Test of GATE-1100-A This covers the following Product Series:

GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100 To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: TRIL04-U1 Rev A

Test of GATE-1100-A This covers the following Product Series: GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100

To FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: TRIL04-U1 Rev A

<u>Note:</u> this report contains data with regard to the 5725 to 5850 MHz operational mode of the Trilliant Mesh WAN Wireless WAN Mesh Node. 5,150 to 5,250 are reported in MiCOM Labs test report TRIL04-U3 and 5,250 to 5,350 and 5,470 to 5,725 MHz are reported in MiCOM Labs test report TRIL04-U5

This report supersedes: None

- Applicant: Trilliant Networks, Inc 1100 Island Drive Redwood City CA 94065
- Product Function: SecureMesh[™] Wireless WAN 5 GHz Mesh Backhaul
- Copy No: pdf Issue Date: 5th June 2012

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 GATE-1100-A

 To:
 FCC 47 CFR Part 15.247 & IC RSS-210

 Serial #:
 TRIL04-U1 Rev A

 Issue Date:
 5th June 2012

 Page:
 4 of 69

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
		5
		6
	PRODUCT CERTIFICATION	/
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	11
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1. Technical Details	12
	3.2. Scope of Test Program	13
	3.3. Equipment Model(s) and Serial Number(s)	17
	3.4. Antenna Details	17
	3.5. Cabling and I/O Ports	17
	3.6. Test Configurations	18
	3.7. Equipment Modifications	19
	3.9. Subcontracted Testing or Third Party Data	19
		19
4		19
4.	TEST SUMMARY	19 20
4. 5.	TEST SUMMARY	19 20 22
4. 5.	TEST SUMMARY	19 20 22
4. 5.	TEST SUMMARY	19 20 22 22 22
4. 5.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3 Peak Power Spectral Density	19 20 22 22 22 28 28
4. 5.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density 5.1.4 Maximum Permissible Exposure	19 20 22 22 22 28 32 32
4. 5.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions	19 20 22 22 22 28 32 38 39
4. 5.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions 5.1.6. Radiated Emissions	19 20 22 22 22 28 32 38 39 48
4. 5.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Output Power 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions 5.1.6. Radiated Emissions 5.1.7. ac Wireline Conducted Emissions (150 kHz – 30 MHz)	19 20 22 22 22 22 28 32 38 39 48 62
4. 5. 6.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions 5.1.6. Radiated Emissions 5.1.7. ac Wireline Conducted Emissions (150 kHz – 30 MHz)	19 20 22 22 22 28 28 32 38 39 48 62 65
4. 5. 6.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions 5.1.6. Radiated Emissions 5.1.7. ac Wireline Conducted Emissions (150 kHz – 30 MHz) PHOTOGRAPHS 6.1. Radiated Emissions Below 1 GHz - Test Setup	19 20 22 22 22 28 32 38 39 48 62 65
4. 5. 6.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth. 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density. 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions 5.1.6. Radiated Emissions 5.1.7. ac Wireline Conducted Emissions (150 kHz – 30 MHz). PHOTOGRAPHS 6.1. Radiated Emissions Below 1 GHz - Test Setup 6.2. Radiated Emissions Above 1 GHz - Test Setup	19 20 22 22 22 28 32 32 38 39 48 62 65 65 66
4. 5.	TEST SUMMARY TEST RESULTS 5.1. Device Characteristics 5.1.1. 6 dB and 99 % Bandwidth 5.1.2. Peak Output Power 5.1.3. Peak Power Spectral Density 5.1.4. Maximum Permissible Exposure 5.1.5. Conducted Spurious Emissions 5.1.6. Radiated Emissions 5.1.7. ac Wireline Conducted Emissions (150 kHz – 30 MHz) PHOTOGRAPHS 6.1. Radiated Emissions Below 1 GHz - Test Setup 6.2. Radiated Emissions Above 1 GHz - Test Setup 6.3. Conducted Test Setup	19 20 22 28 32 38 39 62 65 65 67

