1320x-QE128EVB

Reference Manual

Document Number: 1320xQE128EVBRM

Rev. 0.0 02/2008

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate
Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCF or Free scale Semiconductor@hibbert group.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007, 2008. All rights reserved.

Contents

Abou	t This Book	
	Audience	. iii
Chap Safet	ter 1 y Information	
1.1 1.2	FCC Guidelines	
Chap 1320	ter 2 k-QE128EVB Module Overview and Description	
2.1 2.2 2.3	Introduction Features Board Level Specifications	2-2
Chap Syste	ter 3 em Overview and Functional Block Descriptions	
3.1 3.2 3.2.1 3.2.2 3.2.3 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 Chap Interf	System Block Diagram System Overview MC9S08QE128 MCU Module MC1320x IEEE 802.25.4 Transceiver 1320x-QE128EVB System Functions Power Management and Measurement Low-cost 2.4 GHz IEEE 802.15.4 ISM Band Radio Interfaces. USB Interface 16x2 Monochrome Character LCD Display Debug/Development Interface RS232 Interface GPIO Connectors Clocks ter 4 face Locations and Pinouts	3-2 3-3 3-4 3-5 3-5 3-6 3-7 3-7 3-7
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	Overview. Power Management Supply Sources On/Off Switch (Hardware Reset) Power On Indicator. Power Measurement	4-2 4-2 4-2 4-2

4.3	MC9S08QE128 MCU Module	4-3
4.4	RF Circuitry	4-3
4.5	USB Connector ("B" Receptacle)	
4.6	LCD Connector	
4.7	LEDs and Switches	4-4
4.8	Debug/Development Connector (BDM Interface)	4-4
4.9	RS232-Compatible UART Connector	4-5
4.10	GPIO Connectors	4-5
4.11	Jumper Selection	4-7
	oter 5 ematic and Bill of Material	
5.1	Schematic	5-1
5.2	Bill of Materials	

About This Book

This manual describes Freescale's MC1320x and MC9S08QE128 evaluation board (1320x-QE128EVB). The 1320x-QE128EVB contains Freescale's MC13202 QFN-32 package and MC9S08QE128 Daughter card used in the DEMOQE128 Flexis QE128 Demonstration Board. The MC13202 is a short range, low power 2.4 GHz Industrial, Scientific, and Medical (ISM) band transceiver. The MC13202 contains a complete 802.15.4 physical layer (PHY) modem designed for the IEEE® 802.15.4 standard which supports peer-to peer, star, and mesh networking. The MC9S08QE128 is a low cost, low power, high-performance HCS08 Family of 8-bit microcontroller units. The MC9S08QE128 use the enhanced HCS08 core with 128 Flash size and 64 pin LQFP package.

Audience

This manual is intended for system designers.

Organization

This document is organized into five chapters.

This document is organ	this document is organized into rive enapters.				
Chapter 1	Safety Information — This chapter highlights Federal Communications Commission operating guidelines.				
Chapter 2	MC1320x and QE128 EVB Module Overview and Description — This chapter introduces MC1320x and QE128 EVB which is an IEEE, 802.15.4 compliant evaluation board based on the Freescale MC1320x and QE128 EVB device.				
Chapter 3	System Overview and Functional Block Descriptions — This section provides an overview of the and system block diagrams.				
Chapter 4	Interface Locations and Pinouts — This chapter provides a description of the interface locations and pinout of the 1320x-QE128EVB circuit board.				
Chapter 5	Schematic and Bill of Materials — This chapter provides the schematic and Bill of Materials (BOM).				

Revision History

The following table summarizes revisions to this document since the previous release (Rev 0.0).

Revision History

Location	Revision
Entire Document	First draft of this doc.

Freescale Semiconductor iii

Definitions, Acronyms, and Abbreviations

The following list defines the acronyms and abbreviations used in this document.

ADC Analog to Digital Converter

CTS Clear to Send

I2C Inter-Integrated Circuit is a multi-master serial computer bus

ISM Industrial Scientific Medical 2.4 GHz radio frequency band

MAC Media Access Controller
MCU Microcontroller Unit
PCB Printed circuit board
RTS Request to Send

SPI Serial Peripheral Interface SSI Synchronous Serial Interface

USB Universal Serial Bus

iv Freescale Semiconductor

Chapter 1 Safety Information

1.1 FCC Guidelines

Any modifications to this product may violate the rules of the Federal Communications Commission and make operation of the product unlawful.

1.1.1 47 C.F.R. Sec. 15.21

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

1.1.2 47 C.F.R. Sec.15.105(b)

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. The antenna(s) used for this equipment must be installed to provide a separation distance of at least 8 inches (20cm) from all persons.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.
- 3. This device is susceptible to electrostatic discharge (ESD) and surge phenomenon.

Freescale Semiconductor 1-1

Safety Information

1.1.3 47 C.F.R. Sec.15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

1.2 Disposal Instructions

This product may be subject to special disposal requirements. For product disposal instructions, refer to www.freescale.com/productdisposal.

1-2 Freescale Semiconductor

Chapter 2 1320x-QE128EVB Module Overview and Description

2.1 Introduction

The 1320x-QE128EVB is an evaluation board for developing IEEE[®] 802.15.4/ZigBee[®] software and applications ranging from simple proprietary point-to-point connectivity to complete ZigBee mesh networking on the QE microcontroller platform. The Freescale QE Microcontroller Family is unique in that the user can use an 8-bit CPU or a 32-bit CPU in a pin-compatible package and also retain the exact same peripheral and IO set. The 1320x-QE128EVB uses the MC9S08QE128 Microcontroller unit which is the first device of the pin-compatible 8-bit and 32-bit duo in the Flexis Series family. The Flexis series of controllers is the connection point of the Freescale Controller Continuum, delivering 8- and 32-bit compatibility for migration flexibility.

The 1320x-QE128EVB evaluation board is based on the Freescale MC1320x transceiver and MC9S08QE128 Microcontroller unit (which is supplied as a daughter card). The 1320x-QE128EVB provides a platform to evaluate the MC1320x and MC9S08QE128 devices, develop software and applications, and demonstrate IEEE 802.15.4 and ZigBee networking capabilities. The evaluation board is supported by Freescale's BeeKit software design environment for IEEE 802.15.4/ZigBee applications.

