

Test Report acc. to FCC Title 47 CFR Part 15 relating to Bibliotheca ID ISC.MR102-USB-Bib

Title 47 - Telecommunication
Part 15 - Radio Frequency Devices
Subpart C – Intentional Radiators
Measurement Procedure:
ANSI C63.4-2009

Date of issue: 2013-03-12

EUT: ID ISC.MR102-USB-Bib FCC ID: RUVMR102

Manufacturer's details	
Manufacturer	Bibliotheca
Manufacturer's grantee code	RUV
Manufacturer's address	Landmark House
	Station Road, Cheadle Hulme
	SK8 7BS Stockport
	United Kingdom
	Phone: +44 (0)161 498 1140
	Fax: +44 (0)161 436 8787
	Email: m.wilkins@bibliotheca.com
Relevant standard used	47 CFR Part 15C - Intentional Radiators

ANSI C63.4-2009

Test Report prepared by	
Technical engineer	Ralf Trepper
	m. dudde hochfrequenz-technik (laboratory)
	Rottland 5a
	51429 Bergisch Gladbach
	Germany
	Phone: +49 2207 96890
	Fax: +49 2207 968920
	Email: m.duddelabor@dudde.com

Equipment Under Test (EUT)		
Equipment category	Inductive application / RFID	
Trade name	OBID i-scan	
Type designation	ID ISC.MR102-USB-Bib	
Serial no.		
Variants		
Antennas	AAA100144-000 Unified Kiosk Antenna AAA100143-000 Unified Kiosk Antenna AAA100132-000 Antenna Assy, Shielded AAA300227-000 Desktop Antenna Assy	

1. Test results

Clause	Requirements headline	Test result		Report p	
8.1	Antenna Requirement	Pass	Fail	N.t.*	9
8.2	Restricted bands of operation	Pass	Fail	N.t.*	10 to 11
8.3	Conducted limits	Pass	Fail	N.t.*	12 to 17
8.4	Radiated emission limits	Pass	Fail	N.t.*	18 to 26
8.5	Frequency tolerance	Pass	Fail	N.t.*	26 to 30
8.6	20 dB Bandwidth	Pass	Fail	N.t.*	31 to 32

^{*} Not tested

Signature: R 49

The equipment passed the conducted tests	Yes	No	
--	-----	---------------	--

Signature: Mand Auch (Manager)

Date of issue: 2013-03-12

EUT: ID ISC.MR102-USB-Bib FCC ID: RUVMR102

Table of contents

1. Test results	3
2. Introduction	5
3. Testing laboratory	5
4. Applicant	6
5. Product and product documentation	6
6. Conclusions, observations and comments	7
7. Operational description	8
8. Compliance assessment	9
8.1 Antenna requirement	9
8.1.1 Regulation	9
8.1.2 Result	9
8.2 Restricted bands of operation	10
8.2.1 Regulation	10
8.2.2 Result	11
8.3 Conducted limits	12
8.3.1 Regulation	12
8.3.2 Test equipment	13
8.3.3 Test procedures	13
8.3.4 Result	14
8.4 Radiated emission limits	17
8.4.1 Regulation	17
8.4.2 Test equipment	18
8.4.3 Test procedure	19
8.4.4 Calculation of the field strength	20
8.4.5 Result	21
8.5 Frequency tolerance	26
8.5.1 Regulation	26
8.5.2 Test equipment	26
8.5.3 Test procedures	27
8.5.4 Result	29
8.6 Bandwidth (20 dB)	30
8.6.1 Regulation	
8.6.2 Calculation of the 20 dB bandwidth limit	30
8.6.3 Test equipment	30
8.6.4 Test procedure	30
8.6.5 Result	31
0. Additional information to the test report	30

2. Introduction

This test report consists of:

- Test result summary
- List of contents
- Introduction and further information
- Performance assessment
- Detailed test information

All pages have been numbered consecutively and bear the m. dudde hochfrequenz-technik logo, the test report number, the date, the test specification in its current version as well as the type designation of the EUT. The total number of pages in this report is 33.

The tests were carried out at:

- m. dudde hochfrequenz-technik, D-51429 Bergisch Gladbach

in a representative assembly and in accordance with the test methods and/or requirements stated in:

FCC Title 47 CFR Part 15 Subpart C & ANSI C63.4-2009

The sample of the product was received on:

- 2013-01-03

The tests were carried out in the following period of time:

- 2013-02-20 - 2013-02-20

3. Testing laboratory

m. dudde hochfrequenz-technik Rottland 5a, 51429 Bergisch Gladbach, Germany

Phone: +49 - (0) 22 07 / 96 89-0 +49 - (0) 22 07 / 96 89-20 Fax:

- FCC Registration Number: 699717

Accredited by:

DAkkS Deutsche Akkreditierungsstelle GmbH DAkkS accreditation number: D-PL-12053-01

4. Applicant

Company name : Bibliotheca

Address : Landmark House

Station Road, Cheadle Hulme

SK8 7BS Stockport

Country : United Kingdom

Telephone : +44 (0)161 498 1140 Fax : +44 (0)161 436 8787

Email : m.wilkins@bibliotheca.com

Date of order : 2013-01-14

References : Mr. Mark Wilkins

5. Product and product documentation

Samples of the following apparatus were submitted for testing:

Manufacturer : FEIG ELECTRONIC GmbH

Trademark : OBID i-scan

Type designation : ID ISC.MR102-USB-Bib

Antennas : - AAA100144-000 Unified Kiosk Antenna

- AAA100143-000 Unified Kiosk Antenna

- AAA100132-000 Antenna Assy, Shielded

- AAA300227-000 Desktop Antenna Assy

Serial number : ---

Hardware version : --Software version : ---

Type of equipment : RFID

Power used : 24.0 V DC

Frequency used : 13.560 MHz

Generated frequencies : 13.560 MHz (Crystal), 25.0 MHz (Crystal),

13.560 MHz (Carrier)

ITU emission class : 345H A1D

For issuing this report the following product documentation was used:

Description	Date	Identifications
External photographs of the Equipment Under Test (EUT)	2013-03-12	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2013-03-12	Annex no. 2
Channel occupancy / bandwidth	2013-03-12	Annex no. 3
Label sample	2013-03-12	Annex no. 4
Functional description / User manual	2013-03-12	Annex no. 5
Test setup photos	2013-03-12	Annex no. 6
Block diagram	2013-03-12	Annex no. 7
Operational description	2013-03-12	Annex no. 8
Schematics	2013-03-12	Annex no. 9
Parts list	2013-03-12	Annex no. 10
Periodic operation characteristics / Transmission times		Annex no. 11
Antenna characteristics / Antenna description	2013-03-12	Annex no. 12

6. Conclusions, observations and comments

The test report will be filed at m. dudde hochfrequenz-technik for a period of 10 years following the issue of this report. It may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz-technik.

The results of the tests as stated in this report are exclusively applicable to the EUT as identified in this report. m. dudde hochfrequenz-technik cannot be held liable for properties of the EUT that have not been observed during these tests.

m. dudde hochfrequenz-technik assumes the sample to comply with the requirements of FCC Title 47 CFR Part 15 for the respective test sector, if the test results turn out positive.

Comments: ---

Date : 2013-03-12 Date : 2013-03-12

Name : Manfried Dudde Name : Ralf Trepper

Function : Technician Function : Manager

Signature Signature

7. Operational description

7.1 EUT details

RFID Reader System including ID ISC.MR102-USB-Bib that works at a frequency of 13.56 MHz. It comprises a reader, four dedicated antennas, a transponder (for example: smart label) and is used for wireless identification of a variety of objects.

7.2 EUT configurations

The reader comes with a USB interface. 1.)

