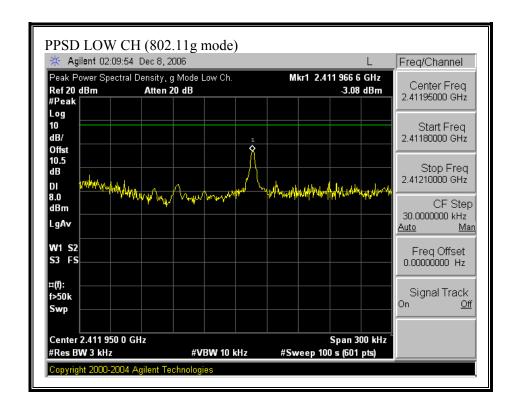
802.11g Mode

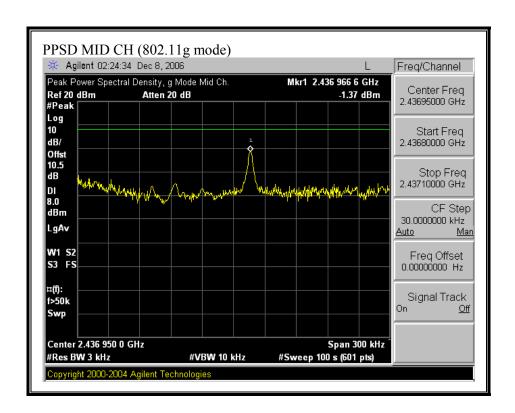
Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-3.08	8	-11.08
Middle	2437	-1.37	8	-9.37
High	2462	-4.97	8	-12.97

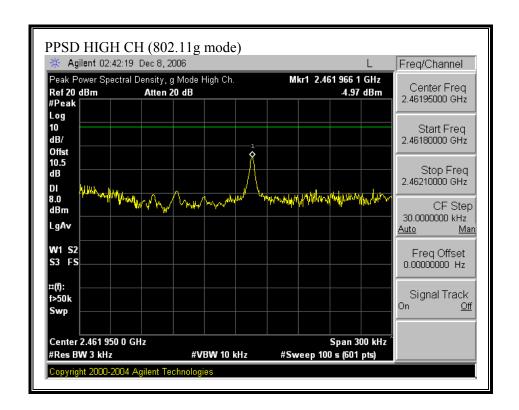

DATE: APRIL 12, 2007


DATE: APRIL 12, 2007

FCC ID: RV7-SC3110


PEAK POWER SPECTRAL DENSITY (802.11b MODE)





PEAK POWER SPECTRAL DENSITY (802.11g MODE)

DATE: APRIL 12, 2007

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

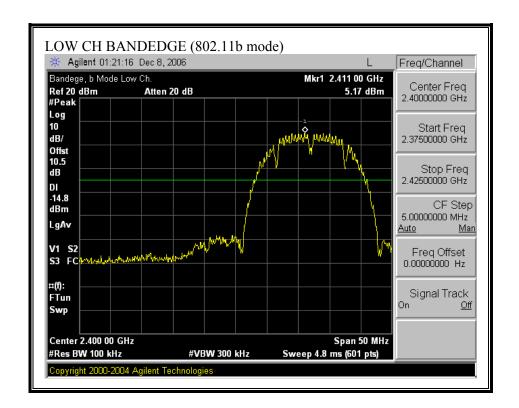
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Conducted power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

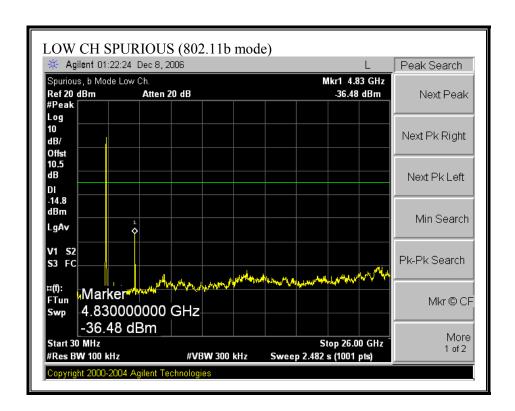
RSS-210 Clause A8.5 Out-of-band Emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table1 must also comply with the radiated emission limits specified in Tables 2 and 3.

TEST PROCEDURE

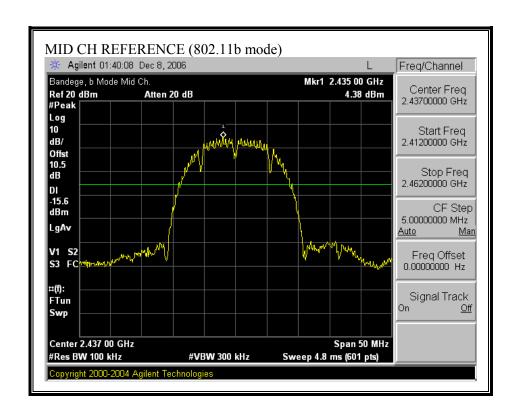
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

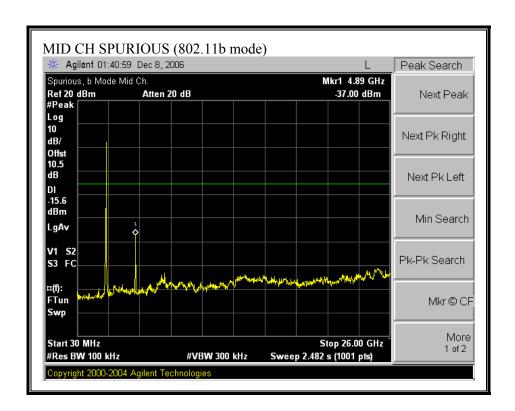

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

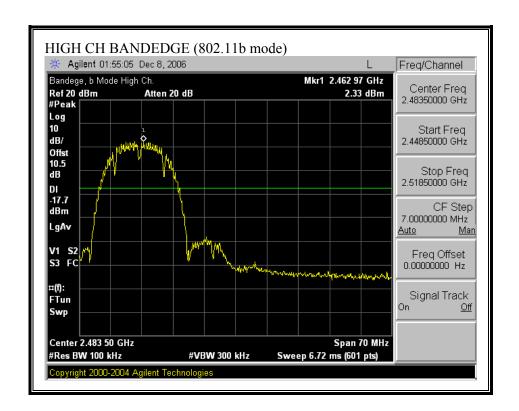
RESULTS

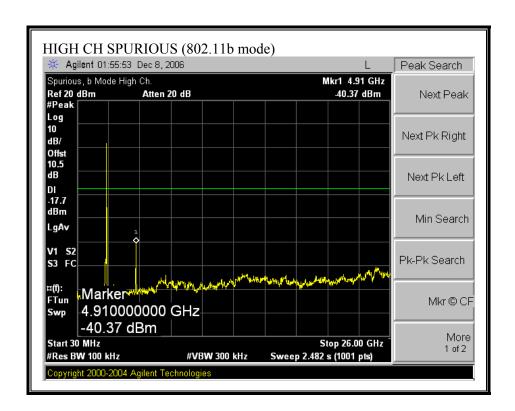

No non-compliance noted:

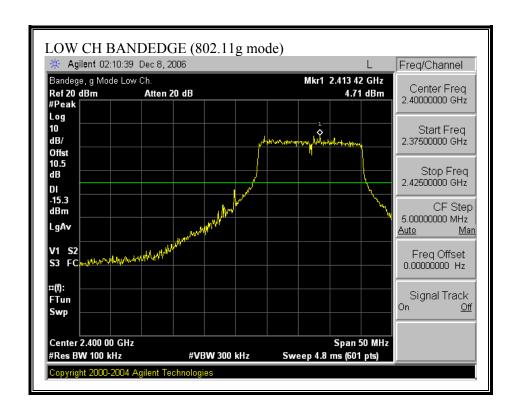
DATE: APRIL 12, 2007

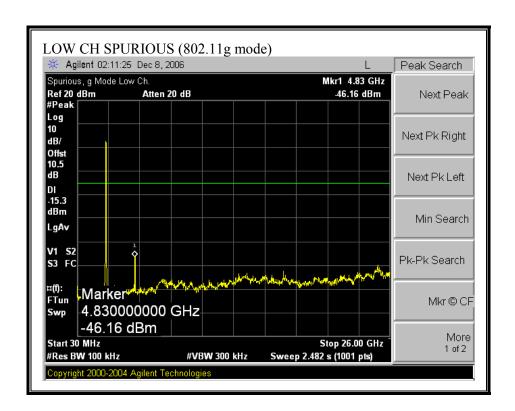

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

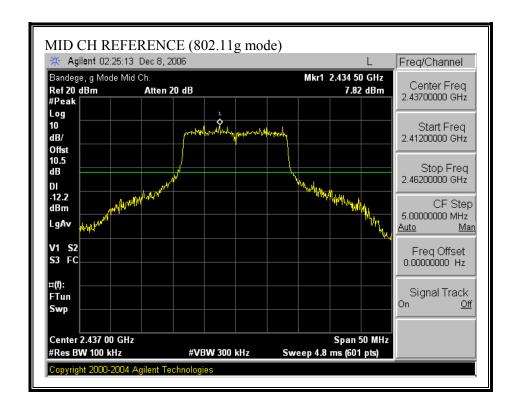

DATE: APRIL 12, 2007

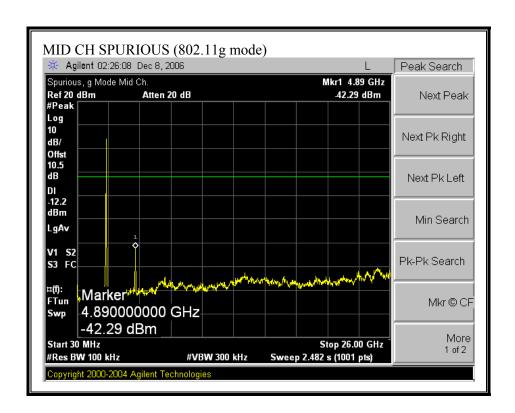

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

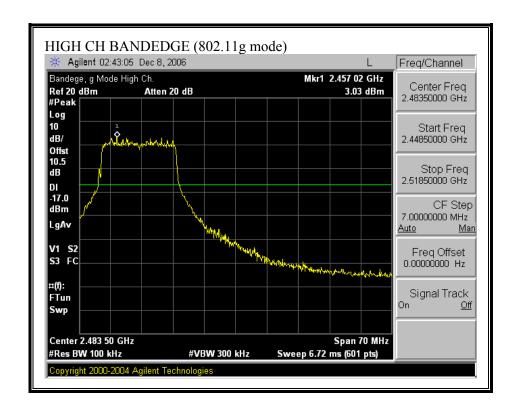

DATE: APRIL 12, 2007

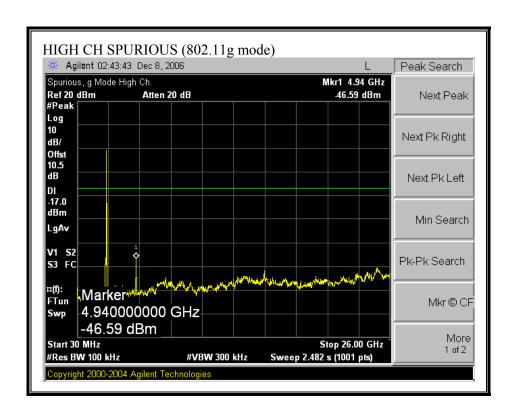

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)


DATE: APRIL 12, 2007


SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)


DATE: APRIL 12, 2007


SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)


DATE: APRIL 12, 2007

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)

DATE: APRIL 12, 2007

7.2. CHANNEL TESTS FOR THE 5725 TO 5850 MHz BAND

7.2.1. 6 dB BANDWIDTH

LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

RSS-210 Clause A8.2 (1) The minimum 6 dB bandwidth shall be at least 500 kHz.

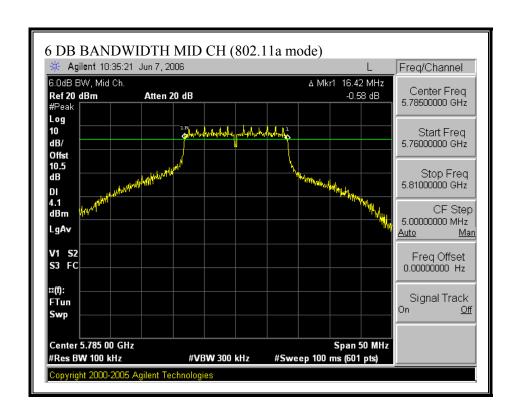
TEST PROCEDURE

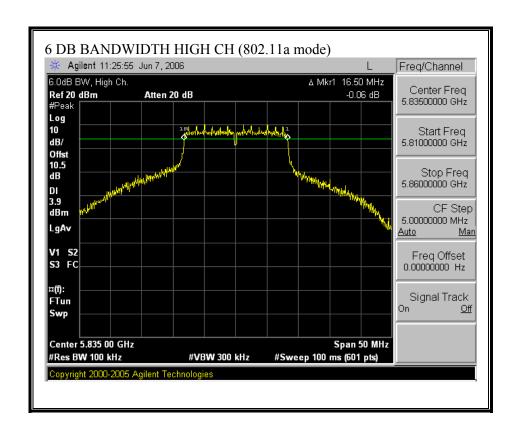
The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

No non-compliance noted:

802.11a Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	5740	16420	500	15920
Middle	5785	16420	500	15920
High	5835	16500	500	16000


DATE: APRIL 12, 2007

6 DB BANDWIDTH (802.11a MODE)

DATE: APRIL 12, 2007

7.2.2. 99% BANDWIDTH

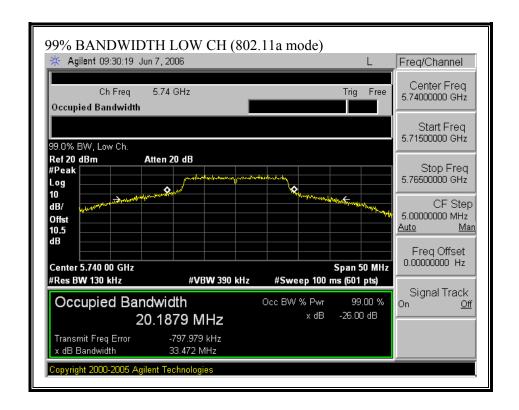
LIMIT

None; for reporting purposes only.

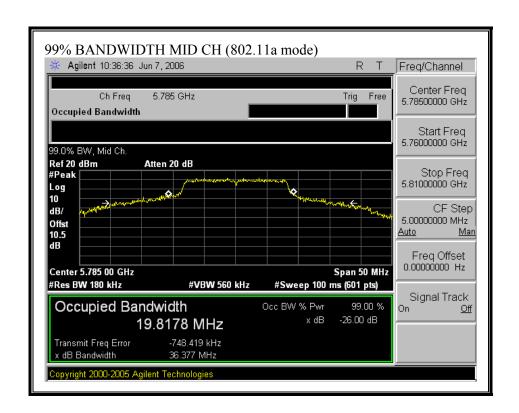
TEST PROCEDURE

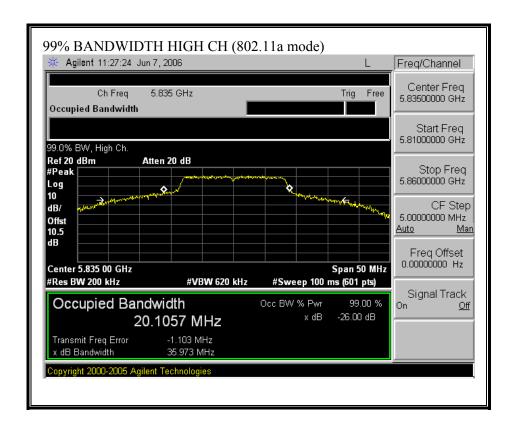
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5740	20.188
Middle	5785	19.818
High	5835	20.106


DATE: APRIL 12, 2007

99% BANDWIDTH (802.11a MODE)

DATE: APRIL 12, 2007

7.2.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (b) (4) (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

RSS-210 Issue 6 Clause A8.4

(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands, the maximum peak conducted power shall not exceed 1 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen)

(5) Systems in the 2400-2483.5 MHz and 5725-5850 MHz which have an e.i.r.p. above 4 W are permitted only for point-to-point systems (i.e. point-to-multipoint systems and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p.).