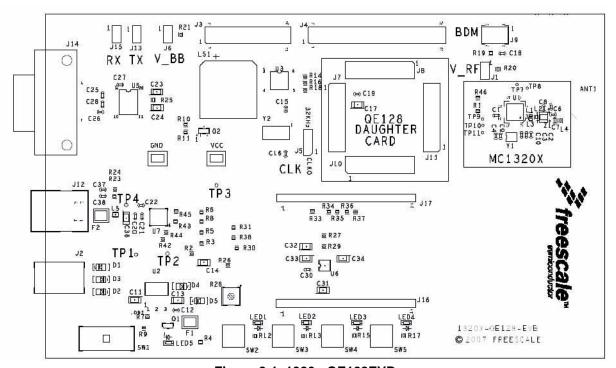


Figure 2-1. 1320x-QE128EVB

Freescale Semiconductor 2-1

2.2 Features

The 1320x-QE128EVB provides the following features:

- Uses MC9S08QE128 MCU Daughter card supports the 9S08 based version of the QE128
- Full IEEE 802.15.4 compliant wireless node; ZigBee capable with Freescale's BeeStack software stack
- Based on Freescale's MC13202 transceiver in RF single-port mode
 - Printed F-antenna
 - Typical RX sensitivity of -92 dBm at 1.0% Packet Error Rate
 - Typical 0 dBm up to 3.6 dBm Maximum Output Power
- Based on Freescale's MC9S08QE128 Microcontroller Unit
 - 50 MHz 8-bit 9S08 CPU core / 25 MHz bus speed
 - 128 KB flash memory
 - Up to 8 KB RAM
 - Single-wire background debug interface
 - Device available in 64-pin and 80-pin LQFP packages (evaluation board daughter card uses 80-pin device)
- USB interface is bus-powered and full-speed compatible to the USB 2.0 and 1.1 specifications
- Alternate RS-232/UART (DB-9) serial communication port provided
- User interface switches and LEDs
 - 4 pushbuttons for application purposes
 - 4 processor controlled red LEDs for application purposes
- Supports a 2x16 Character LCD
- Provides an external 1Mbit serial I2C EEPROM
- Audio Resonator
- Uses standard QE128 BDM Development Port
- Supported by Beekit software development environment
- System clock options
 - MCU source derived standard from transceiver CLKO (MC13202 transceiver requires 16 MHz crystal)
 - Optional 32.768 kHz crystal oscillator for accurate real-time delays and low Power Modes
- Power management circuit with on-board regulation for multiple power sources
 - Can be powered from USB interface, DC power jack or two AA batteries
 - On/Off power switch
 - Power-on green LED
- MCU & Transceiver RESET via ON/OFF switch (MCU does not support use of a hardware reset pin when used with the MC13202 transceiver)
- 16-pin and 10-pin user headers for selected General Purpose Input Output signals (GPIO) and data interfaces

1320x-QE128EVB Reference Manual, Rev. 0.0

2-2 Freescale Semiconductor

• All components meet RoHs and WEE requirements

2.3 Board Level Specifications

Table 2-1. MC1320x and QE128 EVB Specifications

Parameter				Units	Notes/Conditions
	MIN	TYP	MAX		
General	l		I		
Size (PCB: X, Y)			165 x 101	mm	
Layer build (PCB)		1.6 / 0.062		mm/in	4-Layer
Dielectric material (PCB)					FR4
Power	ı	I	l	l	
Voltage supply (DC)	4.4	5	12	V	
Voltage supply (USB)	4.4	5	5.25	V	USB 2.0/1.1 standard specification
Voltage supply (Batteries)		3	3.2	V	
Current consumption		70		mA	
Temperature	•	·	•		
Operating temperature (see note)	-20	+25	+85	°C	The operating temperature is limited to +70°C with the monochrome-graphic LCD module applied
Storage temperature	-30	+25	+85	°C	
Interfaces	•	l.	•		
USB interface					USB 2.0 and 1.1 full-speed compatible
RS-232 interface					DE-9 (TIA-574)
Audio	•	•		•	
Buzzer frequency		4		kHz	
Sound Pressure Level		83		dB	Buzzer Specification
RF	•	·	•		
802.15.4 Frequency range	2405		2480	MHz	All 16 channels in the 2450 MHz band
Range (outdoor / line of sight)		300		Meter	
RF Transmitter	•	l.	•		
802.15.4 Output power	-30	0	+2.5	dBm	Over range of Pout from IC control in 2 dB steps
Harmonics 2 nd harmonics 3 rd harmonics			-38 -35	dBc dBc	Harmonics are compliant to ETSI and FCC regulatory approval standards
RF Receiver	1				,
802.15.4 sensitivity		-87		dBm	<1% PER
	<u> </u>	l .	1	l	l .

Freescale Semiconductor 2-3

1320x-QE128EVB Module Overview and Description

Table 2-1. MC1320x and QE128 EVB Specifications (continued)

Parameter				Units	Notes/Conditions
Regulatory Approval					
FCC	FCC Product is approved accordingly to the FCC standard		Product is approved accordingly to the FCC part 15 standard		
CE (ETSI)					Product is approved accordingly to the EN 300 328 V1.7.1 (2006-10) standard
CE (EMC)					Product is approved accordingly to the EN 301 489-1 V1.6.1 (2005-09) and EN 301 489-17 V1.2.1 (2002-08) standards
Safety	•	•	•		
UL					Product is approved accordingly to the IEC 60950-1 and EN 60950-1, First Edition standards
Environment	•	•		•	
RoHS					Product complies with the EU Directive 2002/95/EC of 27 January 2003
WEEE					Product complies with the EU Directive 2002/95/EC of 27 January 2003

2-4 Freescale Semiconductor

Chapter 3 System Overview and Functional Block Descriptions

This section provides a system overview of the 1320x-QE128EVB module and shows block diagrams.

3.1 System Block Diagram

Figure 3-1 shows the 1320x-QE128EVB system level block diagram.

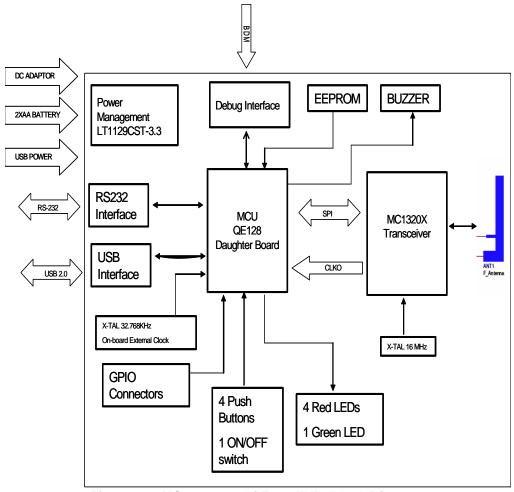


Figure 3-1. MC1320x and QE128 EVB Block Diagram

Freescale Semiconductor 3-1

3.2 System Overview

The 1320x-QE128EVB combines the Freescale MC1320x Family of IEEE 802.15.4 transceivers to the 9S08 version of QE128 Family of Microcontrollers. The MC9S08QE128 is a natural extension to existing 9S08-based platforms in that it uses the same CPU core, but extends the FLASH memory space to 128 kbytes. The standard 9S08GT/GB maximum FLASH space is 60 kbytes, while the MC9S08QE128 expands the code space to a full 128 kbytes.

