

TEST REPORT

Report Number: HK10120315-1

Application for Original Grant of 47 CFR Part 15 Certification

433.92MHz Superheterodyne Receiver - A Doorbell and/or Telephone Ringer Amplifier

FCC ID: RUM-AC20R

Prepared and Checked by:	Approved by:
Cor	
Koo Wai Ip Lead Engineer March 18, 2011	Nip Ming Fung, Melvin Supervisor March 18, 2011

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.
 This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client.

Intertek's responsibility and liability are limited to the terms and conditions of the agreement netretek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Applicant Name:	Geemarc Telecom International Ltd
Applicant Address:	1902 Mass Mutual Tower,
	38 Gloucester Road,
	Wan Chai, Hong Kong.
FCC Specification Standard:	FCC Part 15, October 1, 2009 Edition
FCC ID:	RUM-AC20R
FCC Model(s):	AMPLICALL 20, AMPLICALL 16,
	AMPLICALL 15, CH-105, CH-215,
	CH-315, CH-415
Type of EUT:	Superheterodyne Receiver
Description of EUT:	433.92MHz Superheterodyne Receiver - A
	Doorbell and/or Telephone Ringer
	Amplifier
Serial Number:	N/A
Sample Receipt Date:	December 09, 2010
Date of Test:	December 22, 2010-March 03, 2011
Report Date:	March 18, 2011
Environmental Conditions:	Temperature: +10 to 40°C
	Humidity: 10 to 90%

Test Report Number: HK10120315-1 Page 1 of 30

Table of Contents

1.0 Test Results Summary & Statement of Compliance	4
1.1 Summary of Test Results	
1.2 Statement of Compliance	
2.0 Conord Deceription	c
2.0 General Description	
2.1 Product Description	
2.2 Test Methodology	
2.3 Test Facility	6
3.0 System Test Configuration	۶
3.1 Justification	
3.2 EUT Exercising Software	
9	
3.3 Details of EUT and Description of Accessories	
3.4 Measurement Uncertainty	10
4.0 Test Results	12
4.1 Field Strength Calculation	
4.2 Radiated Emissions	
4.2.1 Radiated Emission Configuration Photograph	
4.2.2 Radiated Emission Data	
4.3 AC Power Line Conducted Emission	
4.3.1 AC Power Line Conducted Emission Configuration Photograph	
4.3.2 AC Power Line Conducted Emission Data	18
5.0 Equipment List	30

Appendix – Exhibits for Application of Certification

Test Report Number: HK10120315-1

Page 2 of 30

EXHIBIT 1 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

Test Report Number: HK10120315-1 Page 3 of 30

1.0 Test Results Summary & Statement of Compliance

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	Results	Details see section
Radiated Emission AC Power Line Conducted Emission	15.109	Pass	4.2
	15.107	Pass	4.3

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2009 Edition

Test Report Number: HK10120315-1 Page 4 of 30

EXHIBIT 2 GENERAL DESCRIPTION

Test Report Number: HK10120315-1 Page 5 of 30

2.0 **General Description**

2.1 Product Description

The tested model: AMPLICALL 16 is a Cordless Doorbell Amplifier. It operates at 433.92MHz. EUT is powered by a 100-240VAC to 7.5VDC 600mA AC adaptor and/or 4 x "AA" size 1.5 VDC batteries.

The tested model: AMPLICALL 20 is a Doorbell and Telephone Ringer Amplifier with shaker jack and two RJ11 telephone jacks. It operates at 433.92MHz. EUT is powered by a 100-240VAC to 7.5VDC 600mA AC adaptor and/or 4 x "AA" size 1.5VDC batteries.

The model: AMPLICALL 16 and AMPLICALL 20 are same in RF Module, electronics/electrical designs, and PCB layout. The only differences are: AMPLICALL 16 removes the operation mode (LED/Sound/Ring) switch, ring-tone switch, shaker jack, two RJ11 telephone jacks and the components for the corresponding function.

The models: AMPLICALL 15, CH-105, CH-215, CH315, and CH-415 are same with the tested model: AMPLICALL 16 in electronics/electrical designs, including software & firmware, Construction design/Physical design/Enclosure and PCB layout. The differences are trade name, model number and package configuration for marketing purpose.

The circuit description is attached in the Appendix and saved with filename: descri.pdf.

Connection between the device and the telephone network is accomplished through the use of USOC RJ11C in the 2-wire loop calling central office line.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). Preliminary radiated scans and all radiated measurements were performed in Open Area Test Sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data and conducted data are at Roof Top and 2nd Floor respectively of Intertek Testing Services Hong Kong Ltd., which is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

Test Report Number: HK10120315-1 Page 6 of 30

EXHIBIT 3 SYSTEM TEST CONFIGURATION

Test Report Number: HK10120315-1 Page 7 of 30

3.0 **System Test Configuration**

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by a 100-240VAC to 7.5VDC 600mA adaptor and/or 4x "AA" size 1.5VDC batteries.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the EUT attached to peripherals, they were connected and operational to simulate typical use.