Point-to-point systems in these two bands may use higher e.i.r.p. as necessary for satisfactory operation provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. However, remote stations of point-to-multipoint systems shall be allowed to operate under the same condition as point-to-point systems.

Note: "Fixed, point-to-point operation", excludes point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information.

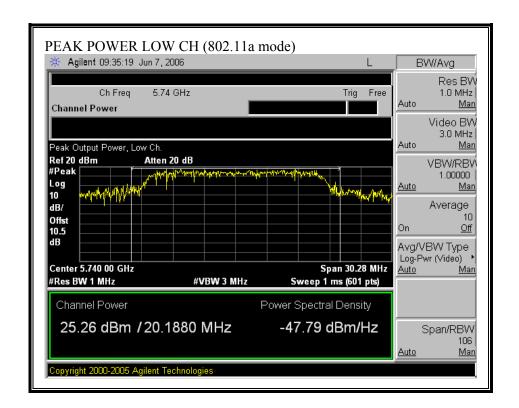
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

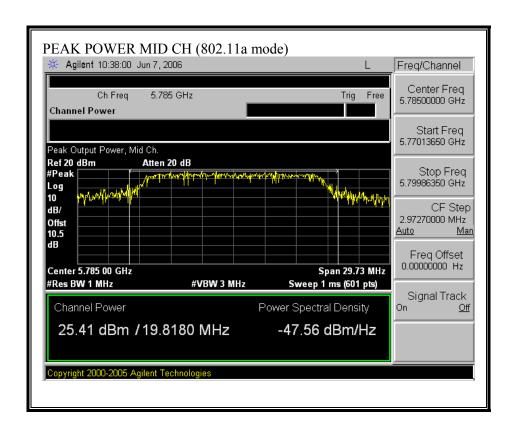
DATE: APRIL 12, 2007

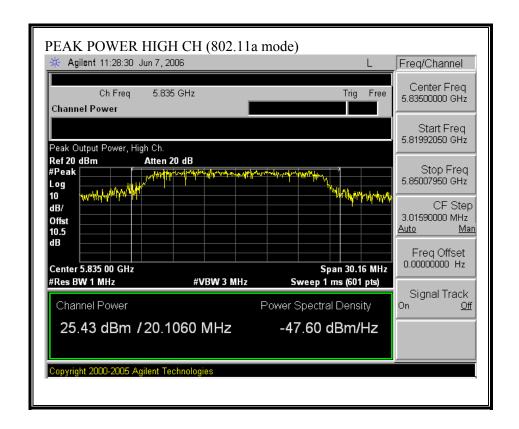
RESULTS

The maximum antenna gain is 16.5 dBi exclusively for fixed, point-to-point operations, therefore the limit is 30 dBm.


No non-compliance noted:

802.11a Mode


Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	5740	25.26	30	-4.74
Middle	5785	25.41	30	-4.59
High	5835	25.43	30	-4.57


DATE: APRIL 12, 2007

OUTPUT POWER (802.11a MODE)

DATE: APRIL 12, 2007

7.2.4. MAXIMUM PERMISSIBLE EXPOSURE

FCC LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in \$1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	nits for Occupational	I/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits for General Population/Uncontrolled Exposure					
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

DATE: APRIL 12, 2007

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G) / d}$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$

 $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

 $P (mW) = 10 ^ (P (dBm) / 10)$ and

 $G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$

yields

 $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

DATE: APRIL 12, 2007 FCC ID: RV7-SC3110

LIMITS

From §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$

IC LIMITS

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003-1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

DATE: APRIL 12, 2007 FCC ID: RV7-SC3110

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E ^2 / 377$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in watts/square meter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (377 * S))}$$

Changing Power to units of mW and Distance to units of cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (377 * S))}$

 $d = 0.892 * \sqrt{(P * G / S)}$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in W/m^2$

Substituting the logarithmic form of power and gain using:

 $P (mW) = 10 ^ (P (dBm) / 10)$ and

 $G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$

yields

 $d = 0.892 * 10 ^ ((P + G) / 20) / \sqrt{S}$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in W/m^2$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.795 * 10 ^ ((P + G) / 10) / (d^2)$$

DATE: APRIL 12, 2007 FCC ID: RV7-SC3110

LIMITS

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a	1.0	25.43	16.50	35.22

DATE: APRIL 12, 2007

7.2.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5740	19.87
Middle	5785	19.76
High	5835	19.96

DATE: APRIL 12, 2007

7.2.6. PEAK POWER SPECTRAL DENSITY

LIMIT

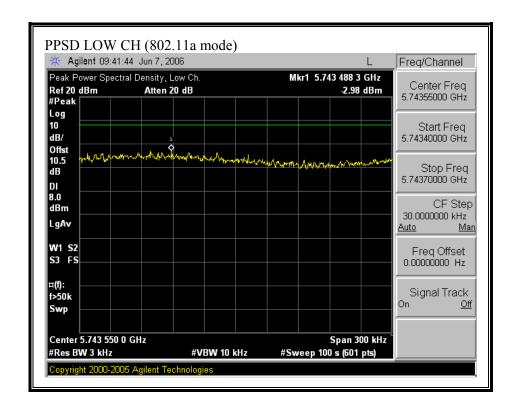
§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

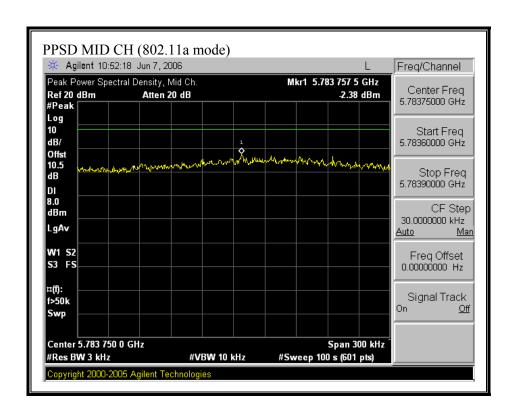
RSS-210 A9.2 (3) For the band 5725-5825 MHz, the power spectral density shall not exceed 17 dBm in any 1.0 MHz band.

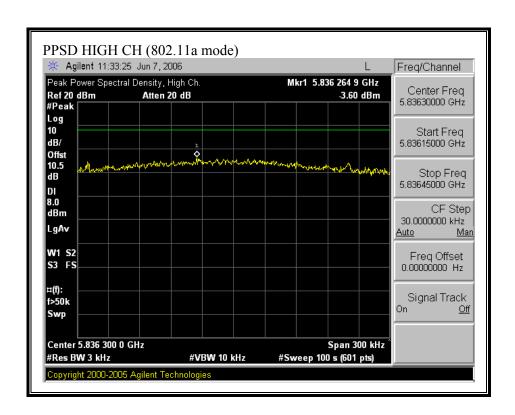
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

RESULTS


No non-compliance noted:


802.11a Mode


Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	5740	-2.98	8	-10.98
Middle	5785	-2.38	8	-10.38
High	5835	-3.60	8	-11.60

DATE: APRIL 12, 2007

PEAK POWER SPECTRAL DENSITY (802.11a MODE)

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-210 Table 1: Restricted Frequency Bands

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475- 156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

See section 2.2 for more details on restricted bands.

RSS-210 Clause A8.5 Out-of-band Emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table1 must also comply with the radiated emission limits specified in Tables 2 and 3.