The 1320x-QE128EVB provides the MCU as a daughter card and adds the required 802.15.4 transceiver, RF circuitry, and interface elements.

NOTE

Although the 1320x-QE128EVB provides the MCU as a pre-fabricated daughter card, the designer must use and reference the MCU by its device designation (MC9S08QE128, MC9S08QE96, and MC9S08QE64). The MC9S08QE128 Series Data Sheet (Document number: MC9S08QE128) and MC9S08QE128 Reference Manual (Document number: MC9S08QE128RM) are available on the Freescale web site (www.freescale.com) and links are provided on the Freescale ZigBee/IEEE 802.15.4 page (www.freescale.com/zigbee).

3.2.1 MC9S08QE128 MCU Module

The 1320x-QE128EVB provides the MC9S08QE128 8-bit HCS08 core microcontroller unit via a 64-pin daughter card, designated as MC9S08QE128_Daughter_card. Figure 3-2 shows the block diagram of the structure of the MC9S08QE128 Series MCU.

The MC9S08QE128 device provides a 50MHz 9S08 CPU core, 8 Kbytes of RAM, 131 Kbytes of on-board ROM, and internal clock source. In addition to the CPU core and memory, on-board peripherals include the following:

- Two dedicated UART modules
- Keyboard interface capability.
- Up to 24 channels of 12-bit analog-to-digital converters (ADCs) with output formatted in 12-, 10- or 8-bit right-justified channels
- General Purpose I/O available ports.
- Two Inter-integrated Circuit Interface (I2C) modules
- Two Synchronous Peripheral Interface (SPI) modules
- Real Time Clock (RTC) counter
- Two analog comparator (ACMP) modules

3-2 Freescale Semiconductor

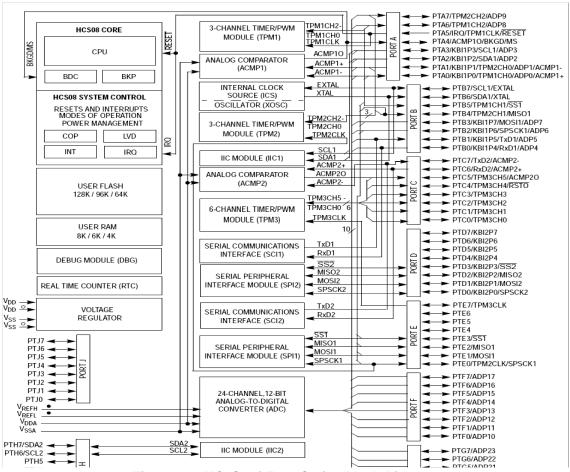


Figure 3-2. MC9S08QE128 Series Block Diagram

3.2.2 MC1320x IEEE 802.25.4 Transceiver

The MC1320x family is Freescale's second generation of ZigBee / IEEE 802.15.4 compliant integrated circuit transceivers (see Figure 3-3). The MC1320x Family is organized as follows:

- The MC13201 is a short range, low power, IEEE 802.15.4 2.4 GHz Industrial, Scientific, and Medical (ISM) band transceiver. The MC13201 contains a complete packet data modem which is compliant with the IEEE 802.15.4 Standard PHY (Physical) layer. It is a low cost device limited to custom applications using the 802.15.4 PHY layer, but cannot support a full 802.15.4 MAC
- The MC13202 is compatible with the MC13201 and extends the IEEE 802.15.4 functionality to support the complete MAC functionality through a streaming data capability. The MC13202 can be used with Freescale's IEEE 802.15.4 MAC and BeeStack, which is Freescale's ZigBee-compliant protocol stack.

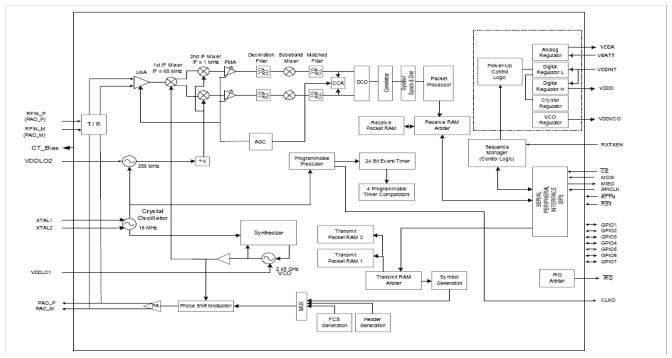


Figure 3-3. MC1320x Modem Block Diagram

Features of the MC1320x transceiver include:

- Fully compliant IEEE 802.15.4 Standard transceiver supports 250 kbps O-QPSK data on one of sixteen 5.0 MHz channels and full spread-spectrum encode and decode
- Three power down modes for increased battery life
- Four internal timer comparators available to supplement MCU timer resources
- Supports both Packet Mode and Streaming Mode data transfer
- Buffered transmit and receive data packets

3.2.3 1320x-QE128EVB System Functions

The 1320x-QE128EVB is a self-contained wireless node and development module. The module augments the basic MCU and transceiver with the following functionality:

- Complete functional, low-cost 2.4 GHz ISM Band IEEE 802.15.4 radio
- 2.0 USB connection
- User interface with pushbuttons, LEDs, and 16 character x 2 line monochromatic LCD
- Versatile power sources and management
- Debug / development port
- GPIO connectors for system expansion

Users are encouraged to reference the board schematic for the topics covered in the following sections.

3-4 Freescale Semiconductor

3.3 Power Management and Measurement

To allow maximum versatility, the 1320x-QE128EVB can be powered via a DC source (typically an AC-DC converter; nominally 5 Vdc), the USB node, or an on-board battery pack with 2 AA alkaline batteries.

- The DC source or USB will automatically shutdown the battery supply
- The DC source and the USB power are regulated to 3.3 V, however, the raw battery pack voltage directly supplies the circuitry
- All sources are isolated via diodes
- An on/off switch and a power-on LED are provided (see Section 4.2.2, "On/Off Switch (Hardware Reset)")
- Zero-ohm resistors are provided to allow isolation and measurement of various system components (see Section 4.2.4, "Power Measurement")

3.4 Low-cost 2.4 GHz IEEE 802.15.4 ISM Band Radio

The 1320x-QE128EVB provides a complete RF node which only requires a balun and antenna (external to the MC1320x). The design uses a PCB printed metal F-antenna for an efficient, low cost solution. Figure 3-4 shows the RF network external to the MC1320x.