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.	
USA	Federal Communications Commission (FCC)	тсв	-	Listing #: 102167	
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A-2	
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	210	
· · F ·	VCCI			No. 2959	
Europe	European Commission	NB	EU MRA	NB 2280	
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1		
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1		
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1		
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1) 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1		
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1		

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 7 of 69

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier – US0159

Industry Canada Certification Body - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB) - RCB Identifier - 210

DOCUMENT HISTORY

Document History				
Revision	Date	Comments		
Draft				
Rev A	5th June 2012	Initial release.		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

1. TEST RESULT CERTIFICATE

Applicant:	Trilliant Networks, Inc	Tested	MiCOM Labs, Inc.
	1100 Island Drive	By:	440 Boulder Court
	Redwood City		Suite 200
	CA 94065		Pleasanton
			California, 94566, USA
EUT:	802.11a Wireless WAN Mesh Node	Tel	+1 925 462 0304
Model:	GATE-1100-A The results of testing reported in this report cover the following Product Series: GATE-1100, XTEN-1100, XTEN- 1100-W, XBRG-1100	Fax:	+1 925 462 0306
S/N's:	FL07120012		
Test Date(s):	March 8th to 30th April 2012	Website:	www.micomlabs.com

STANDARD(S) FCC 47 CFR Part 15.247 & IC RSS-210

TEST RESULTS EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

ACCREDITED

TEST CERTIFICATE #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 GATE-1100-A

 To:
 FCC 47 CFR Part 15.247 & IC RSS-210

 Serial #:
 TRIL04-U1 Rev A

 Issue Date:
 5th June 2012

 Page:
 10 of 69

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
i.	FCC 47 CFR Part 15, Subpart C	2010	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	RSS-210 Annex 8	2010	Radio Standards Specification 210, Issue 8, Low- power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
iii.	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	RSS-GEN	2010	Radio Standards Specification-Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment
v.	FCC 47 CFR Part 15, Subpart B	2010	47 CFR Part 15, SubPart B; Unintentional Radiators
vi.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
vii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
viii.	CISPR 22/ EN 55022	2008 2006+A1:20 07	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
ix.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
х.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xi.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xii.	A2LA	March 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details	
Details	Description
Purpose:	Test of the GATE-1100-A to FCC Part 15.247 and
	Industry Canada RSS-210 regulations.
Applicant:	Trilliant Networks, Inc
	1100 Island Drive
	Redwood City
	CA 94065
Manufacturer:	Extron Logistics Inc
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	TRIL04-U1 Rev A
Date EUT received:	8 th March 2012
Standard(s) applied:	FCC 47 CFR Part 15.247 & IC RSS-210
Dates of test (from - to):	March 8th to 30th April 2012
No of Units Tested:	One
Type of Equipment:	802.11a Wireless WAN Mesh Node
Product Name:	SecureMesh™ Wireless WAN
Model:	GATE-1100-A
Hardware Release	Rev 6
Software Release	2.1
Declared Frequency Range(s):	5725 - 5850 MHz
Type of Modulation:	Per 802.11 – CCK, BPSK, QPSK, DSSS, OFDM
Declared Nominal Peak Output	802.11a:Leg. +30 dBm
Power:	
EUT Modes of Operation:	Legacy 802.11a
Transmit/Receive Operation:	Half Duplex
Rated Input Voltage and Current:	POE Adaptor Rated: 100 – 240V Current: 1Amp max,
	Output 24V 2Amps.
Operating Temperature Range:	Declared range -40° to +70°C
ITU Emission Designator:	5725 – 5850 MHz 802.11a 16M8D1D
Equipment Dimensions:	Base Diameter 12", Height 25"
Weight:	15 lbs
Primary function of equipment:	Wireless WAN Mesh Backhaul

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Scope of Test Program

The scope of the test program was to test the Trilliant Networks Inc GATE-1100-A Wireless WAN Mesh Node in the frequency range of 5725 – 5850 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

EUT

Trilliant Networks Inc. supplied a SecureMesh[™] Wireless WAN GATE-1100-A device that contains an 802.11a mesh backhaul radio as being representative of operation in the 5 GHz bands for all of the GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100 Series products.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 14 of 69

Trilliant Networks Inc

802.11a Wireless WAN Mesh Node

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

The customer supplied the following information about the products that are represented by the radio product.

There are no hardware differences between the 802.11a 5 GHz mesh radios. Differences between models are country specific, regulatory settings that are incorporated in the software.

Summary Table of
Model Numbers
Gateways
GATE-1100-A
GATE-1100-N
GATE-1100-E
GATE-1100-S
GATE-1100-C
GATE-1100-P
GATE-1100-H
GATE-1100-I
GATE-1100-J
GATE-1100-B
GATE-1100-XX
(where X is 0 to 9, A to Z or blank)
Extenders
XTEN-1100-A
XTEN-1100-R
XTEN-1100-XX
(where X is 0 to 9, A to Z or blank)
Extender DualBands
XTEN-1100-W-A
XTEN-1100-W-N
XTEN-1100-W-E
XIEN-1100-W-XX
(where X is 0 to 9, A to Z or blank)
Extender Bridges
XBRG-1100-A
XBRG-1100-N
XBRG-1100-E
XBRG-1100-XX
(where X is 0 to 9, A to Z of blank)

Explanation of Model Numbers

Product Name: Model Numbers:	SecureMesh [™] Wireless WAN Gateway Series GATE-1100 Series The SecureMesh [™] Wireless WAN Gateway Series consist of the following models: GATE-1100-A, GATE-1100-B, GATE-1100-C, GATE-1100-E, GATE-1100-H, GATE-1100-I, GATE-1100-J, GATE-1100-N, GATE-1100-P, GATE-1100-S, GATE-1100-XX (where X is 0 to 9, A to Z or blank)
Product Name: Model Numbers:	SecureMesh [™] Wireless WAN Extender Series XTEN-1100 Series The SecureMesh [™] Wireless WAN Extender Series consist of the following models: XTEN-1100-A; XTEN-1100-R; XTEN-1100-XX (where X is 0 to 9, A to Z or blank)
Product Name: Model Numbers:	SecureMesh [™] Wireless WAN Extender DualBand Series XTEN-1100-W Series The SecureMesh [™] Wireless WAN Extender DualBand Series consists of the following models: XTEN-1100-W-A, XTEN-1100-W-N, XTEN-1100-W-E; XTEN-1100-W-XX (where X is 0 to 9, A to Z or blank)
Product Name: Model Numbers:	SecureMesh [™] Wireless WAN Extender Bridge Series XBRG-1100 Series The SecureMesh [™] Wireless WAN Extender Bridge Series consists of the following models: XBRG-1100-A, XBRG-1100-N, XBRG-1100-E; XBRG-1100-XX (where X is 0 to 9, A to Z or blank)

3.3. Equipment Model(s) and Serial Number(s)

The following is a description of supporting equipment used with the EUT, see diagram below for the test set-up.

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Unique ID or Serial No.
EUT	SecureMesh™ Wireless WAN	Trilliant Networks Inc	GATE-1100-A	FL07120012
Support	Laptop Computer	Dell		

3.4. Antenna Details

The following is a description of the EUT antenna. Each of the (8) antenna elements provides gain in a 45° azimuth beamwidth and a 6° elevation beamwidth. The array of eight directional antennas provides 360° of coverage, with each antenna effectively supporting an independent sector. Only one of the eight antenna elements can be active at a time.

Antenna Type:	Manufacturer	Model	Gain (dBi)	Frequency Range (MHz)
Directional Panel	Trilliant Networks Inc	Integral	17	5725-5850

3.5. Cabling and I/O Ports

Number and type of I/O ports

- 1. RJ45 10/100 Ethernet (x1)
- 2. RJ45 Serial Port (Console)

3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Operational Mode	Variant	Data Rate with Highest Power	Frequencies (MHz)
802.11a	Legacy	6 MBit/s	5,735 5,785 5,835

Results for the above configurations are provided in this report.