DATE: APRIL 12, 2007

REPORT NO: 06U10713-1B DATE: APRIL 12, 2007 EUT: 802.11 a/b/g FIXED WIRELESS NODE FCC ID: RV7-SC3110

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RSS-210 Table 2: General Field Strength Limits (for transmitter and receiver)

Frequency (MHz)	Field Strength Microvolts /m at 3 meters (watts, e.i.r.p.)		
	Transmitters	Receivers	
30 - 88	100 (3 nW)	100 (3 nW)	
88 - 216	150 (6.8 nW)	150 (6.8 nW)	
216 - 960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz), and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

TEST PROCEDURE

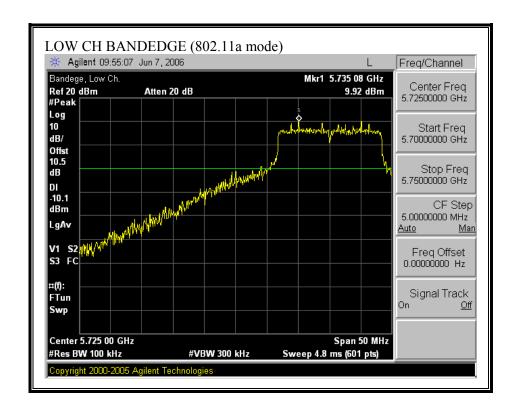
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

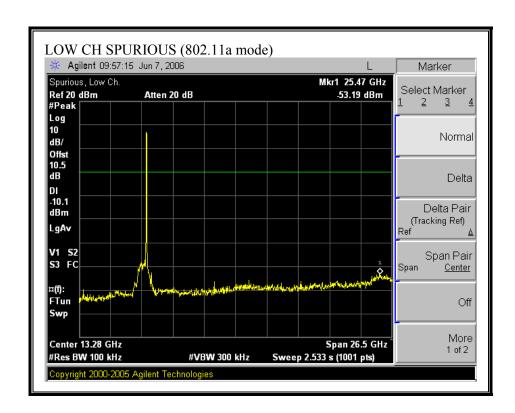
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

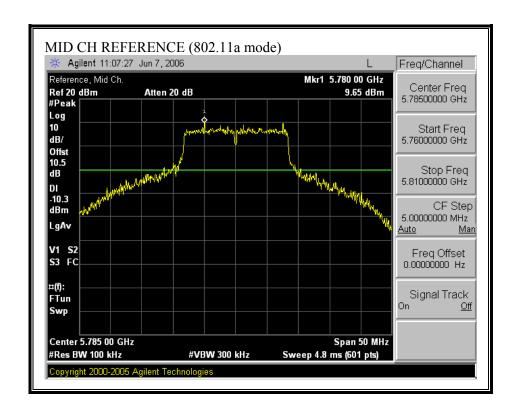
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

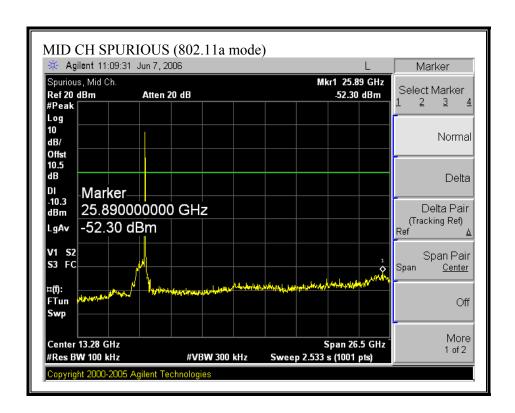

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

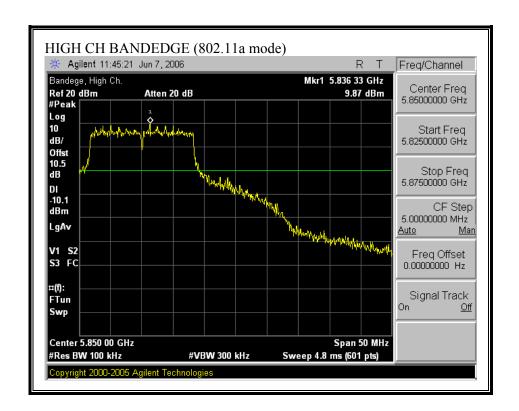
RESULTS

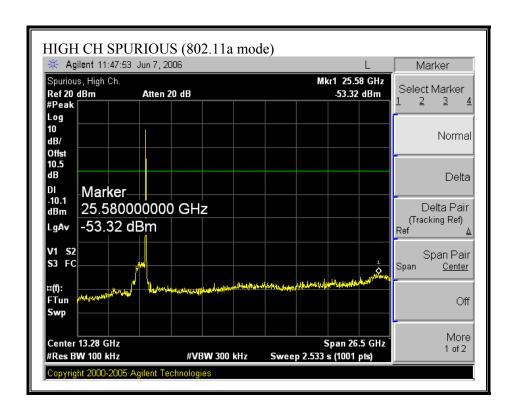

No non-compliance noted:

Page 85 of 139


SPURIOUS EMISSIONS, LOW CHANNEL (802.11a MODE)


DATE: APRIL 12, 2007


SPURIOUS EMISSIONS, MID CHANNEL (802.11a MODE)


DATE: APRIL 12, 2007

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a MODE)

DATE: APRIL 12, 2007

7.3. RADIATED EMISSIONS FOR 2400 TO 2483.5 MHz BAND

7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			·

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

DATE: APRIL 12, 2007

² Above 38 6

UT: 802.11 a/b/g FIXED WIRELESS NODE FCC ID: RV7-SC3110

DATE: APRIL 12, 2007

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RSS-210 Table 1: Restricted Frequency Bands

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475- 156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

See section 2.2 for more details on restricted bands.

DATE: APRIL 12, 2007

REPORT NO: 06U10713-1B DATE: APRIL 12, 2007 EUT: 802.11 a/b/g FIXED WIRELESS NODE FCC ID: RV7-SC3110

RSS-210 Table 2: General Field Strength Limits (for transmitter and receiver)

Frequency (MHz)	Field Strength Microvolts /m at 3 meters (watts, e.i.r.p.)		
	Transmitters	Receivers	
30 - 88	100 (3 nW)	100 (3 nW)	
88 - 216	150 (6.8 nW)	150 (6.8 nW)	
216 - 960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

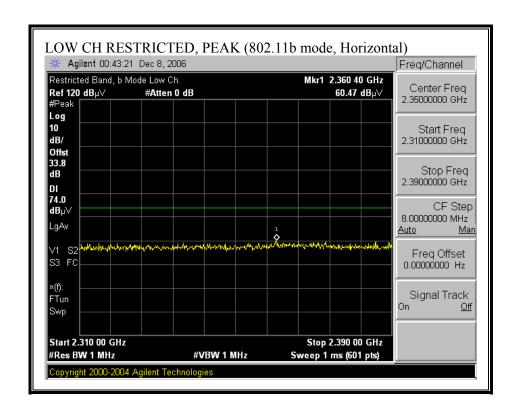
Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz), and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

TEST PROCEDURE

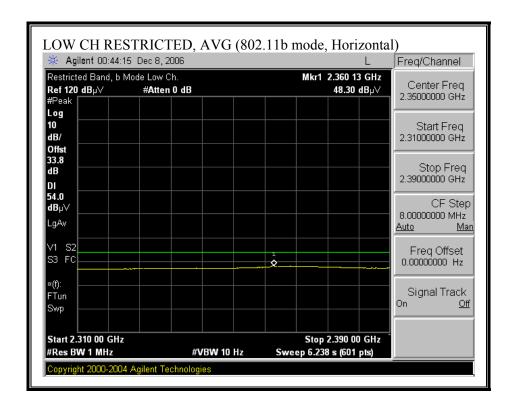
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

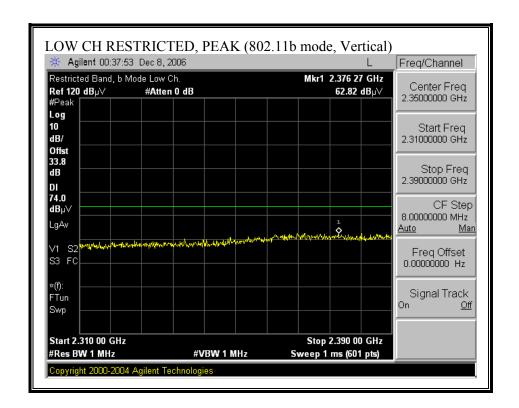
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