The RF design provides:

- -1 to 0 dBm nominal output power, programmable from -27 dBm to +3 dBm typical
- Receive sensitivity of <-92 dBm (typical) at 1% PER, 20-byte packet, much better than the 802.15.4 Standard of -85 dBm
- Integrated transmit/receive switch
- Typical range (outdoors, line of sight) of 300 meters
- Optional on-board LC filter for harmonic filtering

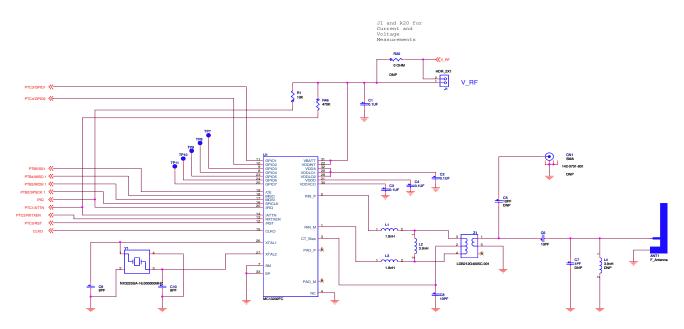


Figure 3-4. RF Interface Network

3.5 Interfaces

The module provides multiple interfaces for both debug and demonstration.

- USB 2.0 full speed compatible interface
- 16 x 2 monochrome character LCD display
- BDM Debug and Development interface
- Four individual pushbuttons can be used as input and have interrupt generation capability
- Four individual LEDs can be used as indicators for debug or status
- A fully buffered RS232 serial interface with RTS/CTS control is supplied as a secondary COM port

3.5.1 USB Interface

Primary communication with an application device or platform is provided by a USB port with a USB "B" receptacle plug. USB connectivity is provided by a FTDI FT232R USB <> UART device that appears as a virtual COM port (VCP) to a connected PC. PC drivers are provided with the module. For pinout information, see Section, "The 1320x-QE128EVB RF circuitry contains a printed metal F-antenna (ANT1)."

The USB interface is configured as a "bus powered" device and can draw all required power from the USB interface. The device is USB 2.0 full speed compatible.

3.5.2 16x2 Monochrome Character LCD Display

The 1320x-QE128EVB supports a 16x2 monochrome character LCD that provides for alpha-numeric readout. The LCD module is mounted on top of the main circuit board and connects via a 16 pin header with 0.1in spacing. For pinout information, see Section 4.6, "LCD Connector".

- The module supports two similar LCD modules, one of which is the CFAH1602NYG-JP STN daughter board from Crystalfontz.
- The LCD operates from 5 Vdc generated from the main operating voltage. The LCD module requires a highly regulated 5V so that the high voltages generated on-board the display are consistent.
- The LCD uses no backlighting
- LCD interface to the MCU is via an 4-bit parallel interface
- The on-board controller is a industry-standard HD44780 compatible controller

3.5.3 Debug/Development Interface

The 1320x-QE128EVB contains a standard BDM debug port. For pinout information see Section 4.8, "Debug/Development Connector (BDM Interface)"). A 6-pin connector is provided for the standard BDM debug interface.

3.5.4 RS232 Interface

The 1320x-QE128EVB provides a secondary standard RS232-compatible UART serial port with the connection provided by a standard DB9 connector (J14). For pinout information see Section 4.9, "RS232-Compatible UART Connector".

3.6 GPIO Connectors

Two GPIO connectors (J3 and J4) provide connection to data interfaces and GPIO for external system expansion of the MCU resources. For pinout information see Section 4.10, "GPIO Connectors".

- Some GPIO are shared with on-board devices. The user should be careful to avoid conflict.
- External current draw should be limited to 50 mA maximum.

3.7 Clocks

The primary clock source for the 1320x-QE128EVB is supplied by the MC1320x transceiver. The transceiver requires an accurate 16 MHz reference clock that is supplied via an on-board 16 MHz crystal oscillator, and in turn, the transceiver typically supplies the clock for the MCU. However, there are options for the MCU clock usage:

- The default clock source for the QE128 is obtained through MC1320x CLKO programmable frequency clock output. The RF transceiver reference oscillator is 16 MHz and the mounted crystal Y1 is a 16 MHz device that meets MC1320x specifications. In turn, CLKO can be enabled to provide the clock source to the MCU as an external input.
- The QE128 Internal Clock Source (ICS) supplies an optional on-board reference oscillator (32KHz nominal). With use of the on-board Frequency-locked-loop (FLL), CPU frequencies from 2-50 MHz are available. Precision trimming of the internal reference allows for 0.2% resolution and 2% deviation over temperature and voltage.
- The module also supports optional use of an external 32.768KHz crystal for the MCU. The on-board MCU clock amp is used with the 32KHz crystal, and higher CPU and bus clock frequencies are again synthesized through use of the on-board FLL in the ICS.

The external source of clock is selected by Jumper (J5) (See Section 4.11, "Jumper Selection").

Chapter 4 Interface Locations and Pinouts

This chapter provides a description of the interface locations and pinouts of the 1320x-QE128EVB printed circuit board.

4.1 Overview

This section details the locations (as shown in Figure 4-1) and descriptions of switches, jumpers, and connectors on the 1320x-QE128EVB main circuit board. The MC9S08QE128 MCU module and the LCD module mount on the main board as daughter cards. Users should refer to the figures in the subsequent sections while moving through this chapter. Users should also reference the main circuit board schematic in Section 5.1, "Schematic", for additional information.

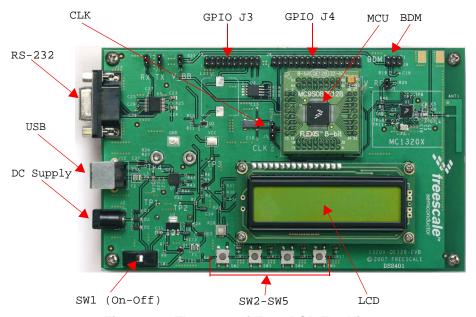


Figure 4-1. The 1320x-QE128 PCB Top View

1320x-QE128EVB Reference Manual, Rev. 0.0 Freescale Semiconductor 4-1 Interface Locations and Pinouts

4.2 Power Management

The module can be powered from the DC power jack, the USB port, or the battery pack.

4.2.1 Supply Sources

Table 4-1 lists the supply sources, connectors, and voltages. Maximum board current draw is rated at 100 mA.

Typical Min Max Source Connector **Notes** (Volts) (Volts) (Volts) DC Source J2 4.4 5 12 Use DC only source. The connector is a 2 mm DC power jack; positive center conductor. Per USB specification. Power from USB connector. **USB** J12 5.25 4.4 5 AA Battery Pack ~2.0 3 3.2 Two AA cells. Battery pack is automatically disabled by either DC source or USB.