Antenna Test Configurations for Radiated Emissions

Results for the following configurations are provided in this report.

5,725 – 5850 MHz

15.247	
802.11a	a SE 5735
	a SE 5785
	a SE 5835
	BE a 5460

KEY;-SE – Spurious Emission BE – Band-Edge

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e) <mark>A8.4(4)</mark>	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(d) 15.205 / 15.209 A8.5 2.2 4.7	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	Conducted	Complies	5.1.5

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description Condition		Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6 4 7	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.6
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.6.1
	Radiated Band Edge	Band-edge results Peak Emissions		Complies	5.1.6.2.
Industry Canada only RSS-Gen §4.10, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.6.3
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	5.1.6.4
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies	5.1.7

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

5. TEST RESULTS

- 5.1. Device Characteristics
- 5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2) Industry Canada RSS-210 §A8.2 Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

Measurement Results for 6 dB & 99% Bandwidth

Ambient conditions. Temperature: 17 to 23 °C

Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Default, Maximum Power Test s/w: ART

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 23 of 69

Measurement Results for 6 dB Operational Bandwidth(s) Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS - 802.11a - Legacy

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to 42	2
Variant:	802.11a	Ambient Temp. (°C):	19	to 22	
TPC:	HIGH	Pressure (mBars):	998	to 100	13
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	17 d	Bi	
Applied Voltage:	24.00 Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

Toot Fromuonov	6 dB Bandwidth				Minimu	ım 6dB	Margin	
rest Frequency	MHz				Bandwidth Limit			
MHz	а	b	с	d	kHz MHz		MHz	
5735.000	16.433000						-15.933000	
5785.000	16.433000				500 0.5		-15.933000	
5835.000	16.433000						-15.933000	

99% Bandwidth

	99 % Bandwidth					
lest Frequency	MHz					
MHz	а	b	С	d		
5735.000	17.395000		-			
5785.000	18.036000					
5835.000	21.643000					

Measurement uncertainty:	±2.81 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 24 of 69

PORT A 5,735 MHz 802.11a Legacy 6 dB and 99% Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 25 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 26 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e) Industry Canada RSS-210 §A8.4(4)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the 99 % bandwidth.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Ambient conditions.

Temperature: 17 to 23 °C	Relative humidity: 31 to 57 %	Pressure: 999 to 1012 mbar
--------------------------	-------------------------------	----------------------------

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Default Power

Calculated Power = A + G + 10 log (1/x) dBm A = Total Power [10 Log₁₀ ($10^{a/10} + 10^{b/10}$)], G = Antenna Gain, x = Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – **802.11a – Legacy** Maximum Conducted Power

Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10)0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	1	7 dBi	
Applied Voltage:	24.00 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	N	leasured P	eak Power		Total Pov	ver (dBm)	Limit	Margin
		RF Port	(dBm)					
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5735	29.97				N/A	29.97	30.00	-0.03
5785	29.41				N/A	29.41	30.00	-0.59
5835	29.68				N/A	29.68	30.00	-0.32

Fixed Point-Point Operation

Antenna	Gain (dBi)	Max. Allowable Conducted Peak Power (dBm)	Max. Peak Power (dBm)	Maximum EIRP 17 dBi Antenna (dBm)
Integral	17.0	+30.0	+29.97	+46.97

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

- (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Laboratory Measurement Uncertainty for Power Measurements

	Measurement uncertainty	±1.33 dB	
--	-------------------------	----------	--

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(e) Industry Canada RSS-210 §A8.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time \geq span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Default Power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Peak Power Spectral Density

TABLE OF RESULTS - 802.11a Legacy

Test Conditions:	15.247 (e)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	1	7 dBi	
Applied Voltage:	24.00 Vdc	Antenna Ports (N):	1		
Notes 1:					
Notes 2:					