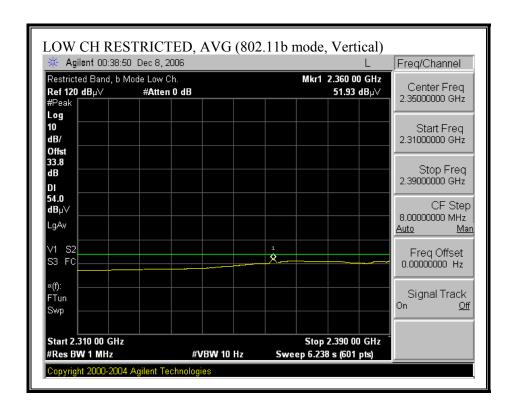

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

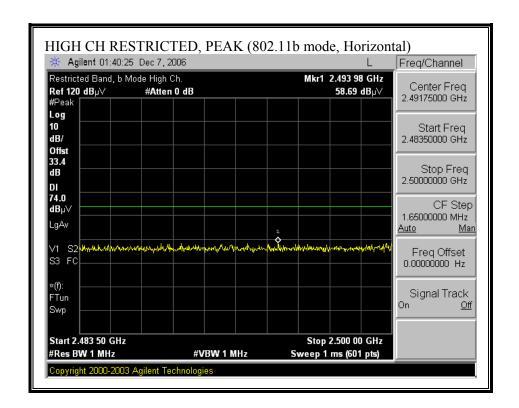
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

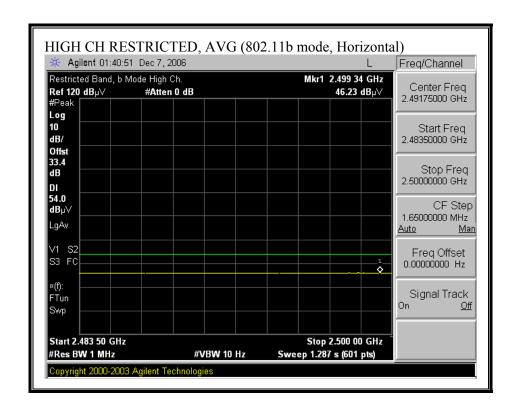

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

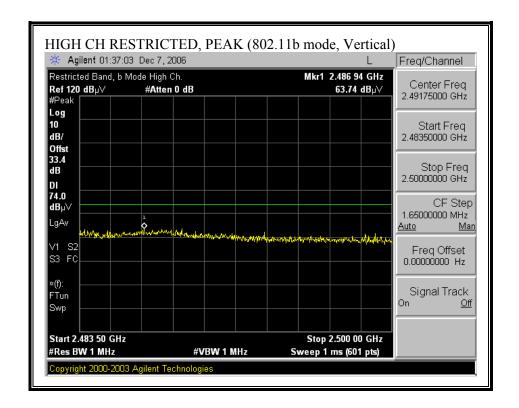
7.3.2. TRANSMITTER ABOVE 1 GHz

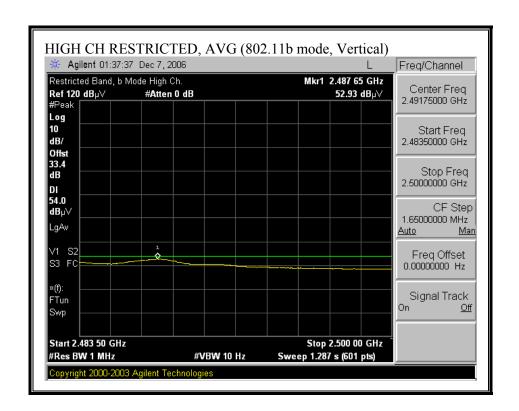

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)


DATE: APRIL 12, 2007


RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)


DATE: APRIL 12, 2007


RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)


DATE: APRIL 12, 2007

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

DATE: APRIL 12, 2007

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

12/08/06 High Frequency Measurement

Compliance Certification Services, Morgan Hill Open Field Site

Test Engr:William Zhuang Project #:06U10713 Company: Skypilot Networks EUT Descrip.:802.11 a/b/g Fixed Wireless Node EUT M/N: SkyAccess DualBand Test Target: FCC 15.247 Mode Oper:Tx b Mode

Dist Read Ph Read Avg. AF

54.2

48.8

52.5

44.3

54.5

45.2

44.6

54.9

46.2

51.0

GHz

Low Ch. 4.824

7.236

4.824

7.236

7.311

4.874

7.311

7.386

4.924

7.386

High Ch 4.924

Mid Ch. 4.874

(m)

3.0

3.0

3.0

3.0

3.0

3.0

dBuV dBuV

52.3

42.5

50.3

36.9

36.4

52.7

47.8

Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Read Analyzer Reading Avg Average Field Strength @ 3 m AF Antenna Factor Peak Calculated Peak Field Strength

CLCable Loss H

> dB/m dВ

33.7 3.6

33.7

33.7 3.6

35.2 4.3

35.2 4.3

33.8 3.6

33.8

35.2 4.3 3.6

33.7 3.6

35.2 4.3

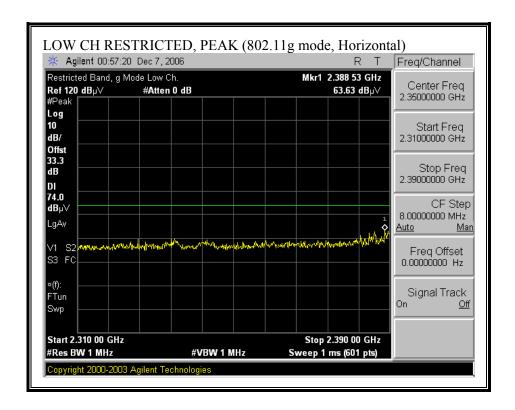
4.3 35.2

CL

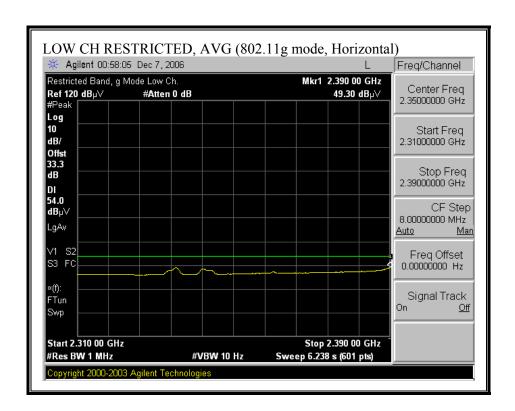
HPF	High Pass Filter								
Amp dB	D Corr dB		Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m		: :	Avg Mar dB	Notes (V/H)
-36.5	0.0	0.0	55.0	53.1	74.0	54.0	-19.0	-0.9	v
-36.2 -36.5	0.0 0.0	0.0 0.0	52.0 53.3	45.7 51.1	74.0 74.0	54.0 54.0	-22.0 -20.7	-8.3 -2.9	V H
-36.2	0.0	0.0	47.5	39.1	74.0	54.0	-26.5	-14.9	H
-36.5	0.0	0.0	55.4	53.5	74.0	54.0	-18.6	-0.5	v
-36.2 -36.5	0.0 0.0	0.0 0.0	48.4 52.5	40.1 49.9	74.0 74.0	54.0 54.0	-25.6 -21.6	-13.9 -4.1	V H
-36.2	0.0	0.0	47.8	39.6	74.0	54.0	-26.2	-14.4	H
-36.5	0.0	0.0	55.8	53.6	74.0	54.0	-18.2	-0.4	v
-36.2 -36.5	0.0 0.0	0.0 0.0	49.4 51.8	41.4 48.7	74.0 74.0	54.0 54.0	-24.6 -22.2	-12.6 -5.3	V
	717		÷						