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

A typical signal or an unmodulated CW signal at the operating frequency of the EUT has been supplied to the EUT for all measurements. Such a signal is supplied by a signal generator and an antenna in close proximity to the EUT. The signal level is sufficient to stabilize the local oscillator of the EUT.

For receiver radiated measurement, the spectrum analyzer resolution bandwidth was 1MHz for measurement above 1GHz while 100kHz for measurement from 30MHz to 1GHz.

Radiated emission measurement for receiver was performed form 30MHz to 2GHz.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.109.

Test Report Number: HK10120315-1 Page 8 of 30

3.1 Justification - Cont'd

Detector function for radiated emissions is in peak mode.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

All relevant operation modes have been tested, and the worst case data is included in this report.

3.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it receives the RF signal continuously.

Test Report Number: HK10120315-1 Page 9 of 30

3.3 Details of EUT and Description of Accessories

Details of EUT:

An AC adaptor and/or a battery (provided with the unit) were used to power the device. Their description are listed below.

- (1) An AC adaptor (100-240VAC to 7.5VDC 600mA, Model: S006MU0750060) (Supplied by Client)
- (2) Operated Battery: 4 x "AA" size 1.5VDC batteries (Supplied by Intertek)

Description of Peripherals:

- (1) 1 x Telecommunication cable with RJ11C connectors (1m, unshielded), terminated (Supplied by Intertek)
- (2) 1 x 3m Telephone Line (Supplied by Intertek)
- (3) Telephone Line Simulator, Model: TLS-5C-01, S/N: 059355 (Supplied by Intertek)
- (4) Simple Corded Phone, Model: AS7402 (Supplied by Intertek)
- (5) Shaker Unit, Model: HearPlus 55v, Brand: doro (Supplied by Client)
- (6) Remote Control Device, Model: AMPLICALL 2, FCC ID:RUM-AC2T (Supplied by Client)

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

Test Report Number: HK10120315-1 Page 10 of 30

EXHIBIT 4 TEST RESULTS

Test Report Number: HK10120315-1 Page 11 of 30

4.0 Test Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

4.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflects the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

Example

Assume a receiver reading of 62.0 dB $_{\mu}V$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB $_{\mu}V/m$. This value in dB $_{\mu}V/m$ was converted to its corresponding level in $_{\mu}V/m$.

 $RA = 62.0 dB\mu V$

AF = 7.4 dB

CF = 1.6 dB

AG = 29 dB

PD = 0 dB

AV = -10 dB

 $FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

Test Report Number: HK10120315-1 Page 12 of 30

4.2 Radiated Emissions

4.2.1 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at

Model AMPLICALL 20: 865.280 MHz

Model AMPLICALL 16: 71.600 MHz

The worst case radiated emission configuration photographs are attached in the Appendix and saved with filename: config photos.pdf

4.2.2 Radiated Emission Data

The data in tables 1-4 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Model AMPLICALL 20 – Passed by 5.6 dB margin

Model AMPLICALL 16 - Passed by 6.0 dB margin

Test Report Number: HK10120315-1 Page 13 of 30

Model: AMPLICALL 20

Mode: Receiving

Table 1

Radiated Emissions Data

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	432.640	26.6	16	25.0	35.6	46.0	-10.4
V	865.280	25.4	16	31.0	40.4	46.0	-5.6
V	1297.920	47.1	33	26.1	40.2	54.0	-13.8
V	1730.560	45.8	33	27.2	40.0	54.0	-14.0

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Report Number: HK10120315-1 Page 14 of 30

Model: AMPLICALL 20 Mode: Ringing & Flashing

Table 2

Radiated Emissions Data

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	35.800	39.6	16	10.0	33.6	40.0	-6.4
V	71.600	43.1	16	7.0	34.1	40.0	-5.9
Н	107.400	36.3	16	14.0	34.3	43.5	-9.2
Н	143.200	35.4	16	14.0	33.4	43.5	-10.1
Н	179.000	29.6	16	20.0	33.6	43.5	-9.9
Н	214.800	31.6	16	17.0	32.6	43.5	-10.9

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Report Number: HK10120315-1 Page 15 of 30

Model: AMPLICALL 16

Mode: Receiving

Table 3

Radiated Emissions Data

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
V	432.600	27.5	16	25.0	36.5	46.0	-9.5
V	865.200	24.4	16	31.0	39.4	46.0	-6.6
V	1297.800	47.3	33	26.1	40.4	54.0	-13.6
V	1730.400	46.4	33	27.2	40.6	54.0	-13.4