Table 4-1. Power Supply Sources

4.2.2 On/Off Switch (Hardware Reset)

The slide switch designated SW1 provides an on/off function and the only hardware reset to the main board and subsystems.

- The hardware reset was implemented through power on/off because of the IO/reset configuration of the MC9S08QE128 MCU. The MCU has a single pin that can be used as an external interrupt request (IRQ) or hardware reset input. In this application the MC1320x transceiver requires use of the external IRQ function, and as a result, the MCU cannot directly use the hardware reset pin. For the module, the only hardware reset is to cycle main power through SW1.
- When the module is powered from the USB connection, the USB interface IC is always powered and SW1 does not disconnect power from it. This has been done such that switching power via SW1 does not disrupt connection with a PC and cause software driver problems with the applications software.

4.2.3 Power On Indicator

Green light emitting diode LED5 is the power on indicator for any source. The LED is active anytime a power source is present and SW1 is ON. If the power source is the USB connection, LED5 will be inactive when SW1 is open (off), but the USB interface device will be powered as long as connected to the USB bus.

4-2 Freescale Semiconductor

4.2.4 Power Measurement

It is possible to isolate various circuit blocks to measure current draw via 0-ohm resistors. The resistors are all mounted as default.

Below is a list of the supply nodes.

- R8 -> V_RS232 (Supply for RS-232 Transceiver circuit)
- R6 -> V_PERIF (Output from on-board regulator for GPIO customer access)
- R5 -> V_LCD (Supply for LCD Daughter Board)
- R21 -> V_BB (Supply for QE128 EVB)
- R20 -> V_RF (Supply for MC1320x)
- R3 -> V LED (Supply for LEDs)
- R2 -> VCC (Output from main on-board regulator)

4.3 MC9S08QE128 MCU Module

The MC9S08QE128 MCU is provided as a module that mounts as a daughter card on the main PBC. Four 2x8 headers designated J7, J8, J10, and J11 are used to mount the module.

NOTE

The MCU is mounted to the module during manufacturing. Freescale recommends that users do not remove and replace this module.

4.4 RF Circuitry

The 1320x-QE128EVB RF circuitry contains a printed metal F-antenna (ANT1).

4.5 USB Connector ("B" Receptacle)

The USB connector is a "B"-type device and is designated as J12. Figure 4-2 shows the connector pinout. The USB port is connected to MCU port SCI2.

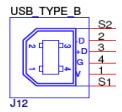


Figure 4-2. USB Connector Pinout

4.6 LCD Connector

The LCD module is connected to the main circuit board via one of two 16-pin connectors (either J16 or J17). Each connector supports a different LCD module format. The default LCD designated as the CFAH1602B device uses the J17 connector.

Freescale Semiconductor 4-3

4.7 LEDs and Switches

The 1321x-QE128EVB contains four red LEDs and one green LED

- The four red LEDs (LED1 through LED4) are intended to be application-based indicators and are driven by the MCU and controlled by the software application.
- As already stated, the green LED is directly connected to the on-board main supply and acts as the "Power On" indication.

There is a slide switch and 4 pushbuttons.

- SW1 is an on/off slide switch that connects the power supplies.
- Four additional pushbuttons (SW2 through SW5) are connected to the MCU GPIO and are intended as application input devices. All four buttons have interrupt generation capability.

Item	GPIO Connection	Feature
PWR LED (green)	VCC	'Power On' indication
LED1 (red)	PTE3	Application specific
LED2 (red)	PTE4	Application specific
LED3 (red)	PTE5	Application specific
LED4 (red)	PTE6	Application specific
SW2 (pushbutton)	PTD0	Interrupt functionality.
SW3 (pushbutton)	PTD1	Interrupt functionality.
SW4(pushbutton)	PTD2	Interrupt functionality.
SW5 (pushbutton)	PTD3	Interrupt functionality.
SW1 (ON/OFF)	ON/OFF	HW ON/OFF

Table 4-2. Switch and LED Summary

4.8 Debug/Development Connector (BDM Interface)

The 1320x-QE128EVB supports connection to a subset of the defined BDM connector. The BDM interface is a standard 2.54mm/0.1inch spacing, 6-pin debug interface (J9). The 6-pin connector is clearly separated from the GPIO pin headers (J3, J4) and located at the upper right corner of top side of the module. The 6-pin connector has Pin 1 marking for correct plug-in of the development cable.

Table 4-3 shows the BDM header pinout.

 Name
 Pin #
 Pin #
 Name

 BKGD
 1
 2
 GND

 NC¹
 3
 4
 Pullup² (RESET)

 NC
 5
 6
 V_BB

Table 4-3. BDM 6-Pin Connector Assignments (J9)

1320x-QE128EVB Reference Manual, Rev. 0.0

4-4 Freescale Semiconductor

4.9 RS232-Compatible UART Connector

The 1320x-QE128EVB provides a secondary standard RS232-compatible UART serial port. Connection is provided by a standard DB9 connector (J14). The RS232 converter is connected to MCU port SCI1.

4.10 GPIO Connectors

The 1320x-QE128EVB contains two GPIO connectors (J3) and (J4). The GPIO connectors are a standard 2.54mm/0.1inch spacing, 20- and 32-pin header, respectively.

These connectors provide access to MCU GPIO, Timer outputs, ADC inputs, the SPI port, the I²C port, among others. Power is also provided on both connectors.

- V_PERIF is the main supply voltage. Current draw should be limited to 50 mA.
- Some of the GPIO are shared with on-board devices. Check for any conflict.

Table 4-4. GPIO Connector J3 Pinouts

Pin Number	Name	Function	Notes
1	PTE2/BUZZER	GPIO	Hardwired to Q2 Base to Turn On/Off on-board Buzzer (LS1)
2	GND	System ground	
3	PTF2	ADC Analog Input Channel or GPIO	
4	GND	System ground	
5	PTF3	ADC Analog Input Channel or GPIO	
6	GND	System ground	
7	PTD2	KBI input or GPIO	Hardwired to Push Button SW4
8	GND	System ground	
9	PTD3	KBI input or GPIO	Hardwired to Push Button SW5
10	GND	System ground	
11	PTB0/RxD1	KBI Input or SCI1 or ADC Analog Input Channel or GPIO	Hardwired to J13 and to RS-232 Transceiver
12	GND	System ground	
13	PTB1/TxD1	KBI Input or SCI1 or ADC Analog Input Channel or GPIO	Hardwired to J15 and to RS-232 Transceiver
14	GND	System ground	
15	V_PERIF	System Supply	
16	GND	System ground	

1320x-QE128EVB Reference Manual, Rev. 0.0

Freescale Semiconductor 4-5

¹ NC = No Connect.