35.2 4.3 -36.2 0.0 0.0 47.4 37.6 74.0 54.0 -26.6 -16.4

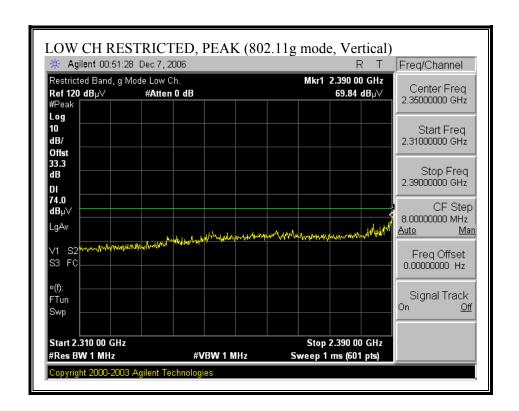
Avg Lim Average Field Strength Limit

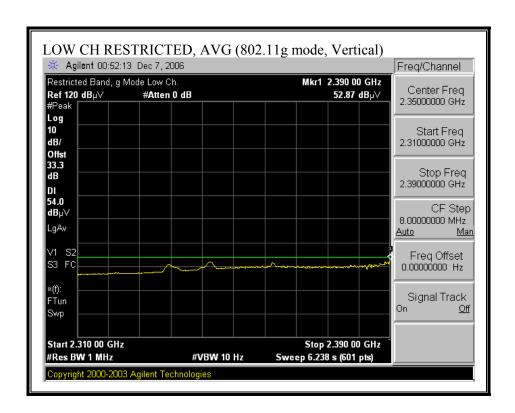

Pk Lim Peak Field Strength Limit

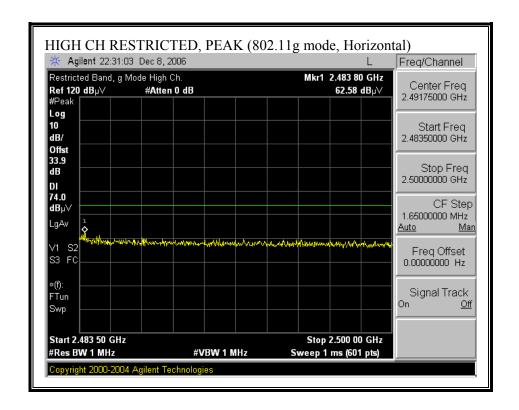
Avg Mar Margin vs. Average Limit

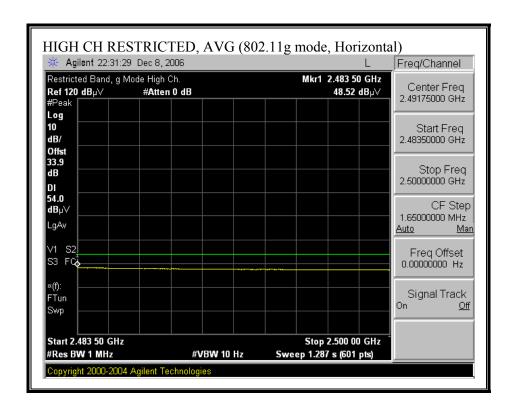

Pk Mar Margin vs. Peak Limit

DATE: APRIL 12, 2007 FCC ID: RV7-SC3110

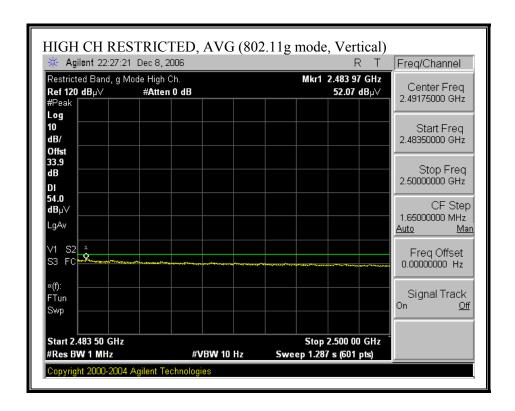

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)


DATE: APRIL 12, 2007


RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)


DATE: APRIL 12, 2007

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)


DATE: APRIL 12, 2007

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

DATE: APRIL 12, 2007

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

12/08/06 High Frequency Measurement

Compliance Certification Services, Morgan Hill Open Field Site

Test Engr: William Zhuang Project #:06U10713 Company: Skypilot Networks EUT Descrip.:802.11 a/b/g Fixe Wireless Node EUT M/N:5kyAccess DualBand Test Target: FCC 15.247 Mode Oper:Tx g Mode

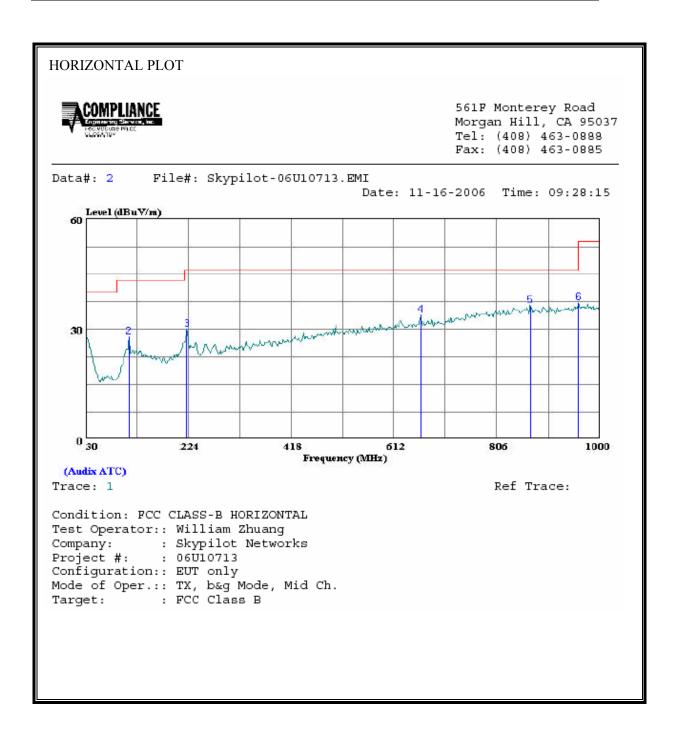
 f
 Measurement Frequency
 Amp
 Preamp Gain

 Distance to Antenna
 D Corr
 Distance Correct to 3 meters

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m

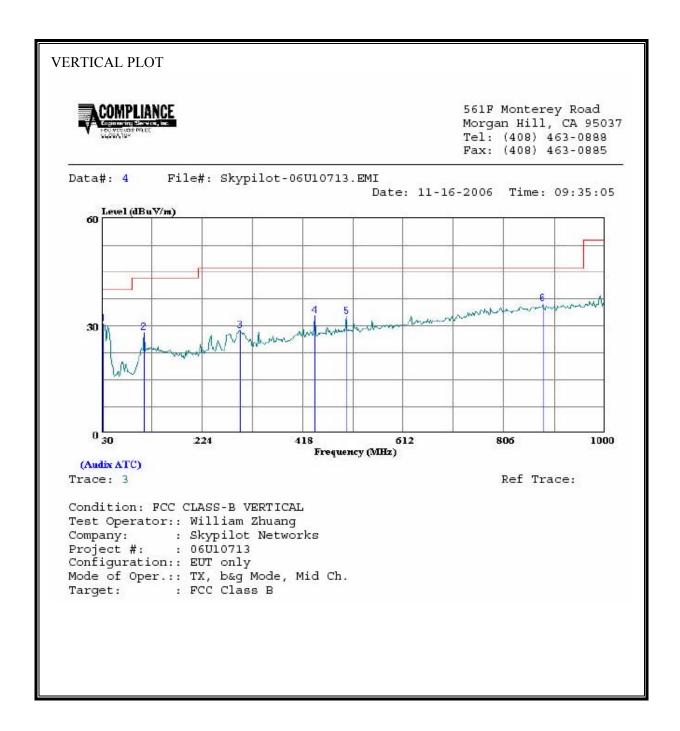
 AF
 Antenna Factor
 Feak
 Calculated Peak Field Strength