Test	Ме	easured Po	wer Dens	ity	Correction Spectral		Limit	Margin
Frequency	RF Port (dBm)				factor	factor Density		ind girl
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5735.000	-2.70				0.00	-2.70	8.00	-10.70
5785.000	-3.26				0.00	-3.26	8.00	-11.26
5835.000	-3.01				0.00	-3.01	8.00	-11.01
	0.0.				0.00	0.01	0.00	

Measurement uncertainty:	± 1.33 dB
--------------------------	-----------

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 34 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 35 of 69

PORT A 5,785 MHz 802.11a Legacy - Peak Power Spectral Density

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 36 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/(4πd²) EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10)

The Trilliant MESH WAN has a single transmitter.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 $\rm mW/cm^2$

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
5.8	17.0	50.1	+29.97	993.1	63.0	20.0*

<u>*Note:</u> for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2 Industry Canada RSS-Gen 4.7

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Default Power

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

Conducted Spurious Emission Results

Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

Conducted Spurious Emission Results

TABLE OF RESULTS – 802.11a Legacy

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	24.00 Vdc	Antenna Ports (N):			
Notes 1:					
Notes 2:					

Conducted Spurious Measurement

Test Freq.	Start Freq.	Stop Freq.	Por	t A	Port B		Port C		Ροι	rt D
MHz	MHz	MHz	SE dBm	Limit dBm	SE dBm	Limit dBm	SE dBm	Limit dBm	SE dBm	Limit dBm
5735.000	30.00	26000.00	-47.76	-8.62						
5785.000	30.00	26000.00	-38.78	-11.28						
5835.000	30.00	26000.00	-39.17	-11.11						

SE: Maximum spurious emsission found

Band-edge Measurement

Test Freq.	Band-edge freq.	Port A		Por	rt B	Por	t C	Port D	
MHz	MHz	BE dBm	Limit dBm	BE dBm	Limit dBm	BE dBm	Limit dBm	BE dBm	Limit dBm
5735.000	5725.00	-8.99	-8.21						
5835.000	5850.00	-11.09	-7.71						

BE: Maximum Band edge emssion found

Measurement uncertainty:	±2.81 dB
--------------------------	----------

Note: Limit is based on 20dB down from fundamental emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 42 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 43 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 44 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 45 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 46 of 69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power			
2,400 MHz	2,483.5 MHz	> 20 dP			
5725 MHz	5850 MHz	≥ 20 dB			

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB

Traceability

Method	Test Equipment Used					
Measurements were made per work	0088, 0158, 0287, 0252, 0313, 0314, 0070,					
instruction WI-05 'Measurement of	0116, 0117.					
Spurious Emissions'						

5.1.6. Radiated Emissions

Transmitter Radiated Spurious Emissions (above 1 GHz); Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FOwhere: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 49 of 69