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Report Number: HK10120315-1 Page 16 of 30

Model: AMPLICALL 16 Mode: Ringing & Flashing

Table 4

Radiated Emissions Data

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	35.800	38.4	16	10.0	32.4	40.0	-7.6
V	71.600	43.0	16	7.0	34.0	40.0	-6.0
Н	107.400	36.2	16	14.0	34.2	43.5	-9.3
Н	143.200	35.8	16	14.0	33.8	43.5	-9.7
Н	179.000	29.6	16	20.0	33.6	43.5	-9.9
Н	214.800	32.0	16	17.0	33.0	43.5	-10.5

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Test Report Number: HK10120315-1 Page 17 of 30

4.3 AC Power Line Conducted Emission

- Not applicable EUT is only powered by battery for operation.
- [x] EUT connects to AC power line. Emission Data is listed in following pages.
- [] Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

4.3.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration at

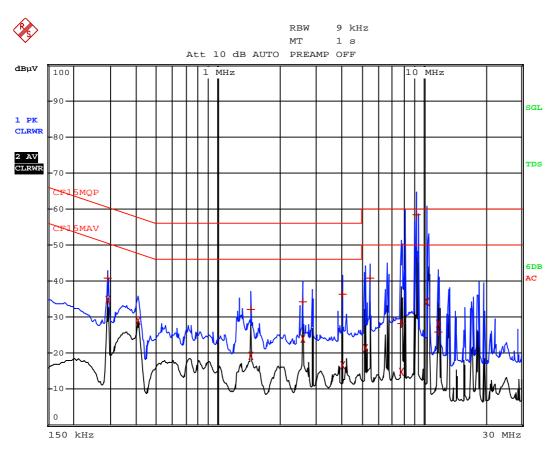
Model AMPLICALL 20: 9.272 MHz

Model AMPLICALL 16: 10.334 MHz

The worst case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf

4.3.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance


Model AMPLICALL 20 – Passed by 1.53 dB margin compare with quasi-peak limit

Model AMPLICALL 16 – Passed by 14.35 dB margin compare with quasi-peak limit

Test Report Number: HK10120315-1 Page 18 of 30

Model No.: AMPLICALL 20

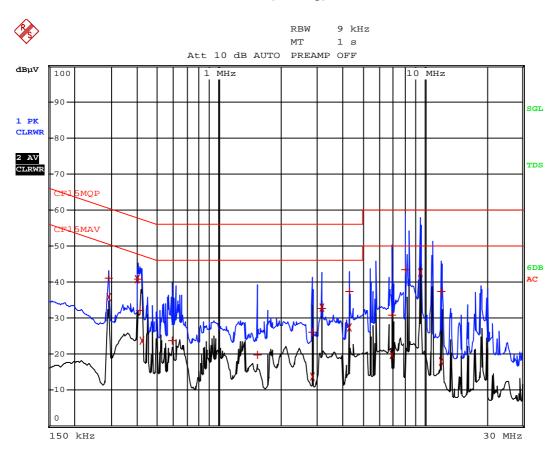
Worst Case: LED & Sound Mode (Calling)

Date: 22.DEC.2010 18:39:31

Test Report Number: HK10120315-1 Page 19 of 30

Model No.: AMPLICALL 20

Worst Case: LED & Sound Mode (Calling)


		EDIT	PEAK	LIST	(Final	Measure	ment	Results)
Tra	ce1:		CF15MQ					
Tra	ce2:		CF15MA	V				
Tra	ce3:							
	TRA	CE	FR	EQUEN	ICY	LEVEL o	lΒμV	DELTA LIMIT dB
2	CISPR	Average	289.5	kHz		34.68	L1	-15.85
1	Quasi	Peak	289.5	kHz		40.92	N	-19.61
2	CISPR	Average	406.5	kHz		28.96	L1	-18.75
1	Quasi	Peak	1.446	MHz		32.08	L1	-23.92
2	CISPR	Average	1.446	MHz		19.26	L1	-26.73
2	CISPR	Average	2.5935	MHz		24.08	N	-21.91
1	Quasi	Peak	2.598	MHz		34.34	N	-21.65
1	Quasi	Peak	4.0515	MHz		36.27	N	-19.72
2	CISPR	Average	4.0515	MHz		16.63	L1	-29.37
2	CISPR	Average	5.19 M	Hz		21.50	L1	-28.49
1	Quasi	Peak	5.505	MHz		40.87	L1	-19.12
1	Quasi	Peak	7.7955	MHz		28.20	L1	-31.79
2	CISPR	Average	7.7955	\mathtt{MHz}		14.93	N	-35.06
1	Quasi	Peak	9.2715	MHz		58.46	N	-1.53
2	CISPR	Average	10.374	\mathtt{MHz}		34.35	N	-15.64
1	Quasi	Peak	11.854	5 MHz	Z	25.76	N	-34.24
2	CISPR	Average	11.859	MHz		28.16	L1	-21.83