 CL
 Cable Loss
 HPF
 High Pass Filter


Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit

DATE: APRIL 12, 2007

f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dВ	dВ	dB	dВ	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dВ	dВ	(V/H)
Low Ch.															
4.824	3.0	53.2	39.4	33.7	2.8	-36.5	0.0	0.6	53.8	40.0	74.0	54.0	-20.2	-14.0	V
7.236	3.0	48.8	35.7	35.2	3.3	-36.2	0.0	0.6	51.7	38.6	74.0	54.0	-22.4	-15.4	V
4.824	3.0	49.4	37.0	33.7	2.8	-36.5	0.0	0.6	50.0	37.7	74.0	54.0	-24.0	-16.3	H
7.236	3.0	45.3	32.9	35.2	3.3	-36.2	0.0	0.6	48.2	35.8	74.0	54.0	-25.8	-18.2	H
Mid Ch.															
4.874	3.0	55.9	42.1	33.7	2.8	-36.5	0.0	0.6	56.6	42.8	74.0	54.0	-17.4	-11.2	V
7.311	3.0	51.0	38.0	35.2	3.3	-36.2	0.0	0.6	54.0	40.9	74.0	54.0	-20.0	-13.1	V
4.874	3.0	50.0	37.1	33.7	2.8	-36.5	0.0	0.6	50.6	37.8	74.0	54.0	-23.4	-16.2	H
7.311	3.0	45.1	33.1	35.2	3.3	-36.2	0.0	0.6	48.0	36.0	74.0	54.0	-26.0	-18.0	H
High Ch									Ĭ						
4.924	3.0	56.3	36.3	33.8	3.6	-36.5	0.0	0.6	57.8	37.8	74.0	54.0	-16.2	-16.2	v
7.386	3.0	49.2	33.3	35.2	4.3	-36.2	0.0	0.6	53.1	37.2	74.0	54.0	-20.9	-16.8	v
4.924	3.0	51.1	33.9	33.8	3.6	-36.5	0.0	0.6	52.6	35.4	74.0	54.0	-21.4	-18.6	H
7.386	3.0	43.4	31.0	35.2	4.3	-36.2	0.0	0.6	47.3	34.9	74.0	54.0	-26.7	-19.1	H


7.3.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL DATA									
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark		
-	MHz	dBuV	dB	$\overline{\tt dB}\overline{\tt uV/m}$	$\overline{\tt dB}\overline{\tt uV/m}$	dB			
1	31.940	7.38	19.94	27.32	40.00	-12.68	Peak		
2	111.480	13.93	13.82	27.75	43.50	-15.75	Peak		
3	221.090	17.19	12.67	29.86	46.00	-16.14	Peak		
4	662.440	11.23	22.57	33.80	46.00	-12.20	Peak		
5	869.050	10.75	25.50	36.25	46.00	-9.75	Peak		
6	960.230	10.56	26.56	37.12	54.00	-16.88	Peak		

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTI	VERTICAL DATA								
	Freq	Read Level		Level	Limit Line		Remark		
	MHz	dBuV	dB	$\overline{\tt dB}\overline{\tt uV/m}$	$\overline{\tt dB}\overline{\tt uV/m}$	dB			
1	33.880	11.55	19.05	30.60	40.00	-9.40	Peak		
2	111.480	14.20	13.82	28.02	43.50	-15.48	Peak		
3	297.720	13.09	15.59	28.68	46.00	-17.32	Peak		
4	441.280	13.74	19.02	32.76	46.00	-13.24	Peak		
5	502.390	12.30	20.24	32.54	46.00	-13.46	Peak		
6	880.690	10.42	25.71	36.13	46.00	-9.87	Peak		

7.4. RADIATED EMISSIONS FOR 5725 TO 5850 MHz BAND

7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			. ,

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

DATE: APRIL 12, 2007

² Above 38.6

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

RSS-210 Table 1: Restricted Frequency Bands

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475- 156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

See section 2.2 for more details on restricted bands.

DATE: APRIL 12, 2007

REPORT NO: 06U10713-1B DATE: APRIL 12, 2007 EUT: 802.11 a/b/g FIXED WIRELESS NODE FCC ID: RV7-SC3110

RSS-210 Table 2: General Field Strength Limits (for transmitter and receiver)

Frequency (MHz)	Field Strength Microvolts /m at 3 meters (watts, e.i.r.p.)				
	Transmitters	Receivers			
30 - 88	100 (3 nW)	100 (3 nW)			
88 - 216	150 (6.8 nW)	150 (6.8 nW)			
216 - 960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz), and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

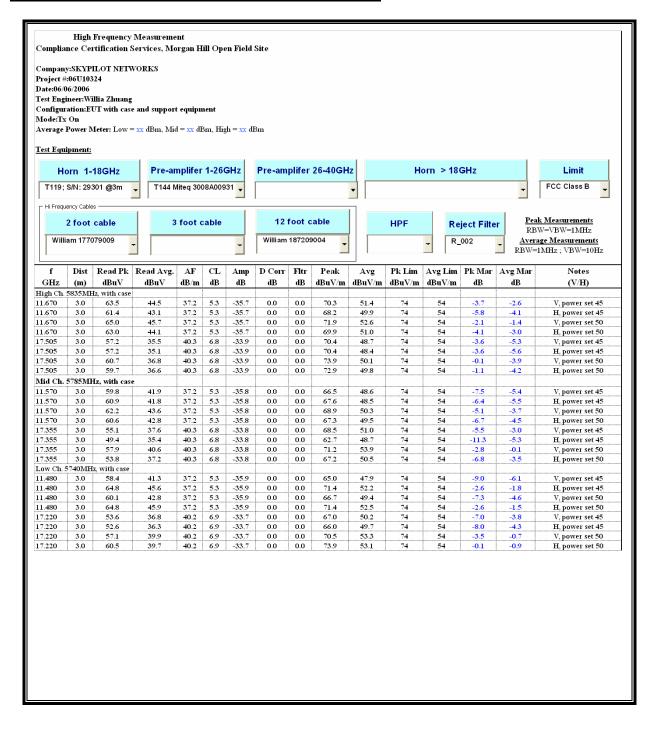
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

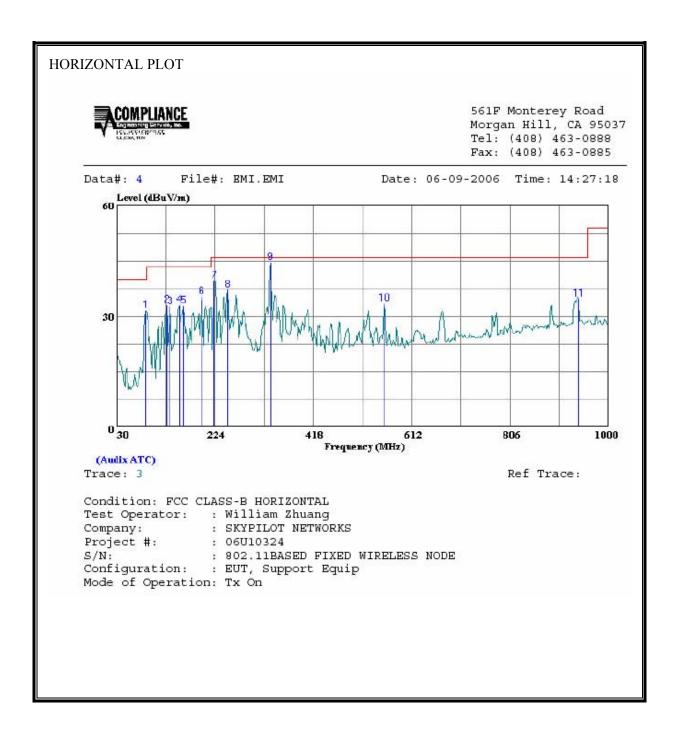
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

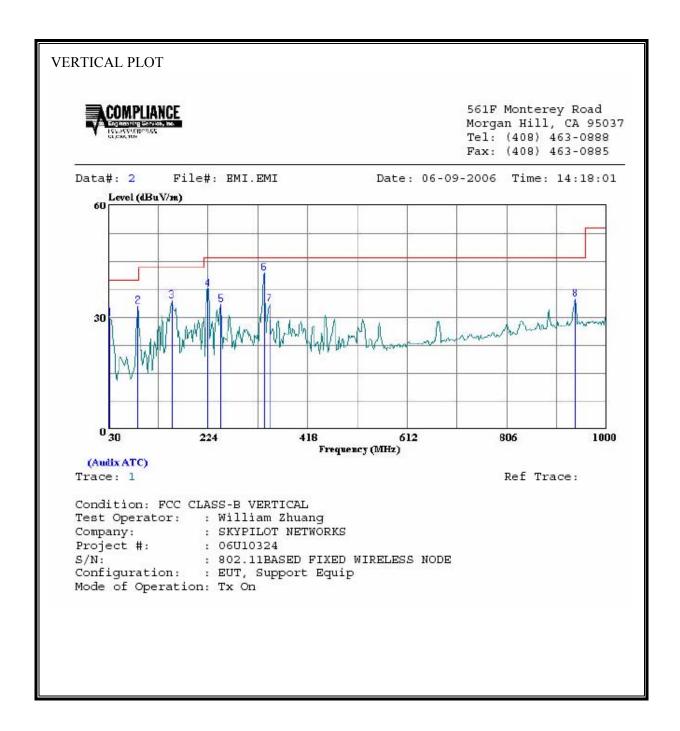
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