Pulled-up to V_BB through 51kohms. Hardware reset not supported on this BDM port.

Table 4-4. GPIO Connector J3 Pinouts (continued)

17	PTH7	I ² C Port or GPIO	
18	GND	System ground	
19	PTH6	I ² C Port or GPIO	
20	GND	System ground	

Table 4-5. GPIO Connector J4 Pinouts

Pin Number	Name	Function
1	V_PERIF	System Supply
2	GND	System ground
3	NC	
4	GND	System ground
5	PTE7	Timer/PWM Channel or GPIO
6	GND	System ground
7	PTH1	GPIO
8	GND	System ground
9	PTH0	GPIO
10	GND	System ground
11	PTF1	ADC Analog Input Channel or GPIO
12	GND	System ground
13	PTF0	ADC Analog Input Channel or GPIO
14	GND	System ground
15	PTD4	KBI input or GPIO
16	GND	System ground
17	PTG3	ADC Analog Input Channel or GPIO
18	GND	System ground
19	PTG2	ADC Analog Input Channel or GPIO
20	GND	System ground
21	PTG1	GPIO
22	GND	System ground
23	PTG0	GPIO
24	GND	System ground
25	PTE1	SPI Serial Peripheral Interface MOSI or GPIO
26	GND	System ground

1320x-QE128EVB Reference Manual, Rev. 0.0

4-6 Freescale Semiconductor

Table 4-5. GPIO Connector J4 Pinouts (continued)

Pin Number	Name	Function
27	PTE0	Timer/PWM Channel or GPIO
28	GND	System ground
29	NC	
30	GND	System ground
31	NC	
32	GND	System ground

4.11 Jumper Selection

Table 4-6 lists all the possible jumper selections for the 1320x-QE128EVB. The jumpers available on the board include:

- J1 used to measure current and voltage on V_RF
- J5 used to select clock input to the MCU either from the MC1320x CLKO output or from an optional on-board (Y2) 32.768KHz crystal.
- J6 used to measure current and voltage on V_BB
- J13 used to connect MCU TxD1 pin to the on-board RS-232 transceiver (U5)
- J15 used to connect MCU RxD1 pin to the on-board RS-232 transceiver (U5)

Table 4-6. Jumper Selection

Jumper	Pin Number Connection	Description	Default Setting
J1	1-2	Provide the means for voltage and current measurements on the MC1320x Transceiver	Mounted
J5	1-2	Connects MCU QE128 XTAL with MC1320x CLKO output	Mounted
	2-3	Connects MCU QE128 XTAL with on-board 32.768KHz crystal	Not Mounted
J6	1-2	Provide the means for voltage and current measurements on the MCU QE128	Mounted
J13	1-2	Provide the means to connect the on-board RS-232 transceiver with MCU TXD1	Mounted
J15	1-2	Provide the means to connect the on-board RS-232 Transceiver with MCU RXD1	Mounted

Interface Locations and Pinouts

4-8 Freescale Semiconductor

Chapter 5 Schematic and Bill of Material

5.1 **Schematic**

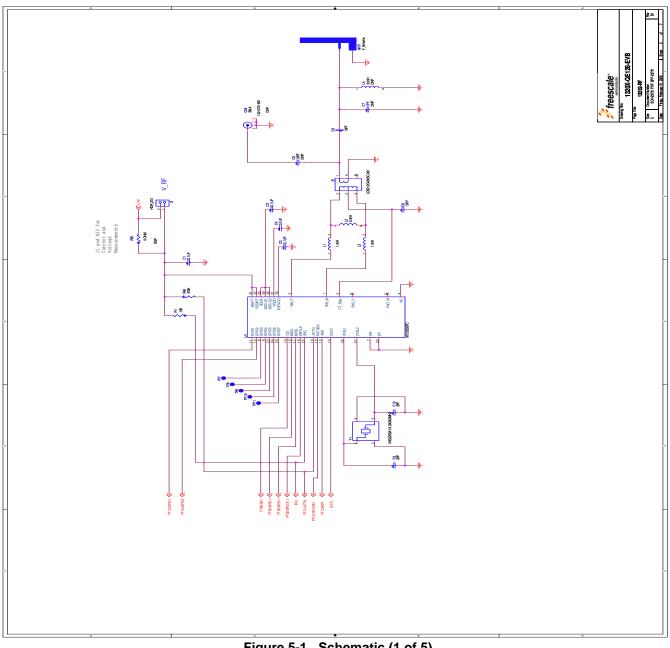


Figure 5-1. Schematic (1 of 5)

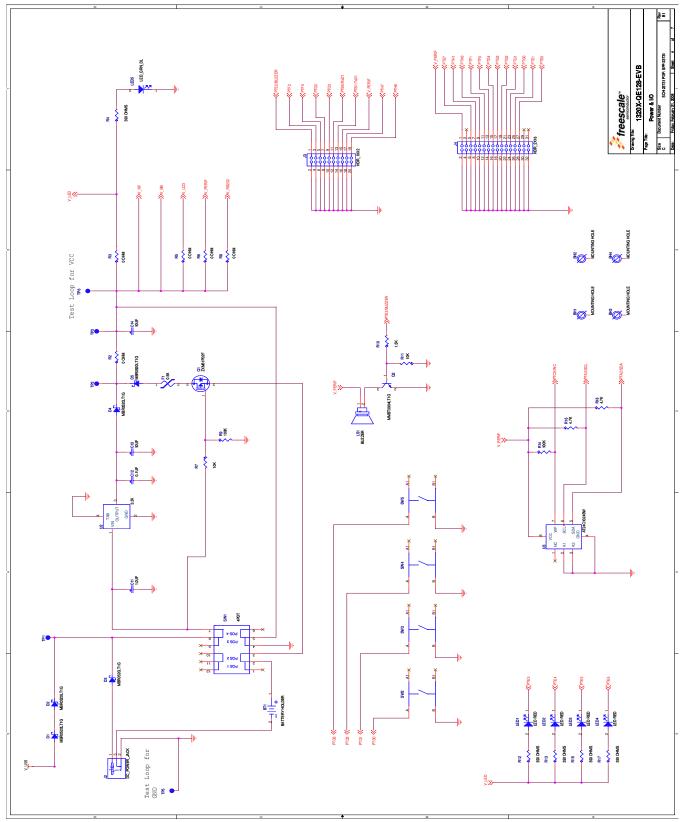


Figure 5-2. Schematic (2 of 5)

1320x-QE128EVB Reference Manual, Rev. 0.0

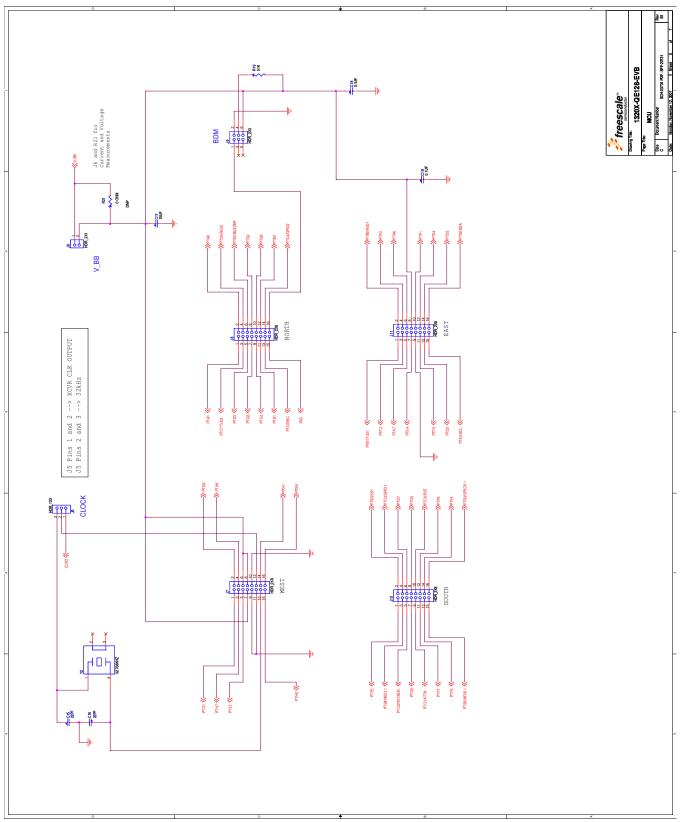


Figure 5-3. Schematic (3 of 5)

1320x-QE128EVB Reference Manual, Rev. 0.0

Freescale Semiconductor 5-3

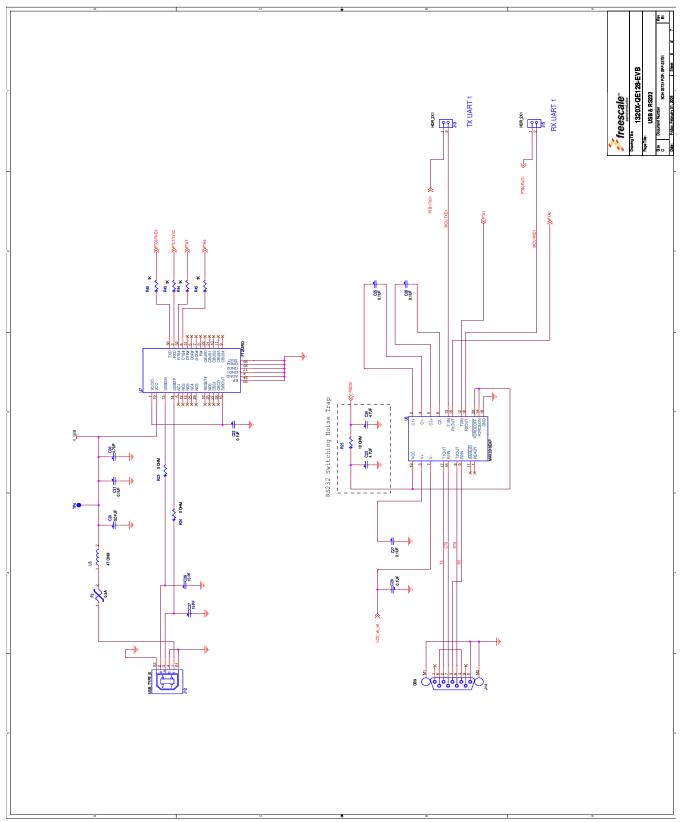


Figure 5-4. Schematic (4 of 5)

1320x-QE128EVB Reference Manual, Rev. 0.0

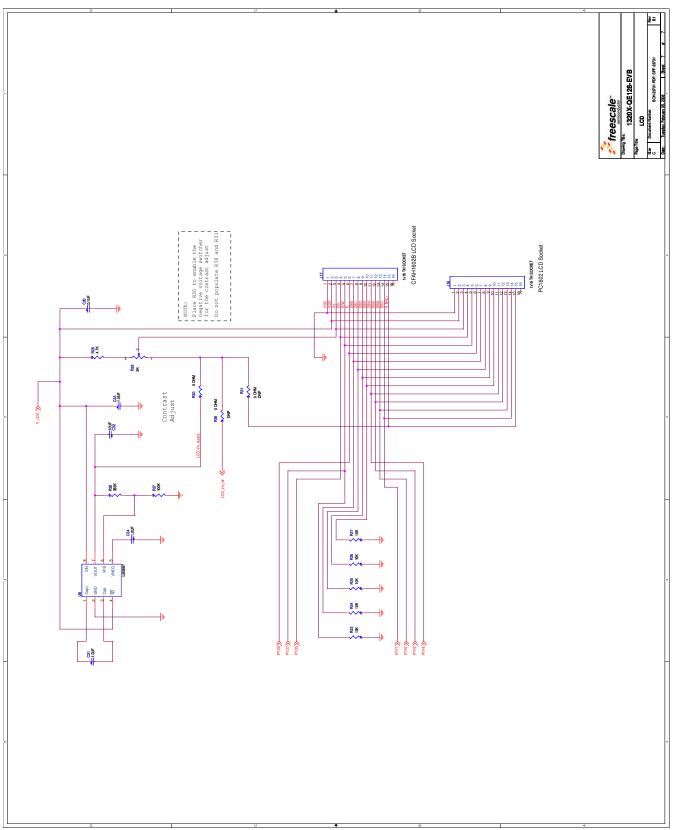


Figure 5-5. Schematic (5 of 5)