7.3 EUT measurement description

Radiated measurements

ID ISC.MR102-USB-Bib was tested in a typical fashion with the combinations described in 7.2. During preliminary emission tests ID ISC.MR102-USB-Bib was operated in the continuous transmitting mode for worst case emission mode investigation. Therefore, the final qualification testing was completed with ID ISC.MR102-USB-Bib in combination with all antenna variants operated in continuous mode. All tests were performed with the applicant's declared maximum voltage: 24 V DC

In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical had been varied.

Conducted measurements

- 1.) The device was connected to the artificial mains network via a USB- connector to the USB- port of a HP Notebook and this to the artificial mains network. It has been tested in two runs: first, with inactive *ID* ISC.MR102-USB-Bib, second with activated ID ISC.MR102-USB-Bib in read-write mode to read user data and write user data into different tags.
- 2.) The device was connected to the artificial mains network via the external power supply *PS18A* and this to the artificial mains network. It has been tested in two runs: first, with inactive ID ISC.MR102-USB-Bib, second with activated ID ISC.MR102-USB-Bib in read-write mode to read user data and write user data into different tags.

8. Compliance assessment

8.1 Antenna requirement

8.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.1.2 Result

The equipment meets the requirements				N.t.
Further test results are attached	Yes	No	Page no.	

Dedicated antennas limited to the following types:

AAA100144-000 Unified Kiosk Antenna AAA100143-000 Unified Kiosk Antenna AAA100132-000 Antenna Assy, Shielded AAA300227-000 Desktop Antenna Assy

Installation, operation, and maintenance procedures should only be carried out by qualified personnel!

N.t.* See page no. 32

8.2 Restricted bands of operation

8.2.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

² Above 38.6

- (d) The following devices are exempt from the requirements of this Section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to Section 15.213.
 - (4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of Subpart D or F of this part.
 - (7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
 - (8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).
 - (9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

8.2.2 Result

The equipment passed the conducted tests		Yes	No	N.t.
			•	
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

8.3 Conducted limits

8.3.1 Regulation

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50ohms line impedance stabilization network (LISN). Compliance with this provision of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission(MHz)	Conducted limit (dBμV)		
	Quasi-peak	Average	
0.15-0.50 0.50-5.0	66 to 56*	56 to 46*	
0.50-5.0	56	46	
5.0-30.0	60	50	

^{*} Decreases with the logarithm of the frequency

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or connected to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

8.3.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
V-LISN 50 ohms//(50 uH+5 ohms)	EMCO (49b)	9512-1227	07/2011	07/2014	Dudde
8 Wire Impedance stabilization network	Schwarzbeck (71)	CATS 8158	12/2012	12/2015	Dudde
V-LISN 50 ohms//(50 uH+5 ohms)	RFT NNB 11 (72)	13835240	07/2010	07/2013	Dudde
Protector limiter 9 kHz - 30MHz 10 dB	Rhode & Schwarz ESH 3Z2 (272)	357,881052	09/2011	09/2013	Dudde
Receiver (9 kHz - 30MHz)	Schwarzbeck FMLK 1518 (428)	1518294 9360	08/2010	08/2013	
Panorama- Monitor FMLK / VUMA	PAZ1550 (429)				

Туре	Manufacturer/ Model no.	Cable no.	Last calibration	Next calibration	Calibration executed by
RF- cable	Aircell 1.5m [BNC/N]	K30	09/2012	09/2013	Dudde
RF- cable	[BNC]	KISN2	09/2012	09/2013	Dudde

8.3.3 Test procedures

The EUT and the additional equipment (if required) are connected to the main power through a line impedance stabilization network (LISN). The LISN must be appropriate to ANSI C63.4-2009 Section 7.

Additional equipment must also be connected to a second LISN with the same specifications described in the above sentence (if required).

8.3.4 Result

Tested with external AC/DC power supply (power supply PS18A)

Tested line Emission frequency [MHz] Red quasi-peak (abgh V) [dBh V] [CONDUCTI	ED EMISSION	NS (Section 15.	.207)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tantad	Emission	Receiver	Result	Spec. limit	Margin	
MHZ (RHZ (dBµV ddBµV ddB		frequency	bandwidth	quasi-peak	(average)		Remarks
N	ime	[MHz]	[kHz]		[dBµV]	[dB]	
N	L1	0.177	9	42.0	54.7	12.7	*2
N	N	0.177	9	42.0	54.7	12.7	•
L1	L1	0.220	9	-2	52.7	54.7	
N	N	0.220	9	-2	52.7	54.7	
L1	L1	0.294	9	-2	50.3	52.3	*2
N	N	0.294	9	-2	50.3	52.3	•
L1	L1	0.584	9	-2	46	48.0	
N	N	0.584	9	-2	46	48.0	*2
L1	L1	0.600	9	-2	46	48.0	*1
N 0.775 9 -2 46 48.0 *1	N	0.600	9	-2	46	48.0	*1
N	L1	0.775	9	-2	46	48.0	*1
N 0.850 9 -2 46 48.0 *¹ L1 1.000 9 -2 46 48.0 *¹ N 1.000 9 -2 46 48.0 *¹ L1 1.250 9 -2 46 48,0 *¹ N 1.250 9 -2 46 48,0 *¹ L1 1.150 9 30.0 46 16.0 *² N 1.150 9 30.5 46 15.5 *² L1 4.000 9 -2 46 48.0 *¹ N 4.000 9 -2 46 48.0 *¹ N 4.000 9 -2 46 48.0 *¹ N 4.000 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ N 13.8700 9 28.0 <td>N</td> <td>0.775</td> <td>9</td> <td></td> <td>46</td> <td>48.0</td> <td>*1</td>	N	0.775	9		46	48.0	*1
L1 1.000 9 -2 46 48.0 *¹ N 1.000 9 -2 46 48.0 *¹ L1 1.250 9 -2 46 48.0 *¹ N 1.250 9 -2 46 48.0 *¹ L1 1.150 9 30.0 46 16.0 *² N 1.150 9 30.5 46 15.5 *² L1 4.000 9 -2 46 48.0 *¹ N 6.7644 9 -2 50 52.0 *¹ N 13.8700 9 28.0 50 22.0 *¹ N 13.8700 9 28.	L1	0.850	9	-2	46	48.0	*1
N 1.000 9 -2 46 48.0 *1	N	0.850	9	-2	46	48.0	*1
L1 1.250 9 -2 46 48,0 *1 N 1.250 9 -2 46 48,0 *1 L1 1.150 9 30.0 46 16.0 *2 N 1.150 9 30.5 46 15.5 *2 L1 4.000 9 -2 46 48.0 *1 N 4.000 9 -2 46 48.0 *1 N 4.000 9 -2 46 48.0 *1 L1 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 N 13.8700 9 28.0 50 22.0 *1 N 13.8700 9 28.0 50 22.0 *1 N 13.8700 9 28.0 50 52.0 *1 N 13.8700 9 28.0 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	L1	1.000	9	-2	46	48.0	
N 1.250 9 -2 46 48,0 *¹ L1 1.150 9 30.0 46 16.0 *² N 1.150 9 30.5 46 15.5 *² L1 4.000 9 -2 46 48.0 *¹ N 4.000 9 -2 46 48.0 *¹ L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.8700 9 28.0 50 22.0 *¹ N 13.8700 9 28.0 50 22.0 *¹ L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ N 27.120 9 30.0 50 20.0 *²	N	1.000	9		46	48.0	
Interpretation Inter	L1	1.250	9	-2	46	48,0	*1
N 1.150 9 30.5 46 15.5 *2 L1 4.000 9 -2 46 48.0 *1 N 4.000 9 -2 46 48.0 *1 L1 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 L1 13.8700 9 28.0 50 22.0 *1 N 13.8700 9 28.0 50 22.0 *1 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	1.250	9	-2	46	48,0	•
L1 4.000 9 -2 46 48.0 *¹ N 4.000 9 -2 46 48.0 *¹ L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.8700 9 28.0 50 22.0 *¹ N 13.8700 9 28.0 50 22.0 *¹ L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	L1	1.150	9	30.0	46	16.0	
N 4.000 9 -2 46 48.0 *1 L1 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 L1 13.8700 9 28.0 50 22.0 *1 N 13.8700 9 28.0 50 22.0 *1 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	1.150	9	30.5	46	15.5	*2
IN 4.000 9 -2 40 48.0 L1 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 L1 13.8700 9 28.0 50 22.0 *1 N 13.8700 9 28.0 50 22.0 *1 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	L1	4.000	9	-2	46	48.0	*1
N 6.7644 9 -2 50 52.0 *¹ L1 13.8700 9 28.0 50 22.0 *¹ N 13.8700 9 28.0 50 22.0 *¹ L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	N	4.000	9	-2	46	48.0	•
L1 13.8700 9 28.0 50 22.0 *1 N 13.8700 9 28.0 50 22.0 *1 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	L1	6.7644	9		50	52.0	
N 13.8700 9 28.0 50 22.0 *1 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	6.7644	9	-2	50	52.0	
Interpretation 13.8700 9 28.0 30 22.0 1 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	L1	13.8700	9	28.0	50	22.0	*1
N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	13.8700	9	28.0	50	22.0	•
L1 27.120 9 30.0 50 20.0 *2	L1	20.2931	9	-2	50	52.0	*1
L1 27.120 9 30.0 30 20.0	N	20.2931	9	-2	50	52.0	•
N 27,120 9 30.0 50 20.0 *2	L1	27.120	9	30.0	50	20.0	*2
-· -·· / •••• ••• •••	N	27.120	9	30.0	50	20.0	*2

Remark: *1 Noise level of the measuring instrument \leq -2dB μ V (0.009 – 30MHz) Remark: *2 Quasi peak measurements lower than "Specified Average Limit"

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

EUT: ID ISC.MR102-USB-Bib FCC ID: RUVMR102

Date of issue: 2013-03-12

Tested with a Laptop over USB port (ID ISC.MR102-USB-Bib not active)

	CONDUCTED EMISSIONS (Section 15.207)									
Tastad	Emission	Receiver	Result	Spec. limit	Margin					
Tested line	frequency	bandwidth	quasi-peak	(average)		Remarks				
ime	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]					
L1	0.1960	9	44.0	55.3	11.3	*2				
N	0.1960	9	44.0	55.3	11.3	*2				
L1	0.301	9	-2	51.7	53.7	*1				
N	0.301	9	-2	51.7	53.2	*1				
L1	0.475	9	-2	47	49.0	*1				
N	0.475	9	-2	47	49.0	*1				
L1	0.600	9	-2	46	48.0	*1				
N	0.600	9	-2	46	48.0	*1				
L1	0.775	9	-2	46	48.0	*2				
N	0.775	9	-2	46	48.0	*2				
L1	0.850	9	-2	46	48.0	*1				
N	0.850	9	-2	46	48.0	*1				
L1	1.000	9	-2	46	48.0	*1				
N	1.000	9	-2	46	48.0	*1				
L1	1.787	9	29.0	46	17.0	*2				
N	1.787	9	29.0	46	17.0	*2				
L1	2.084	9	29.5	46	16.5	*2				
N	2.084	9	29.5	46	16.5	*2				
L1	2.423	9	25.0	46	21.0	*2				
N	2.423	9	25.0	46	21.0	*2				
L1	6.7644	9	-2	50	52.0	*1				
N	6.7644	9	-2	50	52.0	*1				
L1	13.5288	9	-2	50	52.0	*1				
N	13.5288	9	-2	50	52.0	*1				
L1	20.2931	9	-2	50	52.0	*1				
N	20.2931	9	-2	50	52.0	*1				
L1	27.0575	9	-2	50	52.0	*1				
N	27.0575	9	-2	50	52.0	*1				

Remark: *1 Noise level of the measuring instrument \leq -2dB μ V (0.009 – 30MHz)

Remark: *2 Quasi peak measurements lower than "Specified Average Limit"

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

EUT: ID ISC.MR102-USB-Bib FCC ID: RUVMR102

Date of issue: 2013-03-12

Tested with a Laptop over USB port (ID ISC.MR102-USB-Bib active)