7.4.2. TRANSMITTER ABOVE 1 GHz


HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

DATE: APRIL 12, 2007


7.4.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

		Read			Limit	Over		Page:
	Freq		Factor	Level	Line		Remark	
	MHz	dBuV	dB	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB		
1	87.230				40.00			
2	128.940				43.50			
3	135.730				43.50			
4	153.190				43.50			
5 6	162.890				43.50			
7	198.780 223.030				43.50 46.00			
8	250.190				46.00			
9	334.580				46.00			
10	557.680				46.00			
11	940.830				46.00			

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICA	L DATA							
	Freq	Read Level	Factor	Level	Limit Line		Remark	Page: 1
-	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1 2 3		24.62	19.05 8.45 14.03	33.07	40.00		Peak	
4 5 6	224.000 250.190 334.580	24.91 19.59 25.35	12.77 13.90 16.53	37.69 33.49 41.88	46.00 46.00 46.00	-8.31 -12.51 -4.12	Peak Peak Peak	
7 8			16.79 26.43			-12.45 -11.05		

7.5. POWERLINE CONDUCTED EMISSIONS FOR 2400 - 2483.5 GHz BAND

LIMIT

 $\S15.207$ (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

RSS-Gen 7.2.2

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommnication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

Table 2 – AC Power Lines Conducted Emission Limits

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

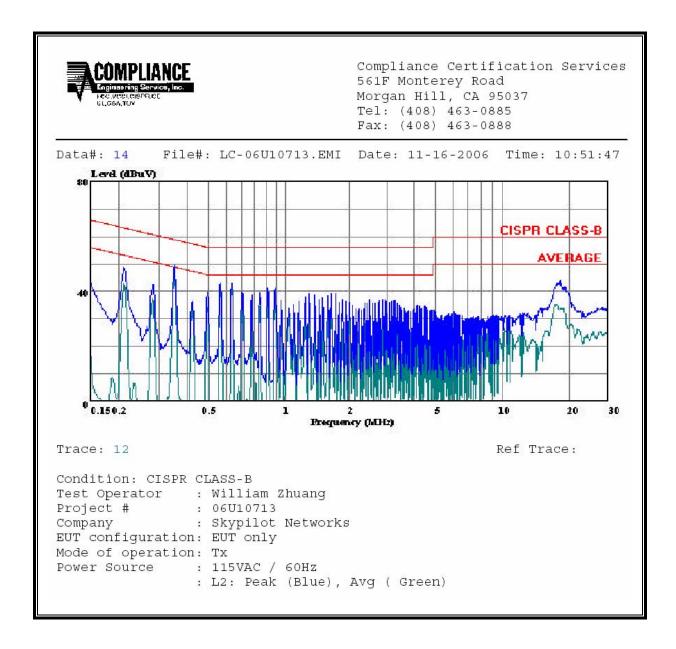
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

Page 127 of 139

DATE: APRIL 12, 2007


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.	Reading			Closs	Limit	FCC_B	Mar	gin	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2	
0.21	49.88		41.18	0.00	63.17	53.17	-13.29	-11.99	L1	
0.35	49.50		47.25	0.00	58.87	48.87	-9.37	-1.62	L1	
17.94	44.39		35.97	0.00	60.00	50.00	-15.61	-14.03	L1	
0.21	48.80		43.00	0.00	63.24	53.24	-14.44	-10.24	L2	
0.35	49.52		47.60	0.00	58.92	48.92	-9.40	-1.32	L2	
18.33	43.88		35.39	0.00	60.00	50.00	-16.12	-14.61	L2	
6 Worst	5 Worst Data									

LINE 1 RESULTS

Compliance Certification Services 561F Monterey Road Morgan Hill, CA 95037 Tel: (408) 463-0885 Fax: (408) 463-0888 Data#: 7 File#: LC-06U10713.EMI Date: 11-16-2006 Time: 10:31:49 Level (dBuV) CISPR CLASS-B AVERAGE 0.150.2 0.5 10 20 30 Frequency (MHz) Ref Trace: Trace: 5 Condition: CISPR CLASS-B Test Operator : William Zhuang : 06U10713 Project # Company : Skypilot Networks EUT configuration: EUT only Mode of operation: Tx Power Source : 115VAC / 60Hz : L1: Peak (Blue), Avg (Green)

LINE 2 RESULTS

7.6. POWERLINE CONDUCTED EMISSIONS FOR 5725 – 5850 GHz BAND

LIMIT

 $\S15.207$ (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

RSS-Gen 7.2.2

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommnication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

Page 131 of 139

REPORT NO: 06U10713-1B EUT: 802.11 a/b/g FIXED WIRELESS NODE

6 WORST EMISSIONS

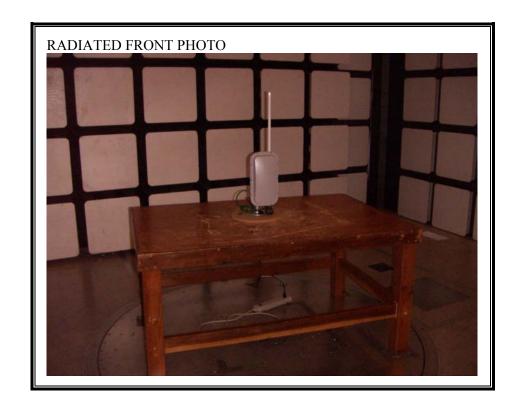
CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.	Reading			Closs	Limit	FCC_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.21	45.23		35.68	0.00	63.17	53.17	-17.94	-17.49	L1
5.74	37.16		31.58	0.00	60.00	50.00	-22.84	-18.42	L1
8.92	38.86		31.96	0.00	60.00	50.00	-21.14	-18.04	L1
0.21	44.68		34.44	0.00	63.24	53.24	-18.56	-18.80	L2
5.87	38.68		34.73	0.00	60.00	50.00	-21.32	-15.27	L2
16.57	39.26		32.18	0.00	60.00	50.00	-20.74	-17.82	L2
6 Worst Data									

LINE 1 RESULTS


Compliance Certification Services 561F Monterey Road Morgan Hill, CA 95037 Tel: (408) 463-0885 Fax: (408) 463-0888 Data#: 7 File#: BMI.EMI Date: 06-07-2006 Time: 14:44:58 Level (dBuV) CISPR CLASS-B AVERAGE -10 0.150.2 2 Frequency (MHz) (Audix ATC) Trace: 5 Ref Trace: Condition: CISPR CLASS-B Test Operator : William Zhuang Project # : 06U10324 : Skypilot Networks Company BUT configuration: EUT w/ AC/DC Adapto Power Source : 115 VAC, 60 Hz : Line 1, Peak: (Blue), Average: (Green)

LINE 2 RESULTS

Compliance Certification Services 561F Monterey Road Morgan Hill, CA 95037 Tel: (408) 463-0885 Fax: (408) 463-0888 Data#: 14 File#: EMI.EMI Date: 06-07-2006 Time: 15:02:16 Level (dBuV) CISPR CLASS-B AVERAGE -10 0.150.2 10 0.5 20 30 Frequency (MHz) (Audix ATC) Trace: 12 Ref Trace: Condition: CISPR CLASS-B Test Operator : William Zhuang Project # : 06U10324 Company : Skypilot Networks BUT configuration: EUT w/ AC/DC Adapto Power Source : 115 VAC, 60 Hz : Line 2, Peak: (Blue), Average: (Green)


8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

DATE: APRIL 12, 2007

RADIATED RF MEASUREMENT SETUP

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT