

FCC CFR47 PART 90 SUBPART Y **CERTIFICATION TEST REPORT**

FOR

4.9 GHZ, 802.11 BASED, FIXED WIRELESS NODE

MODEL NUMBER: SKYEXTENDER SD-1050/SKYGATEWAY GW-1050

FCC ID: RV7-GW-SD1050

REPORT NUMBER: 05U3795-1C

ISSUE DATE: FEBRUARY 8, 2006

Prepared for

SKYPILOT NETWORK, INC 2055 LAURELWOOD DRIVE SANTA CLARA, CA 95054 U.S.A

Prepared by

COMPLIANCE ENGINEERING SERVICES, INC. d.b.a.

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD,

MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
A	12/6/2005	Initial Issue	DG
В	1/3/2006	Corrected frequency of operation, fixed typo in sec. 5.5, changed antenna gain in MPE to 16 dBi,, clarified power test procedure to include rms equivalent.	DG
C	<u>2/8/2006</u>	Corrected cover page to show Pt. 90 Certification	DG

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
4	1. MEASURING INSTRUMENT CALIBRATION	5
4	2. MEASUREMENT UNCERTAINTY	5
5.	EQUIPMENT UNDER TEST	6
5	.1. DESCRIPTION OF EUT	6
5	2. MAXIMUM OUTPUT POWER	6
5	3. DESCRIPTION OF AVAILABLE ANTENNAS	6
5	4. SOFTWARE AND FIRMWARE	6
5.	5. WORST-CASE CONFIGURATION AND MODE	7
5	.6. DESCRIPTION OF TEST SETUP	
6.	TEST AND MEASUREMENT EQUIPMENT	9
7.	LIMITS AND RESULTS	10
7.	.1. CHANNEL TESTS FOR THE 4894 TO 4990 MHz BAND	
	7.1.1. EMISSION BANDWIDTH	
	7.1.2. PEAK OUTPUT POWER	
	7.1.3. MAXIMUM PERMISSIBLE EXPOSURE	
	7.1.4. AVERAGE POWER	22
7		
	2. EMISSION MASK AND CONDUCTED SPURIOUS	
7.	3. FREQUENCY STABILITY	
7	4. RADIATED EMISSIONS	
	7.4.1. TRANSMITTER ABOVE 1 GHz FOR 4894 TO 4990 MHz BAND	
7		
/.	5. POWERLINE CONDUCTED EMISSIONS	44
8.	SETUP PHOTOS	48

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SKYPILOT NETWORK, INC

2055 LAURELWOOD DRIVE SANTA CLARA, CA 95054

EUT DESCRIPTION: 4.9 GHz, 802.11 Based, Fixed Wireless Node

SKYEXTENDER SD-1050, SKYGATEWAY GW-1050 **MODEL:**

SERIAL NUMBER: F20724218/F20723438

NOVEMBER 10 - NOVEMBER 12, 2005 **DATE TESTED:**

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 90 SUBPART Y NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By: Tested By:

DAVID GARCIA **EMC SUPERVISOR**

COMPLIANCE CERTIFICATION SERVICES

CAN MING CHUNG EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

DATE: FEBRUARY 8, 2006

FCC ID:RV7-GW-SD1050

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 90.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: FEBRUARY 8, 2006 FCC ID:RV7-GW-SD1050

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a transceiver operating in the 4950-4990 MHz band. It is intended for use as a fixed wireless subscriber unit.

The EUT comes in two models, SkyExtender SD-1050 and SkyGateway GW-1050. Both utilize the same electronic hardware. The only difference between the two is the firmware that is installed to operate the units.

The radio module is made by Skypilot Network Corporation.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

4940 to 4990 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
4940 - 4990	20 MHz Bandwidth	13.84	24.21

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a 16.0 dBi gain sector antenna for point-to-point operation.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was SkyGateway Software Version 001.0200.

The EUT driver software installed in the host support equipment during testing was TeraTerm Pro.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 4965 MHz.

The worst-case data rate for this channel is determined to be 6 Mb/s for 20 MHz channel bandwidth based on previous experience with 4.9 GHz WLAN product design architectures.

