

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

802.11 BASED, FIXED WIRELESS NODE

MODEL NUMBER: SkyConnector OUTDOOR SC1110

FCC ID: RV7-SC1110

REPORT NUMBER: 06U10324-1, REVISION C

ISSUE DATE: AUGUST 18, 2006

Prepared for SKYPILOT NETWORKS INC. 2055 LAURELWOOD ROAD 2nd FLOOR SANTA CLARA, CA 95054-2747

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	7/24/06	Initial Issue	A. Ilarina
В	7/28/06	Update model name and FCC ID for the Outdoor unit and remove Indoor unit	A. Ilarina
	8/15/06	Update antenna gain, add MPE section	A. Ilarina
C	8/18/2006	Update Setup Photos, update output power table under section 5.2	A. Ilarina

Page 2 of 54

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TES	T METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4	!. <i>1</i> .	MEASURING INSTRUMENT CALIBRATION	
4	<i>!.2</i> .	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	.2.	MAXIMUM OUTPUT POWER	6
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	.4.	SOFTWARE AND FIRMWARE	6
5	5.5.	WORST-CASE CONFIGURATION AND MODE	7
5	.6.	DESCRIPTION OF TEST SETUP	7
6.	TES	T AND MEASUREMENT EQUIPMENT	9
7.	LIN	IITS AND RESULTS	
7	7.1.	CHANNEL TESTS FOR THE 5725 TO 5850 MHz BAND	
	7.1.		
	7.1.		
	7.1.		
	7.1.		
	7.1.		
	7.1.	7. CONDUCTED SPURIOUS EMISSIONS	
7	7.2.	RADIATED EMISSIONS	
	7.2.		
	7.2.2		
	7.2.	B. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
7	7.3.	POWERLINE CONDUCTED EMISSIONS	
8.	SET	[•] UP PHOTOS	

Page 3 of 54

1. ATTESTATION OF TEST RESULTS

STANDARI FCC PART 15 SUB						
APPLICABLE STANDARDS						
DATE TESTED:	JUNE 06 - 13, 2006					
SERIAL NUMBER: None						
MODEL:	SkyConnector Outdoor SC1110					
EUT DESCRIPTION:	802.11BASED, FIXED WIRELESS NODE					
COMPANY NAME:	SKYPILOT NETWORKS INC. 2055 LAURELWOOD ROAD 2 nd FLOOR SANTA CLARA, CA 95054-2747					

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

Turin

ALVIN ILARINA EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

William Shing

WILLIAM ZHUANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 54

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a transceiver operating in the 5725-5850 MHz band. It is intended for use as a fixed Wireless Subscriber unit.

EUT model number was changed after testing commenced. All data in this report is applicable to the model number documented in section 1 above.

The radio module is manufactured by SkyPilot.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

3723 to 3830 WHZ Authonized Band							
Frequency Range	Mode	Output Power	Output Power				
(MHz)		(dBm)	(mW)				
5740 - 5835	802 11a	25 43	349 14				

5725 to 5850 MHz Authorized Band

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a panel antenna with a maximum gain of 16.5 dBi. It is used for point-to-point operation.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was SpCpeSw, Ver.4. This embedded software provides for the discovery protocol, link management (including modulation selection) and management software.

Page 6 of 54

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 5835 MHz.

The worst-case data rate for this channel is determined to be 6 Mb/s, based on previous experience with WLAN product design architectures.

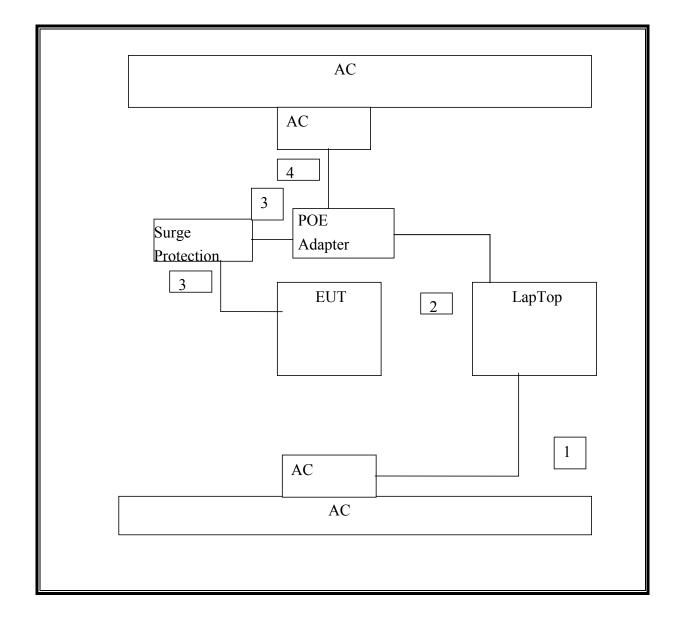
Thus all emissions tests were made in the 802.11a mode, 5835 MHz, 6 Mb/s.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop PC	QuickNote	A929	GAYR22190154	DoC		
PC AC Adapter	Lite-on	PA-1900-05	250109400C	N/A		
	Electronics					
EUT AC Adapter	UNIFIVE	UIB336-24	1567	N/A		
Mouse	Logitech	MUB48	LTC95102432	N/A		
POE Adapter	SkyPilot	POE	640-00009-01	N/A		

I/O CABLES


	I/O CABLE LIST								
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks			
1	DC	1	1/8"	Unshielded	1.2m	N/A			
2	LAN	1	RJ45	Unshielded	1m	N/A			
3	DC	1	1/8"	Unshielded	1.2m	N/A			
4	AC	1	AC Power	Unshielded	1.8m	N/A			

TEST SETUP

The test software was utilitized to controls the EUT.

Page 7 of 54

SETUP DIAGRAM FOR TESTS

Page 8 of 54

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY43360112	5/3/2007		
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	4/22/2007		
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29310	4/22/2007		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	8/17/2006		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00931	6/24/2006		
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	2/4/2007		
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/2007		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/2006		
EMI Test Receiver	R&S	ESHS 20	827129/006	6/3/2007		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2006		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	8/30/2006		

Page 9 of 54

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 5725 TO 5850 MHz BAND

7.1.1.6 dB BANDWIDTH

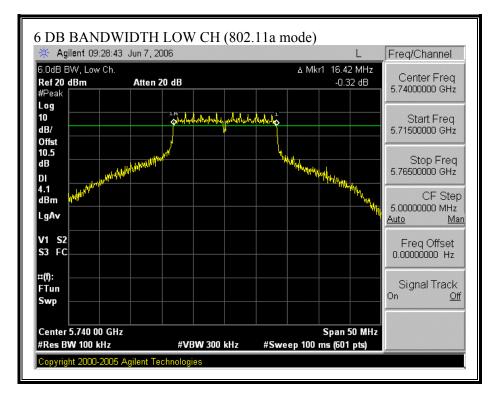
LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

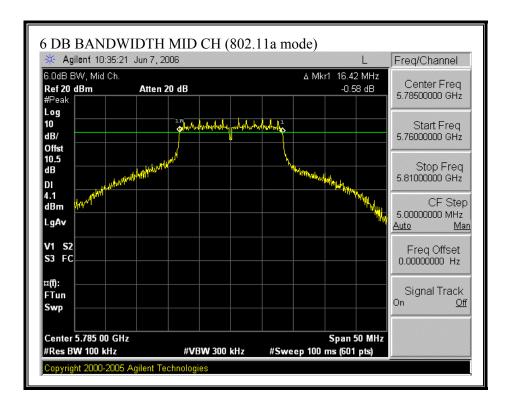
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

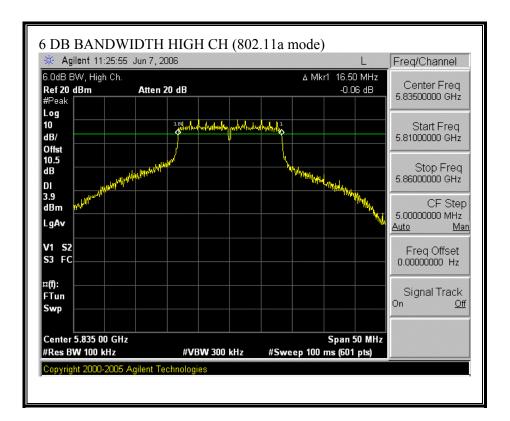
RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	5740	16420	500	15920
Middle	5785	16420	500	15920
High	5835	16500	500	16000

Page 10 of 54


6 DB BANDWIDTH (802.11a MODE)

Page 11 of 54

Page 12 of 54

Page 13 of 54

7.1.2. 99% BANDWIDTH

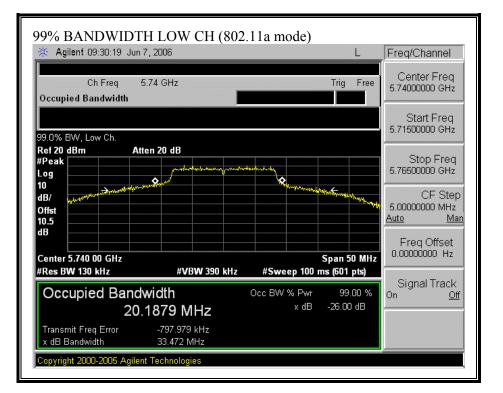
LIMIT

None; for reporting purposes only.

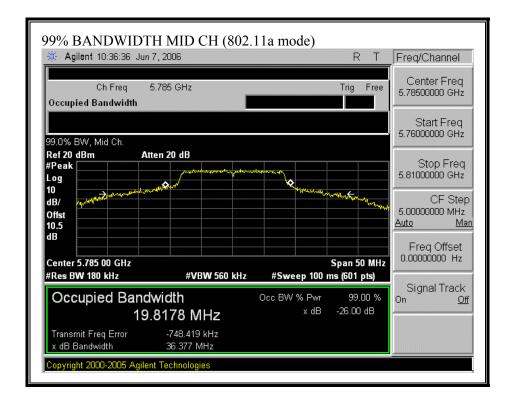
TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

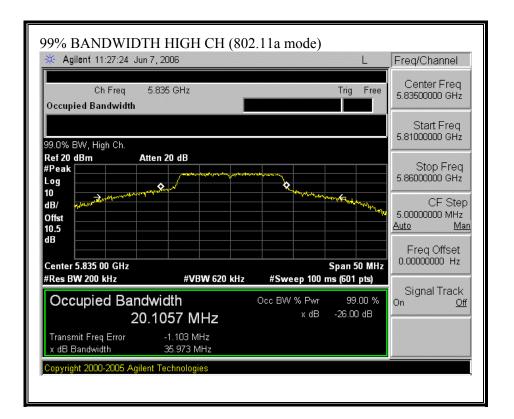
RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5740	20.188
Middle	5785	19.818
High	5835	20.106

Page 14 of 54


99% BANDWIDTH (802.11a MODE)

Page 15 of 54

Page 16 of 54

Page 17 of 54

7.1.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (b) (4) (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

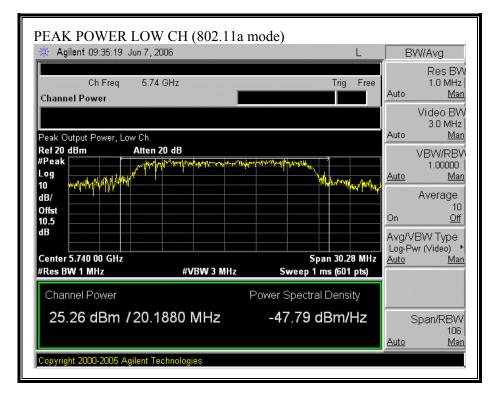
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

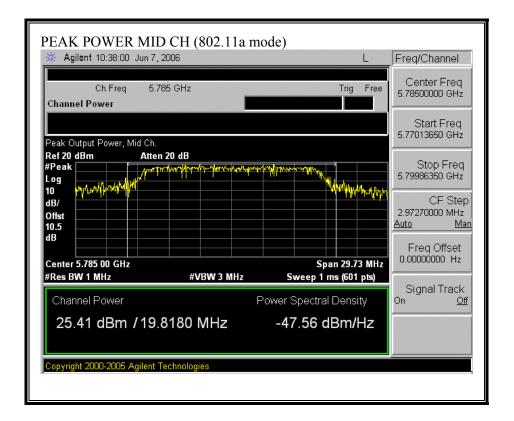
Page 18 of 54

RESULTS

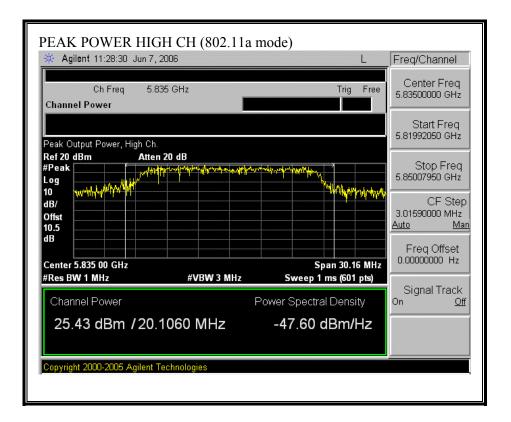
The maximum antenna gain is 16.5 dBi exclusively for fixed, point-to-point operations, therefore the limit is 30 dBm.