Tested line Emission frequency [MHz] Receiver bandwidth [kHz] Result quasi-peak [dBμV] Spec. limit (average) [dBμV] Margin (gdB) Remarks N 0.1770 9 42.0 55.4 13.4 *² L1 0.1960 9 44.0 55.3 11.3 *² N 0.1960 9 44.0 55.3 11.3 *² L1 0.301 9 -2 51.7 53.7 *¹ N 0.0301 9 -2 51.7 53.7 *¹ N 0.0301 9 -2 51.7 53.7 *¹ N 0.0475 9 -2 47 49.0 *¹ N 0.475 9 -2 47 49.0 *¹ L1 0.600 9 -2 46 48.0 *¹ L1 0.600 9 -2 46 48.0 *¹ L1 0.775 9 -2 46 <		CONDUCTED EMISSIONS (Section 15.207)									
line Irequency [MHz] bandwidth [kHz] quasi-peak [dBμV] (average) [dBμV] Remarks L1 0.1770 9 42.0 55.4 13.4 *² N 0.1770 9 42.0 55.4 13.4 *² L1 0.1960 9 44.0 55.3 11.3 *² N 0.1960 9 44.0 55.3 11.3 *² L1 0.301 9 -2 51.7 53.7 *¹ L1 0.301 9 -2 51.7 53.7 *¹ L1 0.475 9 -2 47 49.0 *¹ N 0.475 9 -2 47 49.0 *¹ L1 0.600 9 -2 46 48.0 *¹ N 0.600 9 -2 46 48.0 *² N 0.775 9 -2 46 48.0 *² L1	Tastad	Emission	Receiver	Result	Spec. limit	Margin					
MHz (BBµV) (BBµV) (BBµV) (BB V) (BB		frequency	bandwidth	quasi-peak	(average)		Remarks				
N	iiile	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]					
N	L1	0.1770	9	42.0	55.4	13.4	•				
N	N	0.1770	9	42.0	55.4	13.4	·				
L1	L1	0.1960	9	44.0	55.3	11.3					
N 0.301 9 -2 51.7 53.2 ** L1 0.475 9 -2 47 49.0 ** N 0.475 9 -2 47 49.0 ** L1 0.600 9 -2 46 48.0 ** N 0.600 9 -2 46 48.0 ** L1 0.775 9 -2 46 48.0 ** L1 0.775 9 -2 46 48.0 ** L1 0.850 9 -2 46 48.0 ** N 0.850 9 -2 46 48.0 ** L1 1.150 9 30.0 46 48.0 ** N 1.150 9 30.0 46 48.0 ** L1 1.787 9 29.0 46 17.0 ** N 1.787 9 29.0 46 16.5 ** N 1.787 9 29.5 46 16.5 ** L1 2.084 9 29.5 46 16.5 ** N 2.084 9 29.5 46 16.5 ** L1 2.423 9 25.0 46 21.0 ** N 2.423 9 25.0 46 13.0 ** L1 3.186 9 33.0 46 13.0 ** N 3.186 9 33.0 46 13.0 ** L1 1.3870 9 28.0 50 52.0 ** N 2.02931 9 -2 50 52.0 ** L1 2.02931 9 -2 50 52.0 ** N 20.2931 9 -2 50 52.0 ** L1 27.120 9 30.0 50 20.0 ** L1 27.120 50 50.0 50.0 ** L1 27.120 50 50.0 **	N	0.1960		44.0	55.3	11.3					
L1 0.475 9 -2 47 49.0 *1 N 0.475 9 -2 47 49.0 *1 L1 0.600 9 -2 46 48.0 *1 N 0.600 9 -2 46 48.0 *1 L1 0.775 9 -2 46 48.0 *2 N 0.775 9 -2 46 48.0 *2 L1 0.850 9 -2 46 48.0 *1 N 1.150 9 30.0 46 48.0 *2 N 1.1787 9 29.0 46 17.0 *2 N 1.787 9 29.0 46	L1	0.301	9	-2	51.7	53.7					
N 0.475 9 -2 47 49.0 *1 L1 0.600 9 -2 46 48.0 *1 N 0.600 9 -2 46 48.0 *1 L1 0.775 9 -2 46 48.0 *2 N 0.775 9 -2 46 48.0 *2 N 0.775 9 -2 46 48.0 *2 L1 0.850 9 -2 46 48.0 *1 N 0.850 9 -2 46 48.0 *1 L1 1.150 9 30.0 46 48.0 *2 N 1.150 9 30.0 46 48.0 *2 L1 1.787 9 29.0 46 17.0 *2 N 1.787 9 29.0 46 16.5 *2 N 1.787 9 29.5 46 16.5 *2 L1 2.084 9 29.5 46 16.5 *2 L1 2.423 9 25.0 46 21.0 *2 N 2.423 9 25.0 46 13.0 *2 L1 3.186 9 33.0 46 13.0 *2 N 3.186 9 33.0 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 N 13.870 9 28.0 50 22.0 *2 N 13.870 9 28.0 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	0.301	9	-2	51.7	53.2					
L1 0.600 9 -2 46 48.0 *1 N 0.600 9 -2 46 48.0 *1 L1 0.775 9 -2 46 48.0 *2 N 0.775 9 -2 46 48.0 *2 L1 0.850 9 -2 46 48.0 *1 N 0.850 9 -2 46 48.0 *1 L1 1.150 9 30.0 46 48.0 *2 N 1.150 9 30.0 46 48.0 *2 L1 1.787 9 29.0 46 48.0 *2 N 1.787 9 29.0 46 17.0 *2 N 1.787 9 29.0 46 17.0 *2 L1 2.084 9 29.5 46 16.5 *2 N 2.084 9 29.5 46 16.5 *2 L1 2.423 9 25.0	L1	0.475	9	-2	47	49.0					
N 0.600 9 -2 46 48.0 *1 L1 0.775 9 -2 46 48.0 *2 N 0.775 9 -2 46 48.0 *2 L1 0.850 9 -2 46 48.0 *1 L1 1.150 9 30.0 46 48.0 *2 L1 1.150 9 30.0 46 48.0 *2 L1 1.787 9 29.0 46 17.0 *2 N 1.787 9 29.0 46 16.5 *2 L1 2.084 9 29.5 46 16.5 *2 L1 2.423 9 25.0 46 21.0 *2 N 2.423 9 25.0 46 21.0 *2 N 2.423 9 25.0 46 13.0 *2 L1 3.186 9 33.0 46 13.0 *2 L1 3.186 9 33.0 46 13.0 *2 L1 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 N 13.870 9 28.0 50 22.0 *2 N 13.870 9 28.0 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	0.475	9	-2	47	49.0					
L1	L1	0.600	9	-2	46	48.0	*1				
N	N	0.600	9	-2	46	48.0	•				
N	L1	0.775	9	-2	46	48.0	*2				
N 0.850 9 -2 46 48.0 *1 L1 1.150 9 30.0 46 48.0 *2 N 1.150 9 30.0 46 48.0 *2 L1 1.787 9 29.0 46 17.0 *2 N 1.787 9 29.0 46 17.0 *2 L1 2.084 9 29.5 46 16.5 *2 N 2.084 9 29.5 46 16.5 *2 L1 2.423 9 25.0 46 21.0 *2 N 2.423 9 25.0 46 21.0 *2 N 3.186 9 33.0 46 13.0 *2 N 3.186 9 33.0 46 13.0 *2 N 6.7644 9 -2 50 52.0 *1 N 13.870 9	N	0.775	9	-2	46	48.0	*2				
L1 1.150 9 30.0 46 48.0 *² N 1.150 9 30.0 46 48.0 *² L1 1.787 9 29.0 46 17.0 *² N 1.787 9 29.0 46 17.0 *² L1 2.084 9 29.5 46 16.5 *² N 2.084 9 29.5 46 16.5 *² L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ N 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0	L1	0.850	9	-2	46	48.0	*1				
N 1.150 9 30.0 46 48.0 *² L1 1.787 9 29.0 46 17.0 *² N 1.787 9 29.0 46 17.0 *² L1 2.084 9 29.5 46 16.5 *² N 2.084 9 29.5 46 16.5 *² L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ N 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 52.0 *¹ N 20.2931 9 -2<	N	0.850	9	-2	46	48.0	*1				
L1 1.787 9 29.0 46 17.0 *² N 1.787 9 29.0 46 17.0 *² L1 2.084 9 29.5 46 16.5 *² N 2.084 9 29.5 46 16.5 *² L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *² N 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2<	L1	1.150	9	30.0	46	48.0	•				
N 1.787 9 29.0 46 17.0 *² L1 2.084 9 29.5 46 16.5 *² N 2.084 9 29.5 46 16.5 *² L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2	N	1.150	9	30.0	46	48.0					
L1 2.084 9 29.5 46 16.5 *² N 2.084 9 29.5 46 16.5 *² L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	L1	1.787	9	29.0	46	17.0	*2				
N 2.084 9 29.5 46 16.5 *² L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	N	1.787	9	29.0	46	17.0	*2				
IN 2.084 9 29.3 40 10.5 L1 2.423 9 25.0 46 21.0 *² N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	L1	2.084	9	29.5	46	16.5	*2				
N 2.423 9 25.0 46 21.0 *² L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	N	2.084	9	29.5	46	16.5	*2				
L1 3.186 9 33.0 46 13.0 *² N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	L1	2.423	9	25.0	46	21.0	*2				
N 3.186 9 33.0 46 13.0 *² L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	N	2.423	9	25.0	46	21.0	*2				
L1 6.7644 9 -2 50 52.0 *¹ N 6.7644 9 -2 50 52.0 *¹ L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	L1	3.186	9	33.0	46	13.0	*2				
L1 6.7644 9 -2 50 52.0 *1 N 6.7644 9 -2 50 52.0 *1 L1 13.870 9 28.0 50 22.0 *2 N 13.870 9 28.0 50 22.0 *2 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	3.186	9	33.0	46	13.0	*2				
N 6.7644 9 -2 50 52.0 *1 L1 13.870 9 28.0 50 22.0 *2 N 13.870 9 28.0 50 22.0 *2 L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2			9				*1				
L1 13.870 9 28.0 50 22.0 *² N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²	N		9	-2	50	52.0	*1				
N 13.870 9 28.0 50 22.0 *² L1 20.2931 9 -2 50 52.0 *¹ N 20.2931 9 -2 50 52.0 *¹ L1 27.120 9 30.0 50 20.0 *²			9	28.0	50		*2				
L1 20.2931 9 -2 50 52.0 *1 N 20.2931 9 -2 50 52.0 *1 L1 27.120 9 30.0 50 20.0 *2	N	13.870	9		50		*2				
N 20.2931 9 -2 50 52.0 * ¹ L1 27.120 9 30.0 50 20.0 * ²	L1		9	-2	50	52.0	*1				
L1 27.120 9 30.0 50 20.0 *2	N		9	-2	50	52.0	*1				
	L1		9	30.0	50	20.0	*2				
	N		9	30.0	50		*2				

Remark: *1 Noise level of the measuring instrument \leq -2dBµV (0.009 – 30MHz)

Remark: *2 Quasi peak measurements lower than "Specified Average Limit"

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

8.4 Radiated emission limits

8.4.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- (e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

Date: 2013-02-20 Vers. no. 1.13

Tel: +49 2207-96890

8.4.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Receiver	Rohde & Schwarz ESH2 (22)		08/2011	08/2014	Rohde & Schwarz
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		05/2010	05/2013	Dudde
OATS	Dudde (CISPR 16) bis 1,0 GHz (103)		05/2012	05/2014	Dudde
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	01/2012	01/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	09/2012	09/2014	Rohde & Schwarz
Bilog-antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		04/2011	04/2014	Schwazbeck
Logt. Per, Antenne (1- 18 GHz)	Schwarzbeck STLP 9148 (445)		09/2012	09/2015	Schwarzbeck
Horn antenna (15.0-40.0 GHz)			09/2011	09/2014	Schwarzbeck
Signal Analyzer (9 kHz –30.0 GHz)	Rohde & Schwarz FSV 30 (502)	100932	02/2013	02/2016	Rohde & Schwarz

Туре	Manufacturer/ Model no.	Cable no.	Last calibration	Next calibration	Calibration executed by
RF- cable	Kabelmetal 18m [N]	K1a	04/2012	04/2013	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	10/2012	10/2013	Dudde
RF- cable	Sucoflex 104 Suhner [N] 1 m	K52	06/2012	06/2013	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	10/2012	10/2013	Dudde
RF- cable	Sucoflex 100 Suhner [N] 1 m	K61	06/2012	06/2013	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	10/2012	10/2013	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	10/2012	10/2013	Dudde
RF- cable	Sucoflex Suhner 13 m [N]	K144	04/2012	04/2013	Dudde
RF- cable	Sucoflex Suhner 8m [SMA]	K145	04/2012	04/2013	Dudde
RF- cable	Sucoflex Suhner 8m [SMA]	K146	04/2012	04/2013	Dudde

8.4.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4-2009 Section 8 "Radiated Emissions Testing"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The ANSI C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of ANSI C63.4-2009 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beam width of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in ANSI C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beam width of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

ANSI C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Date: 2013-02-20 Vers. no. 1.13

Tel: +49 2207-96890

Radiated emissions test characteristics						
Frequency range	30 MHz - 4,000 MHz					
Test distance	3 m*					
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)					
	1 MHz (1000 MHz - 4,000 MHz)					
Receive antenna scan height	1 m - 4 m					
Receive antenna polarization	Vertical/horizontal					

^{*} According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.4.4 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor - Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

: Antenna factor + cable loss **Correction Factor**

For example:

The receiver reading is 32.7 dBµV. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dBµV/m.

The $35.91 dB\mu V/m$ value can be mathematically converted to its corresponding level in $\mu V/m$.

Level in $\mu V/m = Common Antilogarithm (35.91/20) = 39.8$

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

8.4.5 Result

ID ISC.MR102-USB-Bib in combination with antenna AAA100144-000 Unified Kiosk Antenna

	FU	INDAME	NTAL E	MISSION 6	& HARM	ONICS (S	ection 15.225)			
Frequency	Bandwidth Type of detector	Noted receiver level	Test distance	Correction factor	Distance extrapol. factor	Level corrected	Limit @ meter	Margin	ante orien	s. EUT enna tation
MHz	kHz	dΒμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m	H/V	cm
13.560	QPK/9kHz	67.0	10	20.2	-19.1	68.1	84.0 @ 30	15.9	V	100
27.120	QPK/9kHz	22.0	10	20.2	-19.1	23.1	29.5 @ 30	6.4	V	100
67.800	QPK/120kHz	39.0	3	-9.9	0	29.1	40.0 @ 3	10.9	V	134
81.360	QPK/120kHz	41.0	3	-11.5	0	29.5	40.0 @ 3	10.5	V	137
108.480	QPK/120kHz	41.0	3	-9.6	0	31.4	43.5 @ 3	12.1	V	129
135.600	QPK/120kHz	35.0	3	-7.5	0	27.5	43.5 @ 3	16.0	V	113
257.640	QPK/120kHz	37.0	3	-8.0	0	29.0	46.0 @ 3	17.0	V	110
311.880	QPK/120kHz	27.0	3	-6.2	0	20.8	46.0 @ 3	25.2	V	113
	<u>'</u>	Me	asurement	uncertainty	4 dB					

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *1 noise floor noise level of the measuring instrument $\leq 4.0 dB\mu V$ @ 10m distance (0.009 – 30 MHz) Remark: *2 noise floor noise level of the measuring instrument $\leq 6.5 dB\mu V$ @ 3m distance (30 – 1,000 MHz) Remark: *3 noise floor noise level of the measuring instrument $\leq 10~\text{dB}\mu\text{V}$ @ Remark: *4 noise floor noise level of the measuring instrument $\leq 17~\text{dB}\mu\text{V}$ @ Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz noise level of the measuring instrument $\leq 10 \text{ dB}\mu\text{V}$ @ 3m distance (1,000 - 2,000 MHz)noise level of the measuring instrument $\leq 17~dB\mu V \ @\ 3m$ distance (2,000 – 5,500 MHz)

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

ID ISC.MR102-USB-Bib in combination with antenna AAA100143-000 Unified Kiosk Antenna

FUNDAMENTAL EMISSION & HARMONICS (Section 15.225)										
Bandwidth Type of detector	Noted receiver level	Test distance	Correction factor	Distance extrapol. factor	Level corrected	Limit @ meter	Margin	ante	s. EUT enna tation	
kHz	dΒμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m	H/V	cm	
QPK/9kHz	67.0	10	20.2	-19.1	68.1	84.0 @ 30	15.9	V	100	
QPK/9kHz	22.0	10	20.2	-19.1	23.1	29.5 @ 30	6.4	V	100	
QPK/9kHz	36.0	3	-7.7	0	28.3	40.0 @ 3	11.7	V	124	
QPK/120kHz	35.0	3	-9.9	0	25.1	40.0 @ 3	14.9	V	118	
QPK/120kHz	43.0	3	-11.5	0	31.5	40.0 @ 3	8.5	V	110	
QPK/120kHz	38.0	3	-9.6	0	28.4	43.5 @ 3	17.1	V	100	
QPK/120kHz	35.0	3	-7.5	0	27.5	43.5 @ 3	16.0	V	113	
QPK/120kHz	36.0	3	-8.2	0	27.8	43.5 @ 3	15.7	V	121	
QPK/120kHz	33.0	3	-8.7	0	24.3	43.5 @ 3	19.2	V	120	
QPK/120kHz	30.0	3	-8.0	0	22.0	46.0 @ 3	24.0	V	124	
QPK/120kHz	35.0	3	-7.5	0	27.5	46.0 @ 3	17.5	Н	202	
QPK/120kHz	31.0	3	-7.3	0	23.7	46.0 @ 3	22.3	Н	150	
	Type of detector kHz QPK/9kHz QPK/9kHz QPK/9kHz QPK/120kHz QPK/120kHz QPK/120kHz QPK/120kHz QPK/120kHz QPK/120kHz QPK/120kHz	Type of detector kHz dBμV QPK/9kHz 67.0 QPK/9kHz 22.0 QPK/9kHz 36.0 QPK/120kHz 35.0 QPK/120kHz 33.0 QPK/120kHz 30.0 QPK/120kHz 35.0	Type of detector kHz receiver level distance Test distance κHz dBμV m QPK/9kHz 67.0 10 QPK/9kHz 22.0 10 QPK/9kHz 36.0 3 QPK/120kHz 35.0 3 QPK/120kHz 43.0 3 QPK/120kHz 35.0 3 QPK/120kHz 36.0 3 QPK/120kHz 33.0 3 QPK/120kHz 30.0 3 QPK/120kHz 35.0 3 QPK/120kHz 35.0 3 QPK/120kHz 35.0 3 QPK/120kHz 35.0 3 QPK/120kHz 31.0 3	Type of detector kHz receiver level distance level distance Correction factor μ 0BμV m dB QPK/9kHz 67.0 10 20.2 QPK/9kHz 22.0 10 20.2 QPK/9kHz 36.0 3 -7.7 QPK/120kHz 35.0 3 -9.9 QPK/120kHz 43.0 3 -11.5 QPK/120kHz 35.0 3 -9.6 QPK/120kHz 36.0 3 -7.5 QPK/120kHz 36.0 3 -8.2 QPK/120kHz 30.0 3 -8.7 QPK/120kHz 30.0 3 -8.0 QPK/120kHz 35.0 3 -7.5	Type of detector kHz receiver level distance Correction factor dB dB extrapol. factor dB QPK/9kHz 67.0 10 20.2 -19.1 QPK/9kHz 22.0 10 20.2 -19.1 QPK/9kHz 36.0 3 -7.7 0 QPK/120kHz 35.0 3 -9.9 0 QPK/120kHz 38.0 3 -9.9 0 QPK/120kHz 38.0 3 -9.6 0 QPK/120kHz 35.0 3 -7.5 0 QPK/120kHz 36.0 3 -8.2 0 QPK/120kHz 33.0 3 -8.7 0 QPK/120kHz 30.0 3 -8.0 0 QPK/120kHz 35.0 3 -7.5 0 QPK/120kHz 35.0 3 -7.5 0	Type of detector kHz receiver level dbμV Test distance m Correction factor dB extrapol. factor dB μV/m Level corrected dBμV/m QPK/9kHz 67.0 10 20.2 -19.1 68.1 QPK/9kHz 22.0 10 20.2 -19.1 23.1 QPK/9kHz 36.0 3 -7.7 0 28.3 QPK/120kHz 35.0 3 -9.9 0 25.1 QPK/120kHz 43.0 3 -11.5 0 31.5 QPK/120kHz 35.0 3 -9.6 0 28.4 QPK/120kHz 35.0 3 -7.5 0 27.5 QPK/120kHz 36.0 3 -8.2 0 27.8 QPK/120kHz 30.0 3 -8.7 0 24.3 QPK/120kHz 35.0 3 -7.5 0 27.5 QPK/120kHz 35.0 3 -7.5 0 27.5 QPK/120kHz 35.0 3 -7.5 0 <td< td=""><td>Type of detector kHz receiver level dBμV Test distance m Correction factor dB extrapol. factor dB μV/m Level corrected dBμV/m MBμV/m QPK/9kHz 67.0 10 20.2 -19.1 68.1 84.0 @ 30 QPK/9kHz 22.0 10 20.2 -19.1 23.1 29.5 @ 30 QPK/9kHz 36.0 3 -7.7 0 28.3 40.0 @ 3 QPK/120kHz 35.0 3 -9.9 0 25.1 40.0 @ 3 QPK/120kHz 43.0 3 -11.5 0 31.5 40.0 @ 3 QPK/120kHz 35.0 3 -7.5 0 27.5 43.5 @ 3 QPK/120kHz 36.0 3 -8.2 0 27.8 43.5 @ 3 QPK/120kHz 30.0 3 -8.7 0 24.3 43.5 @ 3 QPK/120kHz 35.0 3 -7.5 0 27.5</td><td>Type of detector kHz receiver level distance kHz Correction distance distance kHz Extrapol. factor dB wW/m Level corrected dB μV/m Level corrected dB μV/m Margin dB μV/m Margi</td><td>Type of detector kHz receiver level dBμV distance m Correction factor dB extrapol. factor dB μV/m Level corrected dBμV/m Limit @ meter dBμV/m Margin dBμV/m anto orien dBμV/m Margin dBμV/m Margin dBμV/m Algument dB</td></td<>	Type of detector kHz receiver level dBμV Test distance m Correction factor dB extrapol. factor dB μV/m Level corrected dBμV/m MBμV/m QPK/9kHz 67.0 10 20.2 -19.1 68.1 84.0 @ 30 QPK/9kHz 22.0 10 20.2 -19.1 23.1 29.5 @ 30 QPK/9kHz 36.0 3 -7.7 0 28.3 40.0 @ 3 QPK/120kHz 35.0 3 -9.9 0 25.1 40.0 @ 3 QPK/120kHz 43.0 3 -11.5 0 31.5 40.0 @ 3 QPK/120kHz 35.0 3 -7.5 0 27.5 43.5 @ 3 QPK/120kHz 36.0 3 -8.2 0 27.8 43.5 @ 3 QPK/120kHz 30.0 3 -8.7 0 24.3 43.5 @ 3 QPK/120kHz 35.0 3 -7.5 0 27.5	Type of detector kHz receiver level distance kHz Correction distance distance kHz Extrapol. factor dB wW/m Level corrected dB μV/m Level corrected dB μV/m Margin dB μV/m Margi	Type of detector kHz receiver level dBμV distance m Correction factor dB extrapol. factor dB μV/m Level corrected dBμV/m Limit @ meter dBμV/m Margin dBμV/m anto orien dBμV/m Margin dBμV/m Margin dBμV/m Algument dB	

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor Remark: *\frac{1}{2} noise floor

Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

ID ISC.MR102-USB-Bib in combination with antenna AAA100132-000 Antenna Assy, Shielded

th Note receiv level dBμ 52.0 Hz 16.0 Hz 40.0 Hz 41.0	er distance w m 10	Correction factor dB 20.2 20.2	Distance extrapol. factor dB	Level corrected dBµV/m	Limit @ meter dBμV/m 84.0 @ 30	Margin dBμV/m 30.1		enna tation cm
Hz 52.0 Hz 16.0 Hz 40.0	10	20.2	-19.1	•	•			
Hz 40.0		20.2	10.1				П / V	100
	3		-19.1	17.1	29.5 @ 30	12.4	H/V	100
Iz 41.0	1	-7.3	0	32.7	40.0 @ 3	7.3	V	122
	3	-7.7	0	33.3	40.0 @ 3	6.7	V	124
Hz 67.8	3	-9.9	0	24.1	40.0 @ 3	15.9	V	115
Hz 44. 0	3	-11.5	0	32.5	40.0 @ 3	7.5	V	110
Hz 33.0	3	-7.5	0	25.5	43.5 @ 3	18.0	V	110
Hz 30.0	3	-10.0	0	20.0	43.5 @ 3	23.5	V	105
Hz 31.0	3	-10.5	0	20.5	43.5 @ 3	23.0	V	110
Hz 37.0	3	-8.7	0	28.3	43.5 @ 3	15.2	Н	168
Hz 39.0	3	-8.5	0	30.5	46.0 @ 3	15.5	Н	120
Hz 38.0	3	-8.0	0	30.0	46.0 @ 3	26.0	Н	121
Hz 38.0	3	-7.5	0	30.5	46.0 @ 3	25.5	Н	150
)k)k)k	0kHz 30.0 0kHz 31.0 0kHz 37.0 0kHz 39.0 0kHz 38.0	0kHz 30.0 3 0kHz 31.0 3 0kHz 37.0 3 0kHz 39.0 3 0kHz 38.0 3 0kHz 38.0 3 0kHz 38.0 3	0kHz 30.0 3 -10.0 0kHz 31.0 3 -10.5 0kHz 37.0 3 -8.7 0kHz 39.0 3 -8.5 0kHz 38.0 3 -8.0	0kHz 30.0 3 -10.0 0 0kHz 31.0 3 -10.5 0 0kHz 37.0 3 -8.7 0 0kHz 39.0 3 -8.5 0 0kHz 38.0 3 -8.0 0 0kHz 38.0 3 -7.5 0	OkHz 30.0 3 -10.0 0 20.0 OkHz 31.0 3 -10.5 0 20.5 OkHz 37.0 3 -8.7 0 28.3 OkHz 39.0 3 -8.5 0 30.5 OkHz 38.0 3 -8.0 0 30.0 OkHz 38.0 3 -7.5 0 30.5	OkHz 30.0 3 -10.0 0 20.0 43.5 @ 3 OkHz 31.0 3 -10.5 0 20.5 43.5 @ 3 OkHz 37.0 3 -8.7 0 28.3 43.5 @ 3 OkHz 39.0 3 -8.5 0 30.5 46.0 @ 3 OkHz 38.0 3 -8.0 0 30.0 46.0 @ 3 OkHz 38.0 3 -7.5 0 30.5 46.0 @ 3	OkHz 30.0 3 -10.0 0 20.0 43.5 @ 3 23.5 OkHz 31.0 3 -10.5 0 20.5 43.5 @ 3 23.0 OkHz 37.0 3 -8.7 0 28.3 43.5 @ 3 15.2 OkHz 39.0 3 -8.5 0 30.5 46.0 @ 3 15.5 OkHz 38.0 3 -8.0 0 30.0 46.0 @ 3 26.0 OkHz 38.0 3 -7.5 0 30.5 46.0 @ 3 25.5	0kHz 30.0 3 -10.0 0 20.0 43.5 @ 3 23.5 V 0kHz 31.0 3 -10.5 0 20.5 43.5 @ 3 23.0 V 0kHz 37.0 3 -8.7 0 28.3 43.5 @ 3 15.2 H 0kHz 39.0 3 -8.5 0 30.5 46.0 @ 3 15.5 H 0kHz 38.0 3 -8.0 0 30.0 46.0 @ 3 26.0 H 0kHz 38.0 3 -7.5 0 30.5 46.0 @ 3 25.5 H