5.6. DESCRIPTION OF TEST SETUP

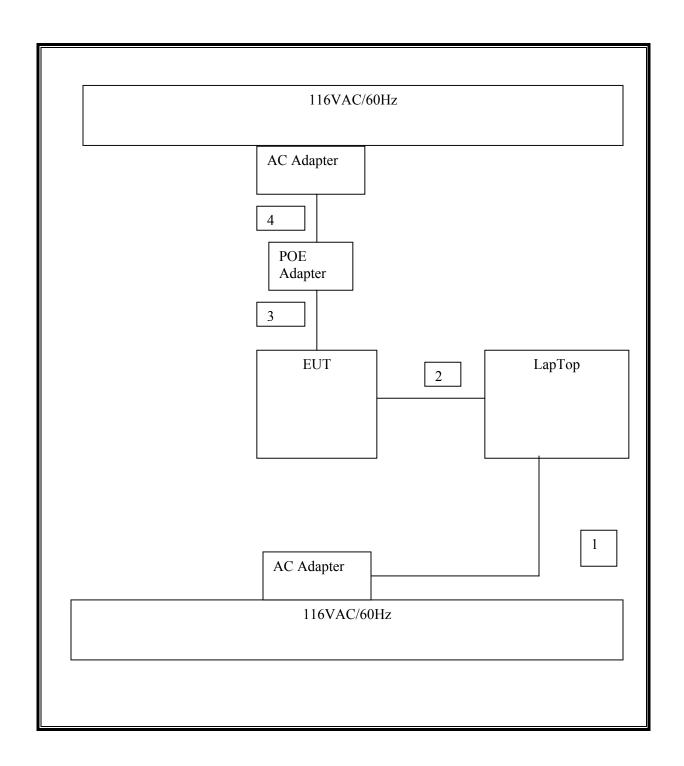
SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST									
Description	Description Manufacturer Model Serial Number FCC ID								
Laptop PC	QuickNote	A929	GAYR22190154	DoC					
PC AC Adapter	Lite-on	PA-1900-05	250109400C	N/A					
	Electronics								
EUT AC Adapter	UNIFIVE	UIB336-24	1567	N/A					
Mouse	Logitech	MUB48	LTC95102432	N/A					
POE Adapter	SkyPilot	POE	640-00009-01	N/A					

I/O CABLES

	I/O CABLE LIST								
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks			
1	DC	1	1/8"	Unshielded	1.2m	N/A			
2	LAN	1	RJ45	Unshielded	1m	N/A			
3	DC	1	1/8"	Unshielded	1.2m	N/A			
4	AC	1	AC Power	Unshielded	1.8m	N/A			

TEST SETUP


The EUT is connected to a host laptop computer via an unshielded crossover LAN cable during the tests. Test software exercised the radio card.

DATE: FEBRUARY 8, 2006

FCC ID:RV7-GW-SD1050

This report shall not be reproduced except in full, without the written approval of CCS.

SETUP DIAGRAM FOR TESTS

Page 8 of 55

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
EMI Test Receiver	R & S	ESHS 20	827129/006	6/3/2006		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42510266	3/28/2006		
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	29800	6/10/2006		
Antenna, Horn 1 ~ 18 GHz	Erctco	3115	6717	4/22/2006		
Preamplifier, 1 ~ 26 GHz	Miteq	NSP2600-SP	924342	9/2/2006		
Antenna, Bilog 30MHz ~ 2Ghz	Sunol Sciences	JB1	A121003	3/3/2006		
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	3/29/2006		
RF Filter Section	HP	85420E	3705A00256	3/29/2006		
Peak Power Meter	Agilent	E4416A	GB41291160	2/9/2006		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	2/10/2006		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	8/20/2006		
Site A Line Stabilizer/Conditioner	Tripplite	LC-1800a	A005181	CNR		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2006		
4.0 High Pass Filter	Micro Tronics	HPM13351	3	N/A		

This report shall not be reproduced except in full, without the written approval of CCS.

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 4940 TO 4990 MHz BAND

7.1.1. EMISSION BANDWIDTH

LIMIT

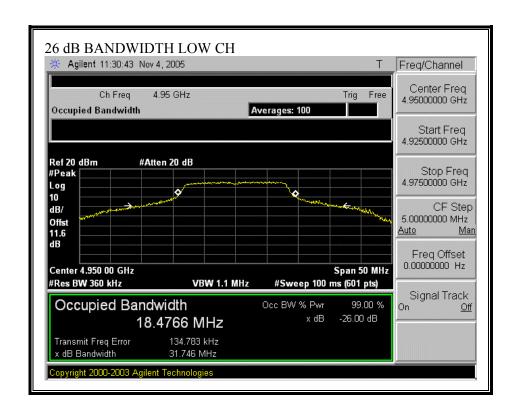
For reporting purposes only.

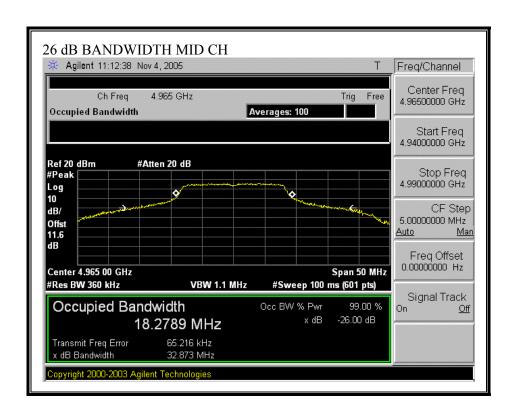
TEST PROCEDURE

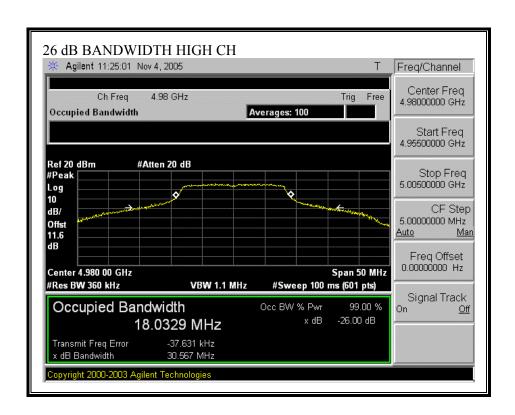
The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:


26 dB Bandwidth


Channel	Frequency	26 dB BW
	(MHz)	(MHz)
Low	4950	31.75
Middle	4965	32.87
High	4980	30.57


99% Bandwidth

Channel	Frequency (MHz)	99% BW (MHz)	Limit (MHz)	Margin (MHz)
Low	4950	18.48	20.00	-1.52
Middle	4965	18.28	20.00	-1.72
High	4980	18.03	20.00	-1.97

26 dB EMISSION BANDWIDTH

7.1.2. PEAK OUTPUT POWER

PEAK POWER LIMIT

§ 90.1215 The transmitting power of stations operating in the 4940–4990 MHz band must not exceed the maximum limits in this section.

(a) The peak transmit power should not exceed:

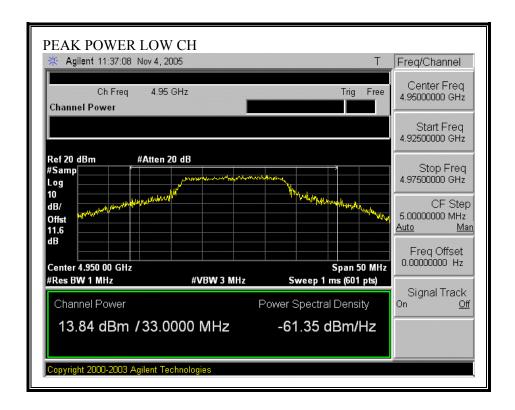
Low power Device High power Device Peak transmitter Power Peak transmitter Power Channel bandwidth (MHz) (dBm) (dBm) 1..... 20 27 5..... 14

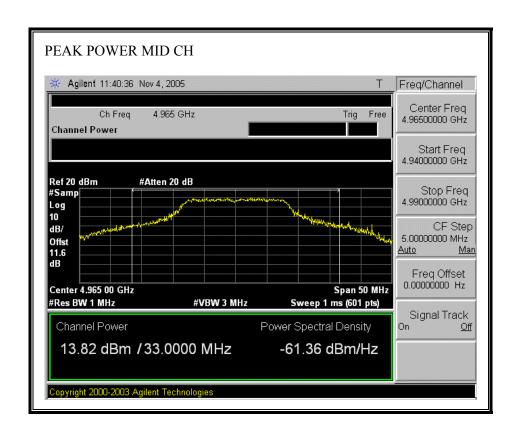
10..... 17 30 15..... 18.8 31.8 20..... 20 33

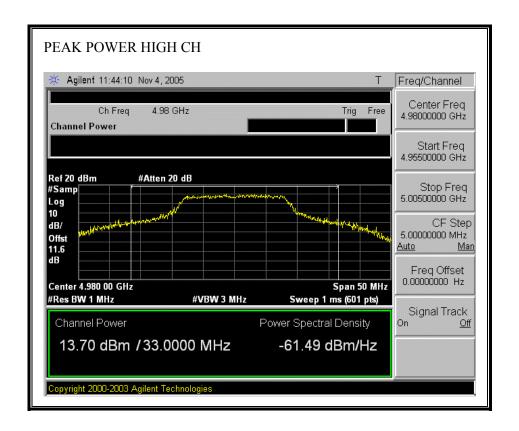
High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the peak transmit power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point or point-to-multipoint operation (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the transmitter power or spectral density. Corresponding reduction in the peak transmit power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 26 dB bandwidth. The peak transmit power is measured as a conducted emission over any interval of continuous transmission calibrated in terms of an rms-equivalent voltage.


RESULTS


For antenna gains up to 26 dBi the limit is 33 dBm.


No non-compliance noted:

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	4950	13.84	33	-19.16
Middle	4965	13.82	33	-19.18
High	4980	13.70	33	-19.30

OUTPUT POWER (802.11a MODE, FOR ANTENNAS UP TO 16 dBi)

7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)/d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P (mW) = 10 ^ (P (dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From $\S1.1310$ Table 1 (B), S = 1.0 mW/cm²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	()	(ID)	(ID)	(XX// A3)
	(cm)	(dBm)	(dBi)	(mW/cm^2)

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

7.1.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency Average Power	
	(MHz)	(dBm)
Low	4950	11.88
Middle	4965	12.05
High	4980	11.45

7.1.5. PEAK POWER SPECTRAL DENSITY

LIMIT

§ 90.1215 (a) High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the peak transmit power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point or point-to-multipoint operation (both fixed and temporaryfixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the transmitter power or spectral density. Corresponding reduction in the peak transmit power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi.