No non-compliance noted:

802.11a Mode


Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	5740	25.26	30	-4.74
Middle	5785	25.41	30	-4.59
High	5835	25.43	30	-4.57

Page 19 of 54


OUTPUT POWER (802.11a MODE)

Page 20 of 54

Page 21 of 54

Page 22 of 54

7.1.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Lim	its for Occupational	l/Controlled Exposu	res			
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6		
(B) Limits for General Population/Uncontrolled Exposure						
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30		

TABLE 1—LIMITS FOR MAXIMUM PERM	IISSIBLE EXPOSURE (MPE)
---------------------------------	-------------------------

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
 * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 23 of 54

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2} / 3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = 1000 * P (W) and d (cm) =100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(P(dBm)/10)}$ and $G(numeric) = 10^{(G(dBi)/10)}$

yields

 $d = 0.282 * 10^{(P+G)} / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 24 of 54

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a	1.0	25.43	16.50	35.22

Page 25 of 54

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5740	19.87
Middle	5785	19.76
High	5835	19.96

Page 26 of 54

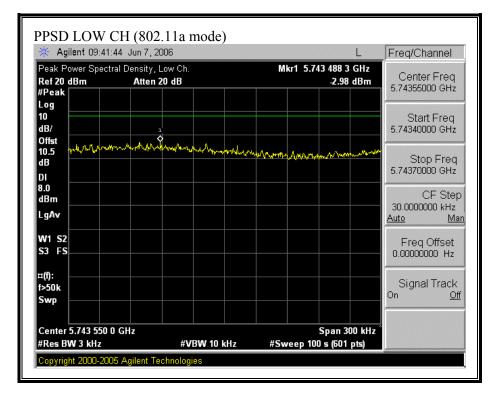
7.1.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.


RESULTS

No non-compliance noted:

802.11a Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5740	-2.98	8	-10.98
Middle	5785	-2.38	8	-10.38
High	5835	-3.60	8	-11.60

PEAK POWER SPECTRAL DENSITY (802.11a MODE)

Page 28 of 54

🔆 Agilent 10:52	2:18 Jun 7, 2006	L	Freq/Channel
Ref 20 dBm #Peak	tral Density, Mid Ch. Atten 20 dB	Mkr1 5.783 757 5 GHz -2.38 dBm	Center Freq 5.78375000 GHz
Log 10 dB/ Offst			Start Freq 5.78360000 GHz
dB DI	on an an an and a second	week and the and the second	Stop Freq 5.78390000 GHz
8.0 dBm LgAv			CF Step 30.0000000 kHz <u>Auto Mar</u>
W1 S2 S3 FS			Freq Offset 0.00000000 Hz
¤(f): f>50k Swp			Signal Track On <u>Off</u>
Center 5.783 750 #Res BW 3 kHz	0 GHz #VBW 10 kHz	Span 300 kHz #Sweep 100 s (601 pts)	

Page 29 of 54

🔆 Agilent 11:33:2	25 Jun 7, 2006		L Freq/Channel
Peak Power Spectra Ref 20 dBm #Peak		Mkr1 5.836 264 9 G -3.60 d	Contor Eroa
Log 10 dB/ Offst	1		Start Freq 5.83615000 GHz
	warran markana	at a second and a se	Stop Freq 5.83645000 GHz
8.0 dBm LgAv			CF Step 30.0000000 kHz Auto Mar
W1 S2 S3 FS			Freq Offset 0.00000000 Hz
¤(f): f>50k Swp			Signal Track On <u>Off</u>
Center 5.836 300 0 #Res BW 3 kHz	GHz #VBW 10 kH	Span 300 z #Sweep 100 s (601 pi	

Page 30 of 54

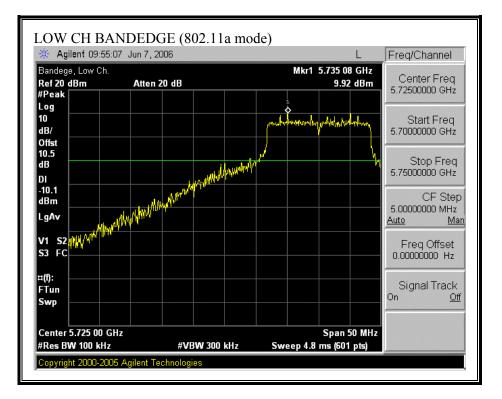
7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