Freescale Semiconductor 5-5

5.2 Bill of Materials

Table 5-1. Bill of Materials

Qty	Part Reference	Description	Value	Tolerance	Manufacturer	Manufacturer Part Number
1	BT1	PCB Battery Holder 2xAA	2462		Keystone	2462
14	C1 C2 C3 C4 C12 C18 C19 C21 C22 C25 C26 C27 C28 C30	Ceramic Capacitor X7R	0.1 μF	10%	Venkel	C0402X7R160-104KNE
1	C6	Ceramic Capacitor COG	10pF	0.25pF	Samsung	CL05C100CO5NNNC
1	C7	Ceramic Capacitor COG	1pF	+/- 0.25pF	Yageo America	CC0402CRNPO9BN1R0
1	C8	Ceramic Capacitor COG	10pF	5%	Venkel	C0402C0G500-100JNP
2	C9, C10	Ceramic Capacitor COG	8pF	0.25pF	Murata	GRM1555C1H8R0CB01D
4	C11 C31 C33 C34	Ceramic Capacitor X5R	1uF	10%	AVX	0805YD105KAT2A
4	C13 C14 C17 C32	Ceramic Capacitor X5R	10uF	10%	Venkel	C0805X5R100-106KNE
2	C15 C16	Ceramic Capacitor COG	22pF	5%	Venkel	C0402C0G250-220JNE
1	C20	Ceramic Capacitor X7R	10nF	10%	Venkel	C0402X7R500103KNE
3	C23 C24 C36	Ceramic Capacitor X5R	4,7uF	10%	Panasonic	ECJ2FB1C475K
2	C37 C38	Ceramic Capacitor COG	15pF	5%	Venkel	C0402C0G250-150JNP
4	D1 D2 D3 D4	SMD Power Schottky Rectifier	MBR0520LT1		On Semiconductor	MBR0520LT1G
2	F1 F2	Polyswitch Overcurrent Protection Device	500mA		Raychem	MICROSMD050F-2
2	VCC GND	Test Point Pad	TP-107-02-T		Components Corporation	TP-107-02-T
4	J1 J6 J13 J15	Single Row Straight pin Header TH 1X2	TSW-102-07-S-S		Samtec	TSW-102-07-S-S
1	J2	DC Power Jack PCB, 2mm	PJ-102AH		CUI Stack	PJ-102AH

5-6 Freescale Semiconductor

Table 5-1. Bill of Materials (continued)

		ı			1	1
1	J3	Double Row Straight pin Header TH 2X10	TSW-110-07-S-D		Samtec	TSW-110-07-S-D
1	J4	Double Row Straight pin Header TH 2X16	TSW-116-07-S-D		Samtec	TSW-116-07-S-D
1	J5	Single Row Straight pin Header TH 1X3	HTSW-103-07-S M-S		Samtec	HTSW-103-07-SM-S
4	J7 J8 J10 J11	Double Row Straight pin Header TH 2X8	TSW-108-07-G- D		Samtec	TSW-108-07-G-D
1	J9	Double Row Straight pin Header TH 2X3	TSW-103-07-S- D		Samtec	TSW-103-07-S-D
1	J12	USB-series "B" receptacle	USB-B		SINGATRON	2UB1505-000101
1	J14	Connector DB 9 TH	DB 9		Tyco Electronics	5747844-6
2	J16 J17	Socket TH 1X6	SSW-116-01-G- S		Samtec	SSW-116-01-G-S
4	LED1 LED2 LED3 LED4	SMD Red top led	HSMH-C190		Avago Technologies	HSMH-C190
1	LED5	SMD Green top led	597-5312-407F		Dialight	597-5312-407F
1	LS1	SMD Speaker	CMI-1240		CUI STACK	CMI-1240
1	L1 L3	HF Chip coil	1,8nH	0,3nH	TOKO,Inc	LL1005-FHL1N8S
2	L2 L4	HF Chip coil	3,9nH	0,3nH	TOKO,Inc	LL1005-FHL3N9S
1	L5	Chip Ferrite Bead	500mA		Steward	LI0603E470R-10
1	Q1	P-channel MOSFET	ZXM61P02F		Zetex	ZXM61P02F
1	Q2	NPN BJT	MMBT3904LT1G		On Semiconductor	MMBT3904LT1G
8	R1 R7 R11 R33 R34 R35 R36 R37	Fixed resistor RC31	10K	5%	SEI Electronics INC	RMCF1/16S10K5%R
8	R2 R3 R5 R6 R8 R23 R24 R30	Fixed resistor RC31	0R	5%	ROHM	MCR01MZPJ000
5	R4 R12 R13 R15 R17	Fixed resistor RC31	390R	5%	SMEC	RC73L2Z391JTF
2	R9 R14	Fixed resistor RC31	100K	5%	Panasonic	ERJ2GEJ104X
1	R10	Fixed resistor RC31	1,5K	5%	Yageo America	RC0402JR-071K5L
3	R16 R18 R26	Fixed resistor RC31	4,7K	5%	SMEC	RC73L2Z472JTF
1	R19	Fixed resistor RC31	51K	5%	Venkel	CR0402-16W-513JT
4	R20 R21 R31 R38	Fixed resistor RC31	0R	5%	ROHM	MCR01MZPJ000

Schematic and Bill of Material

Table 5-1. Bill of Materials (continued)

1	R25	Fixed resistor RC31	10R	5%	Venkel Company	CR0402-16W-100JT
1	R27	Fixed resistor RC32H	100K	1%	Koa Speer	RK73H1ETTP1003F
1	R28	SMT Potentiometer Resistor	5K	20%	Bourns	3314J-1-502E
1	R29	Fixed resistor RC32H	383K	1%	Koa Speer	RK73H1ETTP3833F
4	R42 R43 R44 R45	Fixed resistor RC31	1K	5%	Vishay Intertechnology	CRCW04021K00JNED
1	R46	Fixed resistor RC31	470K	5%	Venkel	CR0402-16W-474JT
1	SW1	Switch 4PDT TH	1-1437575-0		Tyco Electronics	1-1437575-0
4	SW2 SW3 SW4 SW5	SMD Switch SPST	EVQPHP03T		Panasonic	EVQPHP03T
1	U1	ZigBee Wireless Transceiver	MC13202		Freescale	MC13202FC
1	U2	Low Dropout Voltage Regulator	LT1129CST-3.3# PBF		Linear Technology	LT1129CST-3.3#PBF
1	U3	EEPROM 128Kx8	AT24C1024BW		Atmel	AT24C1024BW
1	U5	RS-232 UART Transceiver	MAX3318EAP		Maxim	MAX3318EAP
1	U6	Low Dropout Voltage Regulator	LM2687		National Semiconductor	LM2687MMX
1	U7	USB UART, PB-free	FT232R		FTDI	FT232RQ
1	Y1	Crystal SMD	16,00MHz	+-10ppm	NDK	NX3225SA-16.000000MH Z
1	Y2	Crystal SMD	32,768kHz	+-20ppm	Abracon	ABS25-32.768-12.5-2-T
1	Z1	Transformer BALUN SMD	2400MHz 50OHM		Murata	LDB212G4005C-001
1		P&E MC9S08QE128 Daughter Board	MC9S08QE128_ Daughter_card		P&E	MC9S08QE128_ Daughter_card
1		STN LCD Daughter Board 16x2	CFAH1602B		Crystalfontz	CFAH1602NYG-JP

5-8 Freescale Semiconductor