(c) The peak power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

Limits as determined by antenna Gain:

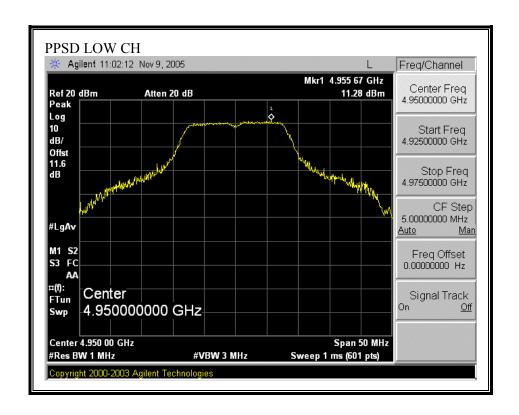
Antenna	Limit
Gain dBi	<u>dBm</u>
Up to 26	21

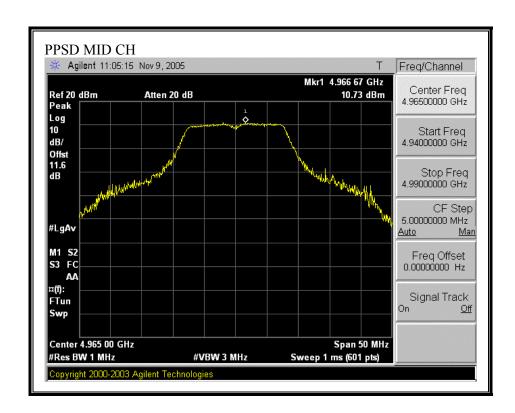
DATE: FEBRUARY 8, 2006

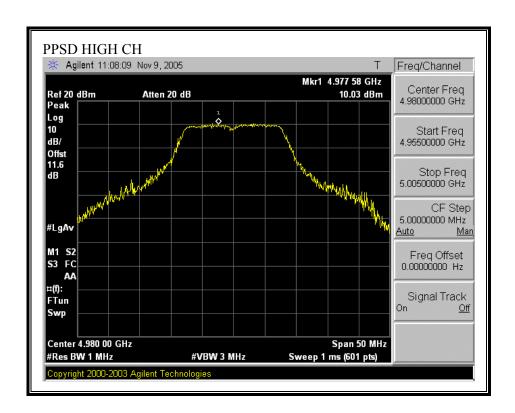
FCC ID:RV7-GW-SD1050

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 1 MHz and VBW 3 MHz. The PPSD is the highest level found across the emission in any 3 kHz band.


RESULTS


No non-compliance noted:

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	4950	11.28	21	-9.72
Middle	4965	10.73	21	-10.27
High	4980	10.03	21	-10.97

PEAK POWER SPECTRAL DENSITY (FOR UPTO 16 dBi ANTENNA GAIN)

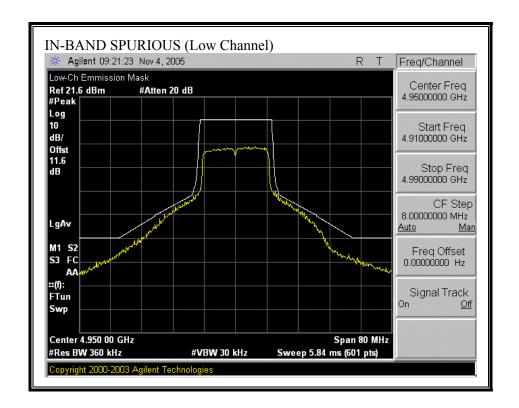
7.2. EMISSION MASK AND CONDUCTED SPURIOUS

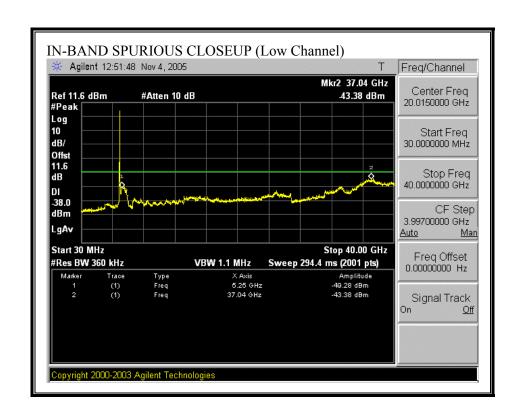
§ 90.210 (m) Emission Mask M. For high power transmitters (greater that 20 dBm) operating in the 4940–4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

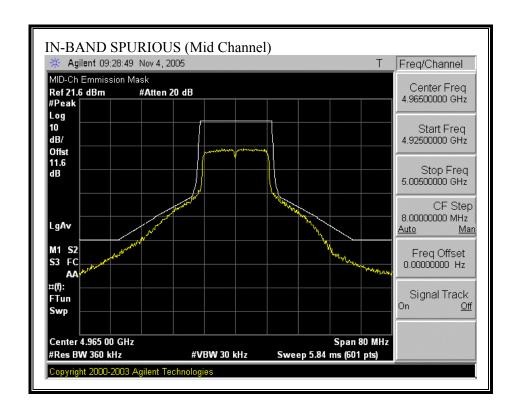
- (1) On any frequency removed from the assigned frequency between 0–45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45–50% of the authorized bandwidth: 568 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50–55% of the authorized bandwidth: 26 + 145 log (% of (BW)/50) dB.
- (4) On any frequency removed from the assigned frequency between 55–100% of the authorized bandwidth: 32 + 31 log (% of (BW)/55) dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: $40 + 57 \log (\% \text{ of (BW)}/100) \text{ dB}$ attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation..
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