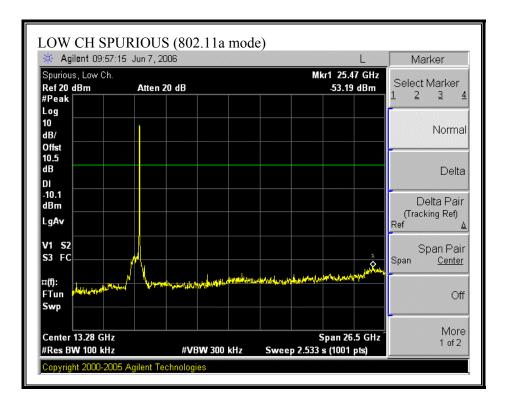
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

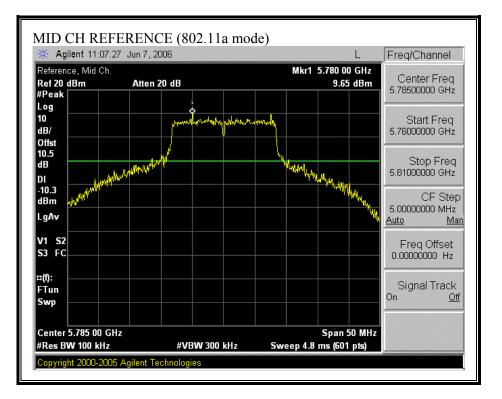

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

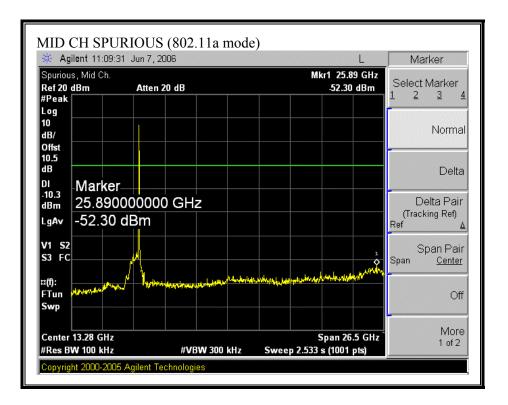

No non-compliance noted:

Page 31 of 54

SPURIOUS EMISSIONS, LOW CHANNEL (802.11a MODE)

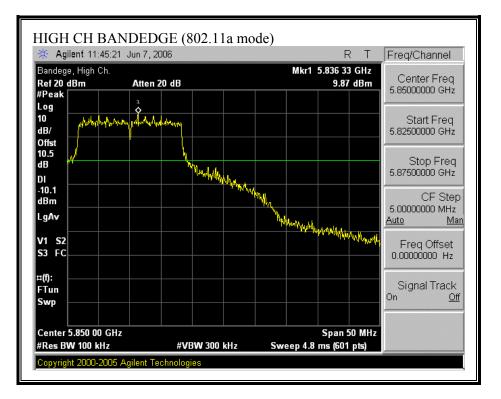


Page 32 of 54

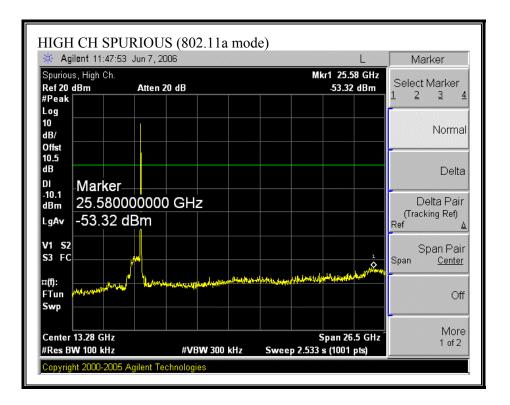


Page 33 of 54

SPURIOUS EMISSIONS, MID CHANNEL (802.11a MODE)



Page 34 of 54



Page 35 of 54

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a MODE)

Page 36 of 54

Page 37 of 54

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 38 of 54

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 39 of 54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

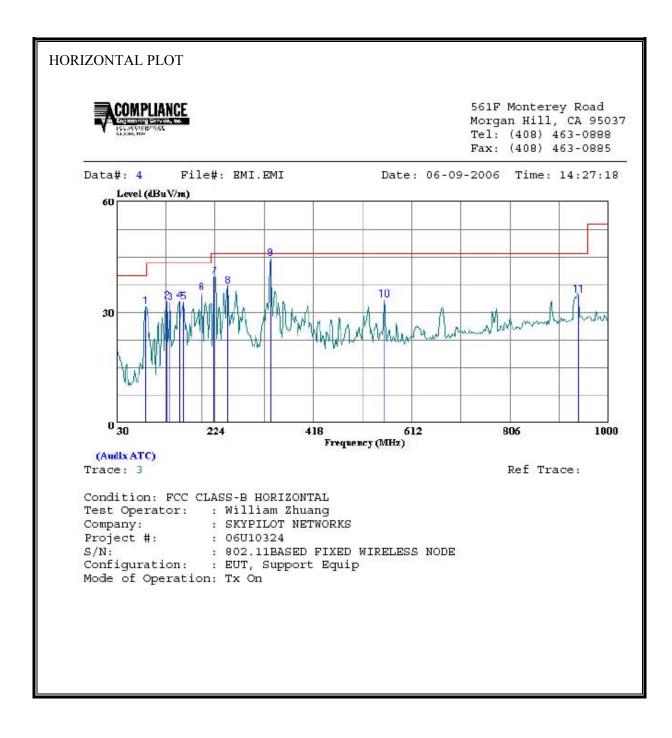
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 40 of 54