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *\(^{1}\) noise floor noise level of the measuring instrument \(^{2}\) 4.0dB\(\mu\)V @ 10m distance (0.009 – 30 MHz) noise level of the measuring instrument \(^{2}\) 6.5dB\(\mu\)V @ 3m distance (30 – 1,000 MHz) noise level of the measuring instrument \(^{2}\) 10 dB\(\mu\)V @ 3m distance (1,000 – 2,000 MHz) noise level of the measuring instrument \(^{2}\) 17 dB\(\mu\)V @ 3m distance (2,000 – 5,500 MHz) noise level of the measuring instrument \(^{2}\) 17 dB\(\mu\)V @ 3m distance (2,000 – 5,500 MHz)

Remark: $*^5$ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

ID ISC.MR102-USB-Bib in combination with antenna AAA300227-000 Desktop Antenna Assy

	FU	INDAME	NTAL E	MISSION &	& HARM	ONICS (S	ection 15.225)			
Frequency	Bandwidth Type of detector	Noted receiver level	Test distance	Correction factor	Distance extrapol. factor	Level corrected	Limit @ meter	Margin	ante	s. EUT enna tation
MHz	kHz	dΒμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m	H/V	cm
13.560	QPK/9kHz	63.0	10	20.2	-19.1	64.1	84.0 @ 30	19.9	H/V	100
40.680	QPK/9kHz	34.0	3	-7.3	0	26.7	40.0 @ 3	13.3	V	110
67.800	QPK/120kHz	33.0	3	-9.9	0	23.1	40.0 @ 3	16.9	V	110
203.400	QPK/120kHz	33.0	3	-10.5	0	22.5	43.5 @ 3	21.0	Н	148
230.520	QPK/120kHz	35.0	3	-8.7	0	26.3	43.5 @ 3	17.2	Н	130
257.640	QPK/120kHz	36.0	3	-8.0	0	28.0	46.0 @ 3	18.0	Н	146
271.200	QPK/120kHz	34.0	3	-7.5	0	26.5	46.0 @ 3	18.5	V	139
298.320	QPK/120kHz	34.0	3	-6.5	0	27.5	46.0 @ 3	18.5	Н	1157
	•	Me	asurement	uncertainty	4 dB	•		•	•	

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor
Remark: *\frac{2}{2} noise floor
Remark: *\frac{2}{2} noise floor
Remark: *\frac{3}{2} noise floor
Remark: *\frac{4}{2} noise floor

Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

The equipment passed the conducted tests		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

EUT: ID ISC.MR102-USB-Bib FCC ID: RUVMR102 Date of issue: 2013-03-12

			SPURI	OUS RAD	IATION (Section 15.	.209)			
Frequency MHz	Bandwidth Type of detector kHz	Noted receiver level dBµV	Test distance m	Correction factor dB	Distance extrapol. factor dB	Level corrected dBµV/m	Limit dBµV/m	Margin dBµV/m	Polaris. E antenn orientati H / V	a
	0.2, PK	< 4.0	10	20.2	-59.1	-34.9	46.0- @ 300 m	80.90	V, H/ 360°	-
0.1200	0.2, AV	< 4.0	10	20.2	-59.1	-34.9	26.0 @ 300 m	80.90	V, H/ 360°	
0.5000	0.2, AV	< 4.0	10	20.2	-19.1	5.1	33.6 @ 30 m	28.5	V, H/ 360°	
1.5000	0.2, AV	< 4.0	10	20.2	-19.1	5.1	24.1 @ 30 m	19.00	V, H/360°	
3.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/ 360°	
5.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/360°	
8.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/360°	
10.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/360°	
20.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/360°	
30.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/360°	
35.0000	100, AV	≤ 3.5	3	-3.1* ⁶	0	0	0.4	40.0	V, H/ 360°	
88.0000	100, AV	≤ 3.5	3	-10.8* ⁶	0	-7.3	40.0	47.3	V, H/ 360°	
216.0000	100, AV	≤ 3.5	3	-10.3* ⁶	0	-6.8	43.5	50.3	V, H/ 360°	
960.0000	100, AV	≤3.5	3	8.5* ⁶	0	12.0	43.5	31.5	V, H/ 360°	
1700.0000	1000, AV	≤ 4.5	3	3.8*7	0	8.3	54.0	45.7	V, H/ 360°	
2250.0000	1000, AV	≤ 10	3	8.0*7	0	18.0	54.0	36.0	V, H/ 360°	
4000.0000	1000, AV	≤ 10	3	8.4*7	0	18.4	54.0	35.6	V, H/ 360°	
5000.0000	1000, AV	≤ 10	3	9.1*7	0	19.4	54.0	34.6	V, H/ 360°	
7500.0000	1000, AV	≤ 14	3	12.9*7	0	26.9	54.0	27.1	V, H/ 360°	
8300.0000	1000, AV	≤ 14	3	14.0*7	0	28.8	54.0	25.2	V, H/ 360°	
9400.0000	1000, AV	≤ 14	3	16.0* ⁷	0	30.0	54.0	24.0	V, H/ 360°	
11000.0000	1000, AV	≤ 14	3	18.3* ⁷	0	32.3	54.0	21.7	V, H/ 360°	

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *1 noise floor noise level of the measuring instrument $\leq 4.0 \text{dB} \mu \text{V}$ @ 10m distance (0.009 MHz –30 MHz)

Remark: *2 noise floor Remark: *3 noise floor Remark: *4 noise floor Remark: *5 noise floor Noise level of the measuring instrument $\leq 10 \, \text{dB} \, \mu \, \text{V}$ @ 3m distance $(2,000 - 2,000 \, \text{MHz})$ noise level of the measuring instrument $\leq 10 \, \text{dB} \, \mu \, \text{V}$ @ 3m distance $(5,500 - 14,500 \, \text{MHz})$

Remark: *⁶ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁷ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment passed the conducted tests	7	Yes	No	N.t.	
Further test results are attached	Yes	No	I	Page no.	

N.t.* See page no. 32

8.5 Frequency tolerance

8.5.1 Regulation

(e) The frequency tolerance of the carrier signal shall be maintained within $\pm\,0.01\,\%$ of the operating frequency over a temperature variation of -20 °C to +55 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C.