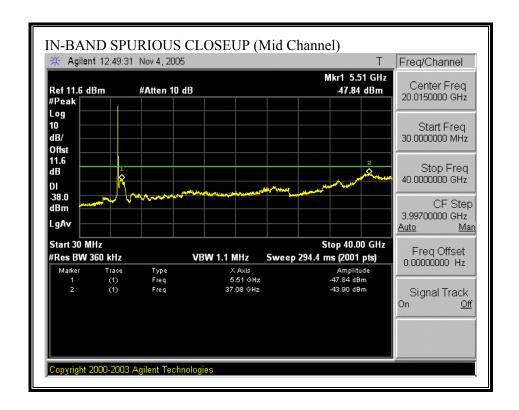
TEST PROCEDURE

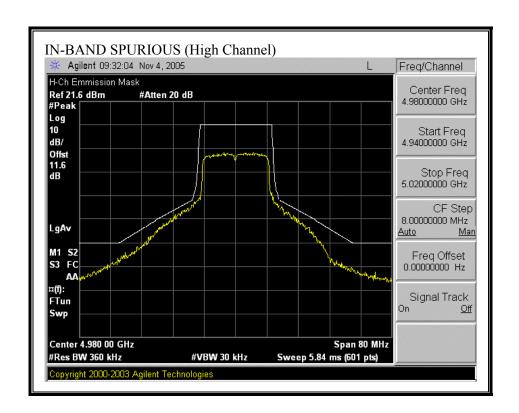
The EUT is connected to the spectrum analyzer, the average peak amplitude is used as the reference value for the mask, and the trace is compared to the mask.

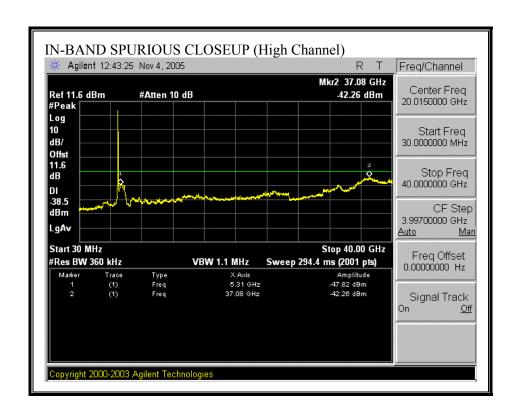

RESULTS


No non-compliance noted:


DATE: FEBRUARY 8, 2006


FCC ID:RV7-GW-SD1050


IN-BAND SPURIOUS EMISSIONS



7.3. FREQUENCY STABILITY

LIMIT

§ 90.213 (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table (See FCC § 90.1215 rules for table).

Above 2450 MHz: Frequency stability to be specified in the station authorization.

For equipment authorization purposes, this is a reporting requirement only.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.3.1 and 2.3.2

RESULTS

No non-compliance noted:

This report shall not be reproduced except in full, without the written approval of CCS.

NORMAL VOLTAGE EXTREME TEMPERATURE RESULTS

Temp.	Channel	Measured	Delta	ppm
Celsius	Frequency	Frequency	Frequency	
	(MHz)	(MHz)	(kHz)	
-30	4965	4964.98028	-19.72	3.97
-20	4965	4964.98032	-19.68	3.96
-10	4965	4964.98099	-19.01	3.83
0	4965	4964.98126	-18.74	3.77
10	4965	4964.98222	-17.78	3.58
20	4965	4964.98352	-16.48	3.32
30	4965	4964.97351	-26.49	5.34
40	4965	4964.96532	-34.68	6.98
50	4965	4964.95424	-45.76	9.22

LOW VOLTAGE NORMAL TEMPERATURE RESULTS

Temp.	Channel	Measured	Delta	ppm
Celsius	Frequency	Frequency	Frequency	
	~ :	(2 5 T)	a II s	
	(MHz)	(MHz)	(kHz)	

HIGH VOLTAGE NORMAL TEMPERATURE RESULTS

Temp.	Channel	Measured	Delta	ppm
Celsius	Frequency	Frequency	Frequency	
	(MHz)	(MHz)	(kHz)	
20	4965	4964.9621	-37.90	7.63

7.4. RADIATED EMISSIONS

LIMITS

§ 90.210 (1) Emission Mask M. For high power transmitters (20 dBm or greater) operating in the 4940– 4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.