7.2.2. TRANSMITTER ABOVE 1 GHz FOR 5725 TO 5850 MHz BAND

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

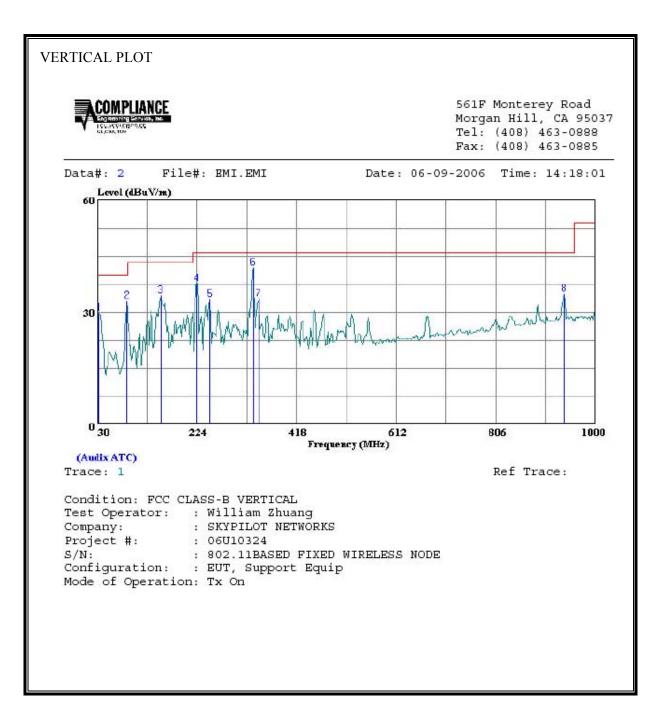

Outdoor Unit

Ho	orn 1-	18GHz	Pre-ar	nplifer	1-260	SHz	Pre-am	plifer	26-40GH	Iz	Н	orn > 18	GHz		Limit
	S/N: 29: ency Cable	301 @3m	T144 N	liteq 300	8A009	31 🗸				•				-	FCC Class B
	2 foot		3	foot o	able		12	foot d	able		HPF	Re	ject Filte		ak Measurements BW=VBW=1MHz
Willi	am 1770	79009				-	William	18720	9004 🚽	Í		- R_	002	- <u>Ave</u>	rage Measurements =1MHz ; VBW=10Hz
f	Dist	Read Pk		AF	CL	Amp	D Coir	Fltr	Peak	Avg	Pk Lim	Avg Lim		Avg Mar	Notes
GHz igh Ch.	(m) 5835MI	dBuV Iz, with case	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
.670	3.0	63.5	44.5	37.2	5.3	-35.7	0.0	0.0	70.3	51.4	74	54	-3.7	-2.6	V, power set 45
.670 .670	3.0 3.0	61.4 65.0	43.1 45.7	37.2 37.2	5.3 5.3	-35.7 -35.7	0.0 0.0	0.0 0.0	68.2 71.9	49.9 52.6	74 74	54 54	-5.8 -2.1	-4.1 -1.4	H, power set 45 V, power set 50
.670	3.0	63.0	44.1	37.2	5.3	-35.7	0.0	0.0	69.9	51.0	74	54	-4.1	-3.0	H, power set 50
.505	3.0	57.2	35.5	40.3	6.8	-33.9	0.0	0.0	70.4	48.7	74	54	-3.6	-5.3	V, power set 45
.505	3.0	57.2	35.1	40.3	6.8	-33.9	0.0	0.0	70.4	48.4	74	54	-3.6	-5.6	H, power set 45
.505 .505	3.0 3.0	60.7 59.7	36.8 36.6	40.3 40.3	6.8 6.8	-33.9 -33.9	0.0 0.0	0.0 0.0	73.9 72.9	50.1 49.8	74 74	54 54	-0.1 -1.1	-3.9 -4.2	V, power set 50 H, power set 50
		Iz. with case	50.0		0.0	-55.9	0.0	0.0		-72.0	/ 7		-1.1		II, power set 50
.570	3.0	59.8	41.9	37.2	5.3	-35.8	0.0	0.0	66.5	48.6	74	54	-7.5	-5.4	V, power set 45
.570	3.0	60.9	41.8	37.2	5.3	-35.8	0.0	0.0	67.6	48.5	74	54	-6.4	-5.5	H, power set 45
.570	3.0	62.2	43.6	37.2	5.3	-35.8	0.0	0.0	68.9	50.3	74	54	-5.1	-3.7	V, power set 50
.570	3.0	60.6	42.8	37.2	5.3	-35.8	0.0	0.0	67.3	49.5	74	54	-6.7	-4.5	H, power set 50
.355 .355	3.0 3.0	55.1 49.4	37.6 35.4	40.3 40.3	6.8 6.8	-33.8 -33.8	0.0 0.0	0.0 0.0	68.5 62.7	51.0 48.7	74 74	54 54	-5.5 -11.3	-3.0 -5.3	V, power set 45 H, power set 45
.355 .355	3.0	49.4 57.9	40.6	40.3	6.8 6.8	-33.8	0.0	0.0	71.2	48.7 53.9	74	54 54	-11.5 -2.8	-5.5 -0.1	V, power set 50