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6.1. Antenna – Integral

Tes	t Freq.	5735 MHz					Engineer G				GMH		
١	/ariant	802.11a	a; 6 Mbs			Temp (°C) 23							
Freq.	Range	1000 M	Hz - 180	00 MHz		Rel. Hum.(%) 43			43	13			
Power S	Setting	Power F	Reductio	n = 16 4W	ave			Press	. (mBars)	1005			
A	ntenna	17 dBi						Duty	Cycle (%)	100			
Test N	lotes 1												
Test N	Test Notes 2												
MiC®M	Labs dev/m Vasona by EMISoft 18 Apr 12 17:13 19 Morizont: Pack Limit Average L Debug Weas Grints Bm Spec Dist 3m Frequency: MHz Morizont: Pack Limit Average L Debug Meas Limit Average L												
Formally	meas	ured e	emissi	on peak	S								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
11463.589	60.5	6.8	-2.1	65.2	Peak Max	Н	99	289	74.0	-8.8	Pass	RB	
11463.589	46.6	6.8	-2.1	51.3	Average Max	Н	99	289	54	-2.7	Pass	RB	
17216.433	52.1	8.6	0.9	61.6	Peak [Scan]	Н					Pass	NRB	
5735.471	66.2	4.8	-9.5	61.4	Peak [Scan]	V						FUND	
5599.198	65.4	4.7	-9.7	60.4	Peak [Scan]	V	100	0	54	6.4	Pass	BE	
5224.449	65.1	4.6	-9.8	59.9	Peak [Scan]	V	100	0	54	5.9	Pass	BE	
17863.727	42.1	8.8	0.3	51.2	Peak [Scan]	Н	200	0	54	-2.8	Pass	NOISE	
5939.880	54.6	4.9	-8.8	50.6	Peak [Scan]	V					Pass	NRB	
Legend:	TX = T RB = F	ransmitt Restricted	er Emiss d Band (ions; DIG 15.209 Lim	= Digital Emissior hits); NRB = Non	ns; FUN Restric	ND = Fu ted Ba	undame nd, Lim	ental; BE=E iit is 20dB t	and-Edge below func	lamenta	l peak	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 51 of 69

5735 MHz operation; Restricted Band 4,500 - 5,150 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 52 of 69

5735 MHz operation; Restricted Band 5,350 -5,460 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Tes	t Freq.	5785 MHz				Engineer GMH						
١	/ariant	802.11a: 6 Mbs				Temp (ºC)			23			
Freq.	Range	1000 M	Hz - 180	00 MHz				Rel.	Hum.(%)	43		
Power	Setting	Power	Reductio	on = 16 4W	ave			Press	. (mBars)	1005		
A	ntenna	17 dBi						Duty	Cycle (%)	100		
Test N	lotes 1							-				
Test N	lotes 2											
MiC®M	.abs	dBuV/m Vasona by EMiSoft 18 Apr 12 17:29 19 Vertical Particular Particu										
Formally	meas	ured e	missic	on peaks	;							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5224.449	66.2	4.6	-9.8	61.0	Peak [Scan]	V					Pass	BE
5599.198397	65.1	4.7	-9.7	60.1	Peak [Scan]	V					Pass	BE
17352.705	49.8	8.7	1.3	59.8	Peak [Scan]	Н					Pass	NRB
11571.262	58.3	6.8	-2.0	63.1	Peak Max	Н	156	73	74.0	-10.9	Pass	RB
11571.262	44.8	6.8	-2.0	49.6	Average Max	Н	156	73	54.0	-4.4	Pass	RB
5939.880	56.3	4.9	-8.8	52.3	Peak [Scan]	V					Pass	NRB
17863.727	42.3	8.8	0.3	51.4	Peak [Scan]	V	200	0	54	-2.6	Pass	NOISE
Legend:	TX = T	ransmitt	er Emiss	sions; DIG	= Digital Emissior	ns; FUI	ND = Fi	undame	ental; BE=B	and-Edge)	
	RB = F	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Tes	t Freq.	5835 MHz				Engineer GMH						
١	Variant	802.11a	a; 6 Mbs			Temp (ºC)			23			
Freq.	Range	1000 M	Hz - 180	000 MHz		Rel. Hum.(%) 43						
Power S	Setting	Power	Reductio	on = 16 4W	ave			Press	. (mBars)	1005		
A	ntenna	17 dBi						Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	Test Notes 2											
Microsoft 18 Apr 12 17:42 Model Masses and by EMISoft 19 Apr 12 17:42 Model Model Masses and by EMISoft 19 Apr 12 17:42 Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model <td< th=""><th>rt I I I I</th></td<>									rt I I I I			
Formally	meas	ured e	missio	on peaks	;							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17523.046	54.1	8.8	0.9	63.8	Peak [Scan]	V					Pass	NRB
5326.653	67.0	4.6	-9.5	62.1	Peak [Scan]	V					Pass	NRB
5599.198	66.0	4.7	-9.7	61.0	Peak [Scan]	V					Pass	NRB
11666.247	55.1	6.8	-2.3	59.6	Peak Max	Н	98	130	74	-14.4	Pass	RB
11666.247	40.7	6.8	-2.3	45.2	Average Max	Н	98	130	54	-8.8	Pass	RB
5939.880	55.6	4.9	-8.8	51.6	Peak [Scan]	V					Pass	NRB
17863.727	42.4	8.8	0.3	51.5	Peak [Scan]	Н	150	0	54.0	-2.5	Pass	NOISE
5837.675351	55.4	4.8	-9.3	51.0	Peak [Scan]	Н						FUND
Legend:	TX = T RB = F	ransmitt Restricte	er Emiss d Band (sions; DIG 15.209 Lim	= Digital Emissior hits); NRB = Non	ns; FUI Restrie	ND = Fi	undame nd, Lin	ental; BE=E nit is 20dB I	Band-Edge	e lamental	peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 55 of 69