The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

\$15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

DATE: FEBRUARY 8, 2006 FCC ID:RV7-GW-SD1050

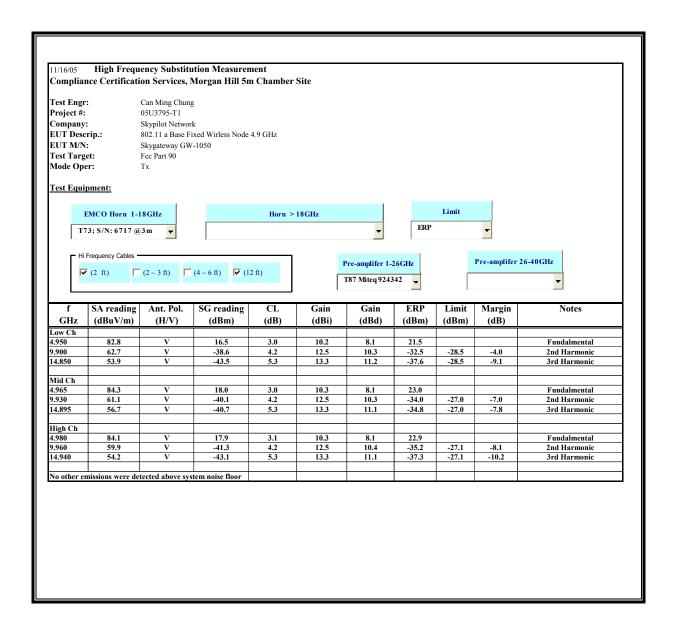
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

The field strength of the fundamental is measured to provide a reference value for the -40 dBc limit. All measurements are peak.

The resolution bandwidth is set to 1 MHz, and the video bandwidth is set to 1 MHz for peak measurements

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels. Conducted measurements are made of spurious signals removed by less than 150% of the authorized bandwidth. Conducted and radiated measurements are made of spurious signals removed by more than 150% of the authorized bandwidth.

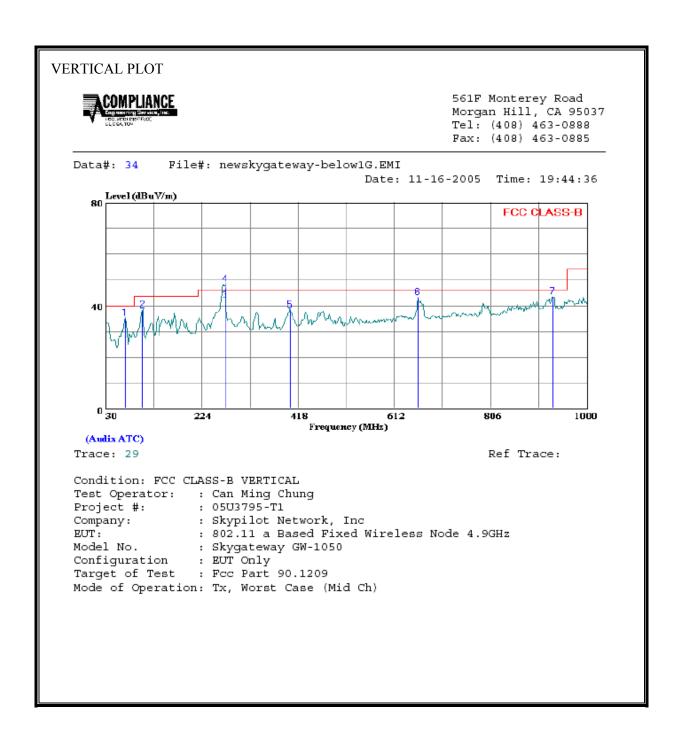

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

DATE: FEBRUARY 8, 2006 FCC ID:RV7-GW-SD1050

This report shall not be reproduced except in full, without the written approval of CCS.

7.4.1. TRANSMITTER ABOVE 1 GHz FOR 4894 TO 4990 MHz BAND

HARMONICS AND SPURIOUS EMISSIONS (SKYGATEWAY)


7.4.2. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL, SKYGATEWAY)

IORIZ	ONTAL DAT				Timir	Over		
	Freq	Read Level	Factor	Level	Limic		Remark	
	1109	Dever	raccor	Dever	Line	222	Remark	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	135.730	23.57	14.96	38.53	43.50	-4.97	Peak	
2		31.51			46.00			
3	266.680	25.78	14.50	40.28	46.00	-5.72	QP	
4	469.410	19.42	19.63	39.04	46.00	-6.96	Peak	
5	666.320	16.94	22.64	39.58	46.00	-6.42	QP	
6	666.320	22.94	22.64	45.58	46.00	-0.42	Peak	
7	732.280	17.11	23.65	40.76	46.00	-5.24	Peak	
8	931.130	17.33	26.28	43.61	46.00	-2.39	Peak	

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL, **SKYGATEWAY**)