.355	3.0	53.8	37.2	40.3	6.8	-33.8	0.0	0.0	67.2	50.5	74	54	-6.8	-3.5	H, power set 50
		z, with case													
.480	3.0	58.4	41.3	37.2	5.3	-35.9	0.0	0.0	65.0	47.9	74	54	-9.0	-6.1	V, power set 45
.480 .480	3.0 3.0	64.8 60.1	45.6 42.8	37.2 37.2	5.3 5.3	-35.9 -35.9	0.0 0.0	0.0 0.0	71.4 66.7	52.2 49.4	74 74	54 54	-2.6 -7.3	-1.8 -4.6	H, power set 45 V, power set 50
.480	3.0	64.8	45.9	37.2	5.3	-35.9	0.0	0.0	71.4	49.4 52.5	74	54 54	-7.5	-4.0	H, power set 50
.220	3.0	53.6	36.8	40.2	6.9	-33.7	0.0	0.0	67.0	50.2	74	54	-7.0	-3.8	V, power set 45
.220	3.0	52.6	36.3	40.2	6.9	-33.7	0.0	0.0	66.0	49.7	74	54	-8.0	-4.3	H, power set 45
.220	3.0	57.1	39.9	40.2	6.9	-33.7	0.0	0.0	70.5	53.3	74	54	-3.5	-0.7	V, power set 50
.220	3.0	60.5	39.7	40.2	69	-33.7	0.0	0.0	73.9	53.1	74	54	- 0 .1	-0.9	H, power set 50

Page 41 of 54

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 42 of 54

HORIZONT	AL DATA							
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Page: 1
	MHz	dBuV	dB	$\overline{dBuV/m}$	dBuV/m	dB		
1 2	87.230 128.940	23.12 17.81	8.45 15.15	31.57 32.96	43.50	-8.43	Peak	
3 4	135.730 153.190	17.60 18.92	14.96 14.03	32.95	43.50 43.50	-10.55	Peak	
5	162.890 198.780	19.10 20.99	13.68 14.37		43.50 43.50			
7	223.030	26.85	12.72		46.00			
8 9	250.190 334.580	23.34 28.08	13.90 16.53		46.00 46.00			
10	557.680	12.48	20.92	33.40	46.00	-12.60	Peak	
11	940.830	8.28	26.44	34.72	46.00	-11.28	Peak	

Page 43 of 54

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 44 of 54

VERTICA	L DATA							
	Freq	Read Level		Level	Limit Line	Over Limit	Remark	Page: 1
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1 2		24.62	8.45	33.07	40.00	-6.93	Peak	
3 4	153.190 224.000	24.91	12.77	37.69	43.50 46.00	-8.31	Peak	
5	250.190 334.580				46.00 46.00			
7	344.280	16.76	16.79	33.55	46.00	-12.45	Peak	
8	938.890	8.52	20.43	34.95	46.00	-11.05	Peak	

Page 45 of 54

7.3. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 "			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