8.5.2 Test equipment

Туре	Type Manufacturer/ Model no.		Last calibration	Next calibration	Calibration executed by
Test fixture	Dudde		04/2012	04/2013	Dudde
Low noise signal generator (10kHz – 5.4GHz)	Marconi Instruments 2042 (6)	119347/003	01/2012	01/2014	Dudde
Temperature chamber	Brabender TTE 32/40 H (87)		03/2010	03/2013	Dudde
Frequency counter (10MHz -26.5GHz)	Hewlett & Packard 5351A Microwave frequency counter (130)	2432A00054	09/2011	09/2014	Rohde & Schwarz
Frequency Counter	Hewlett Packard 5351B (432)	3049A01217	08/2011	08/2013	DKD
Signal Analyzer (9 kHz –30.0 GHz)	Rohde & Schwarz FSV 30 (502)	100932	02/2013	02/2016	Rohde & Schwarz

Туре	Manufacturer/ Model no.	Cable no.	Last calibration	Next calibration	Calibration executed by
RF- cable	Sucoflex 104 P Suhner 2,13m [APC 3.5]	K17a	03/2012	03/2013	Dudde
RF- cable	Sucoflex 104 P Suhner 2,13m [APC 3.5]	K18a	03/2012	03/2013	Dudde
RF- cable	RG58 2.5m [BNC]	K21	01/2013	01/2014	

8.5.3 Test procedures

Stability with respect to ambient temperature:

Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. If possible, a dummy load should be connected to the EUT, because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustablelength antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn the EUT on, and tune it to one of the number of frequencies required

Couple the intentional radiator output to the measuring instrument by connecting an antenna to the measurement instrument with a suitable length of coaxial cable and placing the measurement antenna near the EUT (e.g., 15 cm away) or by connecting a dummy load to the measuring instrument through an attenuator, if necessary.

Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. Turn the EUT on, and couple its output to the measuring instrument by connecting an antenna to the measurement instrument with a suitable length of coaxial cable.

Adjust the location of the measurement antenna and the controls on the measuring instrument to obtain a suitable signal level (i.e., a level that will not overload the measuring instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

Date: 2013-02-20 Vers. no. 1.13

Tel: +49 2207-96890

Tune the EUT to any one of the number of frequencies specified. Turn the EUT off, and place it inside an environmental chamber if appropriate. Allow the chamber to stabilize at +20 °C before proceeding. Turn on the EUT, and record the operating frequency of the intentional radiator at startup and two, five, and ten minutes after startup. Turn the EUT off and allow it to cool to the ambient temperature, and then repeat this procedure for the number of the frequencies specified. Four measurements are made at each operating frequency.

Stability with respect to input voltage:

Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. If possible, a dummy load should be connected to the EUT, because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustablelength antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn the EUT on, and tune it to one of the number of frequencies required.

Couple the intentional radiator output to the measuring instrument by connecting an antenna to the measurement instrument with a suitable length of coaxial cable and placing the measurement antenna near the EUT (e.g., 15 cm away) or by connecting a dummy load to the measuring instrument through an attenuator, if necessary.

Adjust the location of the measurement antenna and the controls on the measuring instrument to obtain a suitable signal level (i.e., a level that will not overload the measuring instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Turn the EUT off, and place it inside an environmental temperature chamber. For devices that are normally operated continuously, the EUT may be energized while inside the test chamber. For devices that have oscillator heaters, energize only the heater circuit while the EUT is inside the chamber.

Set the temperature control on the chamber to the highest specified EUT operating temperature, and allow the temperature inside the chamber to stabilize at the set temperature before starting frequency measurements.

While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized. Four measurements in total are made.

Repeat the above procedure until the number of frequencies specified has been measured. After all measurements have been made at the highest specified temperature, turn the EUT off. Repeat the above measurement process for the EUT with the test chamber set at the lowest temperature specified by the regulatory or procuring agency. Measurements shall be made at the number of frequencies specified.

Date: 2013-02-20 Vers. no. 1.13

Tel: +49 2207-96890

8.5.4 Result

	Frequency tolerance (Section 15.225(e))									
Test conditions	Frequency	Frequen	cy Error							
$T_{nom} = +20^{\circ} \text{ C}$	Measured (MHz)	(kHz)	ppm							
$V_{min} = 20.4 \text{ V DC}$	13.560101	+0.101	+7.4							
$V_{\text{nom}} = 24.0 \text{ V DC}$	13.560101	+0.101	+7.4							
V _{max} = 27.6 V DC	13.560101	+0.101	+7.4							
Maximum Frequency error (MHz)		+0.101	+7.4							
	Measurement uncertainty	$\pm 5*10^{8}$								

Frequency tolerance (Section 15.225(e))				
Test conditions	Frequency	Frequency Error		
$V_{nom} = 24.0 \text{ V DC}$	Measured (MHz)	Trequency 21101		
V _{nom} = 24.0 V DC	(WIIIZ)	(kHz)	(ppm)	
T _{min} -20 °C	13.559986	-0.014	-1.0	
T _{min} -10 °C	13.560000	0.000	0.0	
T _{min} 0 °C	13.560116	+0.116	+8.6	
T_{min} +10 °C	13.560072	+0.072	+5.3	
T_{min} +20 °C	13.560101	+0.101	+7.4	
T_{min} +30 °C	13.560105	+0.105	+7.7	
T_{min} +40 $^{\circ}$ C	13.560110	+0.110	+8.1	
T _{min} +50 °C	13.560140	+0.140	+10.3	
T _{min} +60 °C	13.560160	+0.160	+11.8	
Maximum frequencyerror (kHz)		+0.160	+11.8	
,	Measurement uncertainty	±5 * 10 ⁻⁸		

The equipment passed the conducted tests			No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 32

8.6 Bandwidth (20 dB)

8.6.1 Regulation

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

8.6.2 Calculation of the 20 dB bandwidth limit

Within the specified band!

8.6.3 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by	
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	09/2012	09/2014	Rohde & Schwarz	
signal generator (10 kHz –5.4 GHz)	Marconi Instruments Low noise signal generator 2042 (6)	119347/003	01/2012	01/2014	Rohde & Schwarz	
Frequency counter (10MHz -26.5GHz)	Hewlett & Packard 5351A Microwave frequency counter (130)	2432A00054	09/2011	09/2014	Rohde & Schwarz	
Frequency Counter	Hewlett Packard 5351B (432)	3049A01217	08/2011	08/2013	DKD	
RF- cable	Sucoflex 104 P Suhner 2,13m [APC 3.5]	K17a	03/2012	03/2013	Dudde	
RF- cable	Sucoflex 104 P Suhner 2,13m [APC 3.5]	K18a	03/2012	03/2013	Dudde	
Test fixture	Dudde		08/2012	08/2014	Dudde	

8.6.4 Test procedure

ANSI C63.4-2009 Section 13.1.7 Occupied bandwidth measurements. The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce worst-case (i.e., the widest) bandwidth. In order to measure the modulated signal properly, a resolution bandwidth that is small compared to the bandwidth required by the procuring or regulatory agency shall be used on the measuring instrument. However, the 6 dB resolution bandwidth of the measuring instrument shall be set to a value greater than 5% of the bandwidth requirements.

8.6.5 Result

Measured 20 dB bandwidth with AAA100144-000 Unified Kiosk Antenna

Measured 20 dB bandwidth with AAA100143-000 Unified Kiosk Antenna

379.8 Hz

Measured 20 dB bandwidth with AAA100132-000 Antenna Assy. Shielded 379.8 Hz

Measured 20 dB bandwidth with AAA300277-000 Desktop Antenna Assy 379.8 Hz

The equipment passed the conducted tests			Yes	No	N.t.
Further test results are attached	Yes	ł	Vo	Annex No. 3	

N.t.* See page no. 32

9. Additional information to the test report

Remarks

N.t. ¹	Not tested, because the antenna is part of the PCB
N.t. ²	Not tested, because the EUT is directly battery powered
N.t. ³	Not tested, because not applicable to the EUT
N.t. ⁴	Not tested, because not ordered

End of test report