Freq Level Factor Level Line Limit Remark MHz dBuV dB dBuV/m dBuV/m dB	Freq Level Factor Level Line Limit Remark MHz dBuV dB dBuV/m dBuV/m dB	Freq Level Factor Level Line Limit Remark MHz dBuV dB dBuV/m dBuV/m dB	VERTICAL	DATA	Read			Limit	Over	
1 69.770 25.81 9.32 35.13 40.00 -4.87 Peak 2 103.720 25.94 12.23 38.17 43.50 -5.33 Peak 3 270.560 27.13 14.63 41.76 46.00 -4.24 QP 4 * 270.560 33.46 14.63 48.08 46.00 2.08 Peak 5 401.510 20.27 18.08 38.35 46.00 -7.65 Peak 6 659.530 20.38 22.49 42.87 46.00 -3.13 Peak	1 69.770 25.81 9.32 35.13 40.00 -4.87 Peak 2 103.720 25.94 12.23 38.17 43.50 -5.33 Peak 3 270.560 27.13 14.63 41.76 46.00 -4.24 QP 4 * 270.560 33.46 14.63 48.08 46.00 2.08 Peak 5 401.510 20.27 18.08 38.35 46.00 -7.65 Peak 6 659.530 20.38 22.49 42.87 46.00 -3.13 Peak	1 69.770 25.81 9.32 35.13 40.00 -4.87 Peak 2 103.720 25.94 12.23 38.17 43.50 -5.33 Peak 3 270.560 27.13 14.63 41.76 46.00 -4.24 QP 4 * 270.560 33.46 14.63 48.08 46.00 2.08 Peak 5 401.510 20.27 18.08 38.35 46.00 -7.65 Peak 6 659.530 20.38 22.49 42.87 46.00 -3.13 Peak		Freq		Factor	Level			Remark
2 103.720 25.94 12.23 38.17 43.50 -5.33 Peak 3 270.560 27.13 14.63 41.76 46.00 -4.24 QP 4 * 270.560 33.46 14.63 48.08 46.00 2.08 Peak 5 401.510 20.27 18.08 38.35 46.00 -7.65 Peak 6 659.530 20.38 22.49 42.87 46.00 -3.13 Peak	2 103.720 25.94 12.23 38.17 43.50 -5.33 Peak 3 270.560 27.13 14.63 41.76 46.00 -4.24 QP 4 * 270.560 33.46 14.63 48.08 46.00 2.08 Peak 5 401.510 20.27 18.08 38.35 46.00 -7.65 Peak 6 659.530 20.38 22.49 42.87 46.00 -3.13 Peak	2 103.720 25.94 12.23 38.17 43.50 -5.33 Peak 3 270.560 27.13 14.63 41.76 46.00 -4.24 QP 4 * 270.560 33.46 14.63 48.08 46.00 2.08 Peak 5 401.510 20.27 18.08 38.35 46.00 -7.65 Peak 6 659.530 20.38 22.49 42.87 46.00 -3.13 Peak	_	MHz	dBuV	dB	$\overline{\tt dB}\overline{\tt uV/m}$	$\overline{dBuV/m}$	dB	
			2 3 4 * 5 6	69.770 103.720 270.560 270.560 401.510 659.530	25.81 25.94 27.13 33.46 20.27 20.38	9.32 12.23 14.63 14.63 18.08 22.49	35.13 38.17 41.76 48.08 38.35 42.87	40.00 43.50 46.00 46.00 46.00	-4.87 -5.33 -4.24 2.08 -7.65 -3.13	Peak Peak QP Peak Peak Peak

7.5. **POWERLINE CONDUCTED EMISSIONS**

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

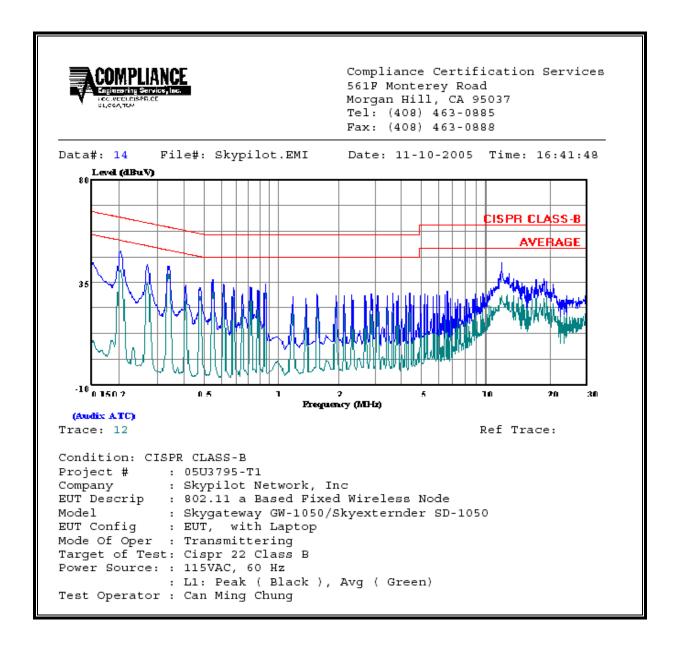
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