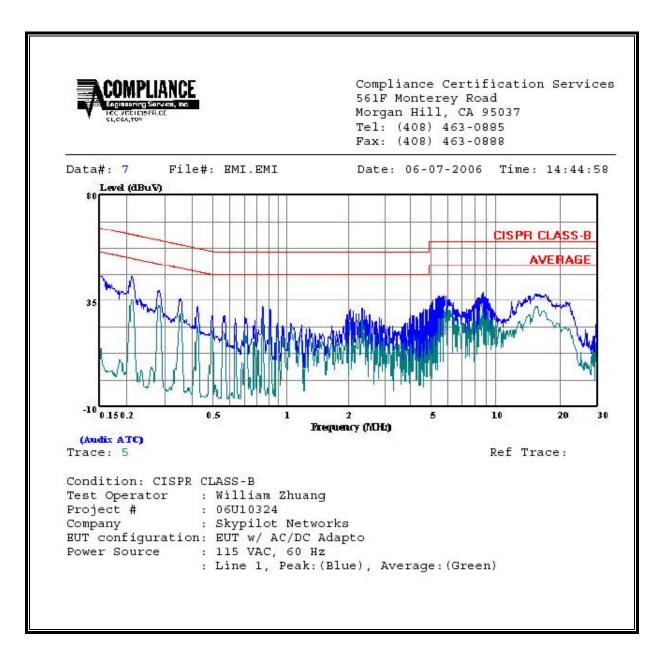
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

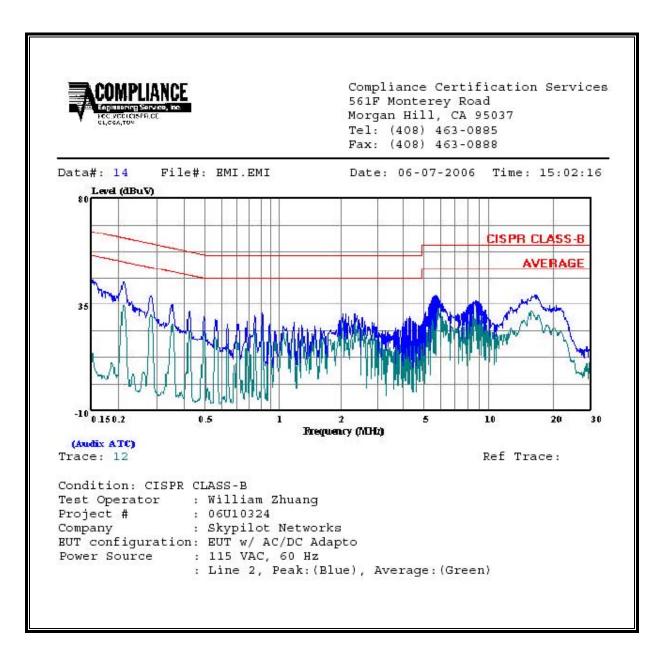
RESULTS

No non-compliance noted:


Page 46 of 54

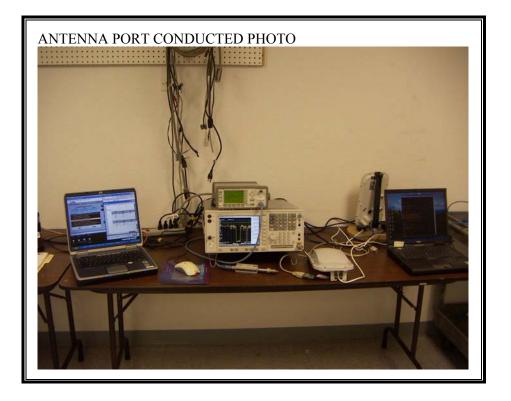
<u>6 WORST EMISSIONS</u>

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Reading		Closs	Limit	FCC_B	Mar	Remark				
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.21	45.23		35.68	0.00	63.17	53.17	-17.94	-17.49	L1			
5.74	37.16		31.58	0.00	60.00	50.00	-22.84	-18.42	L1			
8.92	38.86		31.96	0.00	60.00	50.00	-21.14	-18.04	L1			
0.21	44.68		34.44	0.00	63.24	53.24	-18.56	-18.80	L2			
5.87	38.68		34.73	0.00	60.00	50.00	-21.32	-15.27	L2			
16.57	39.26		32.18	0.00	60.00	50.00	-20.74	-17.82	L2			
6 Worst i	 Data 											


Page 47 of 54

LINE 1 RESULTS

Page 48 of 54


LINE 2 RESULTS

Page 49 of 54

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 50 of 54

RADIATED RF MEASUREMENT SETUP

OUTDOOR UNIT

Page 51 of 54

Page 52 of 54

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 53 of 54

END OF REPORT

Page 54 of 54