5835 MHz operation; Restricted Band 5,350 -5,460 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 GATE-1100-A

 To:
 FCC 47 CFR Part 15.247 & IC RSS-210

 Serial #:
 TRIL04-U1 Rev A

 Issue Date:
 5th June 2012

 Page:
 56 of 69

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)		
30-88	100	40.0	3		
88-216	150	43.5	3		
216-960	200	46.0	3		
Above 960	500	54.0	3		

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used				
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312				

5.1.6.2. Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)		
30-88	100	40.0	3		
88-216	150	43.5	3		
216-960	200	46.0	3		
Above 960	500	54.0	3		

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used			
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7. ac Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

115 Vac 60 Hz

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 63 of 69

Tes	t Freq.	N/A					Engineer GMH			
١	/ariant	AC Line Emissions					Temp (ºC)	26		
Freq.	Range	0.150 MHz - 30 MHz			R	el. Hum.(%)	33			
Power S	Setting	N/A				Pre	ress. (mBars) 1000			
Aı	ntenna	N/A						-		
Test N	lotes 1	Outdoo	r POE isola	ted in test	chamber. POE fe	eeds RF exte	nder DB comr	nunicating	g in	
Test N	lotes 2	control	room 2.4 ar	nd 5 GHz o	peration, system	passing traffic	c (pinging)			
Test Notes 2 control room 2.4 and 5 GHz operation, system passing traffic (pinging) MICOMLabs dBuV Vasona by EMISoft 14 Jul 11 13:02 19 Neutral Average Is Debug Formal Formal Power Line Conducted Emissions Filename: k:brogram/trilliant ino/tril04-gate+extender foo ic eu/country - stdven 301 489ven5502										
Frequency	Raw	Cable	Factors	Level	Measurement	Line		Margin	Pass	0
MHz	dBuV	Loss	dB	dBuV	Туре	Line	Limit aBuV	dB	/Fail	Comments
0.171	20.6	9.9	0.1	30.6	Quasi Peak	Live	64.92	-34.4	Pass	
7.344	22.3	10.3	0.3	32.9	Quasi Peak	Neutral	60	-27.1	Pass	
29.234	24.7	10.8	0.9	36.4	Quasi Peak	Neutral	60	-23.6	Pass	
0.171	15.6	9.9	0.1	25.6	Average	Live	54.92	-29.4	Pass	
7.344	13.1	10.3	0.3	23.7	Average	Neutral	50	-26.3	Pass	
29.234	22.2	10.8	0.9	33.9	Average	Neutral	50	-16.1	Pass	
Legend:	DIG = NRB =	= Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency B = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 64 of 69

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS

6.1. Radiated Emissions Below 1 GHz - Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2. Radiated Emissions Above 1 GHz - Test Setup

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 67 of 69

6.3. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: TRIL04-U1 Rev A Issue Date: 5th June 2012 Page: 68 of 69

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 12
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 12
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 12
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 12
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 12
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 12
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 12
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 12
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 12
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com