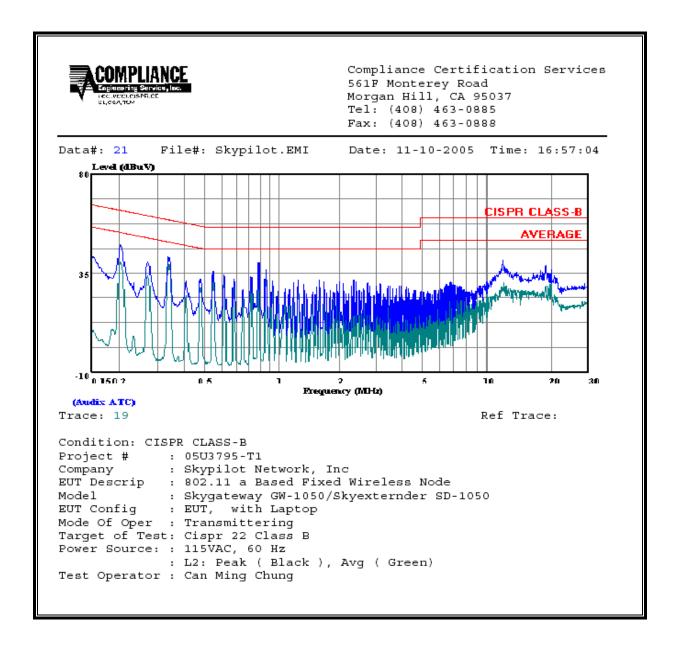
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

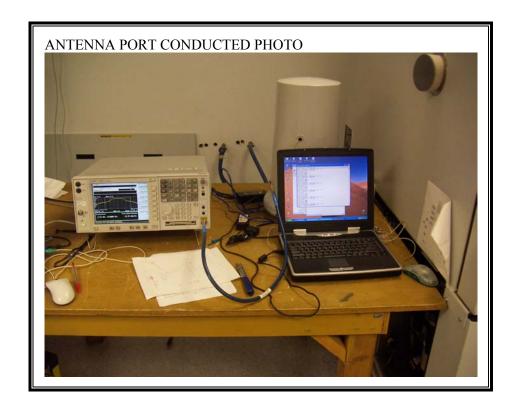

DATE: FEBRUARY 8, 2006

FCC ID:RV7-GW-SD1050

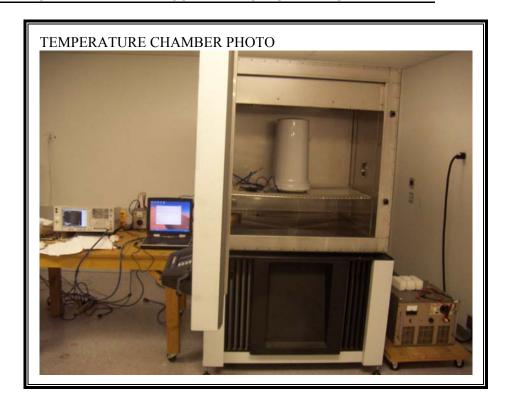

6 WORST EMISSIONS WITH SKYGATEWAY

CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.	Reading			Closs	Limit	FCC_B	Marg	Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.21	48.09		40.07	0.00	63.41	53.41	-15.32	-13.34	L1	
0.96	34.31		32.59	0.00	56.00	46.00	-21.69	-13.41	L1	
12.00	43.72		29.25	0.00	60.00	50.00	-16.28	-20.75	L1	
0.20	47.80		39.72	0.00	63.45	53.45	-15.65	-13.73	L2	
0.89	39.74		34.45	0.00	56.00	46.00	-16.26	-11.55	L2	
12.00	40.48		31.95	0.00	60.00	50.00	-19.52	-18.05	L2	
6 Worst l	Data .									

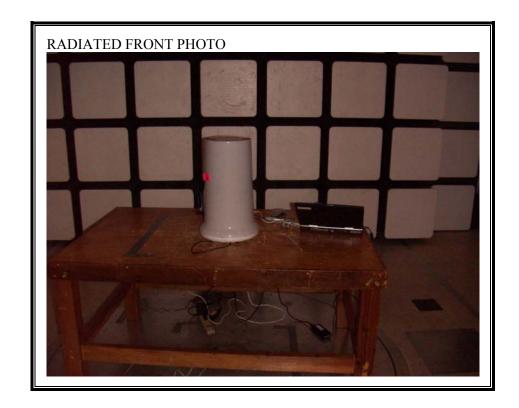
LINE 1 RESULTS

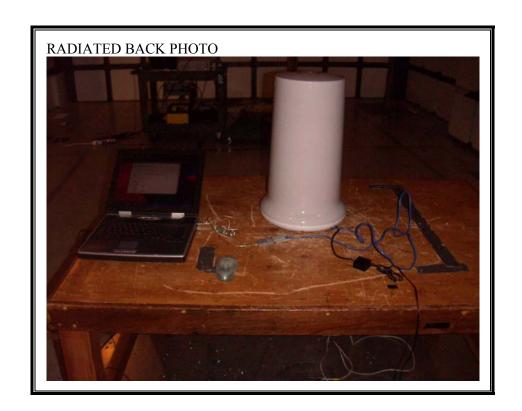


LINE 2 RESULTS



8. SETUP PHOTOS


ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP WITH SKYEXTENDER



TEMPERATURE CHAMBER MEASUREMENT SETUP WITH SKYEXTENDER

RADIATED RF MEASUREMENT SETUP WITH SKYGATEWAY

RADIATED RF MEASUREMENT SETUP WITH SkYGATEWAY BELOW 1GHz(Without laptop)

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP WITH SKYGATEWAY

END OF REPORT