Date: 22.DEC.2010 18:39:19

Test Report Number: HK10120315-1 Page 20 of 30

Model No.: AMPLICALL 20

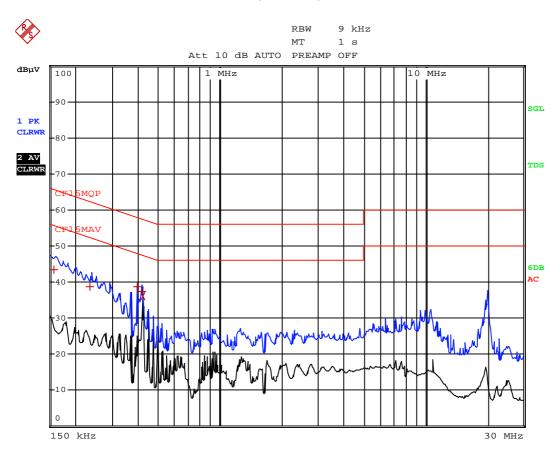
Worst Case: Sound & Shaker Model (Calling)

Date: 22.DEC.2010 18:30:08

Test Report Number: HK10120315-1 Page 21 of 30

Model No.: AMPLICALL 20

Worst Case: Sound & Shaker Model (Calling)


	EDI	IT PEAK LIST (Fina	al Measure	ment	Results)
Tra	ce1:	CF15MQP		<u>"</u>	
Tra	ce2:	CF15MAV			
Tra	ce3:				
	TRACE	FREQUENCY	LEVEL d	.ΒμV	DELTA LIMIT dB
2	CISPR Avera	ge 289.5 kHz	35.85	N	-14.68
1	Quasi Peak	289.5 kHz	41.02	N	-19.51
2	CISPR Avera	g∈397.5 kHz	40.91	L1	-6.99
1	Quasi Peak	402 kHz	40.83	L1	-16.97
1	Quasi Peak	411 kHz	32.03	N	-25.59
2	CISPR Avera	g∈420 kHz	23.87	L1	-23.57
1	Quasi Peak	591 kHz	23.80	L1	-32.19
1	Quasi Peak	1.545 MHz	19.70	N	-36.29
1	Quasi Peak	2.859 MHz	26.00	N	-29.99
2	CISPR Avera	g∈2.859 MHz	13.75	N	-32.24
2	CISPR Avera	ge3.1785 MHz	33.04	N	-12.95
1	Quasi Peak	3.183 MHz	32.61	N	-23.38
1	Quasi Peak	4.3215 MHz	37.42	L1	-18.57
2	CISPR Avera	g∈4.326 MHz	27.43	L1	-18.56
1	Quasi Peak	6.9225 MHz	30.89	L1	-29.10
2	CISPR Avera	ge6.927 MHz	19.94	L1	-30.05
1	Quasi Peak	8.052 MHz	43.34	N	-16.65
2	CISPR Avera	g∈9.519 MHz	42.53	N	-7.46
2	CISPR Avera	ge12.1065 MHz	17.93	N	-32.06
1	Quasi Peak	12.111 MHz	37.51	L1	-22.48

Date: 22.DEC.2010 18:29:57

Test Report Number: HK10120315-1 Page 22 of 30

Model No.: AMPLICALL 20

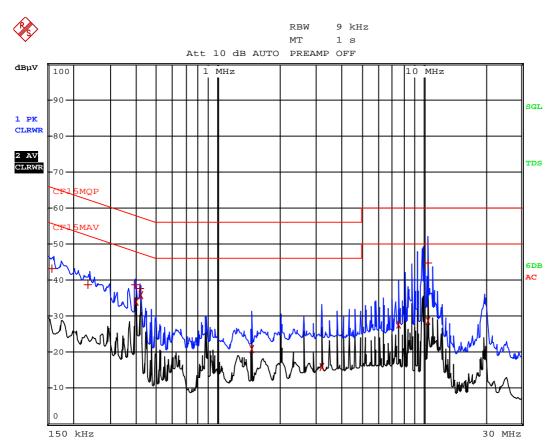
Worst Case: LED & Shaker Mode (Remote)

Date: 22.DEC.2010 18:47:05

Test Report Number: HK10120315-1 Page 23 of 30

Model No.: AMPLICALL 20

Worst Case: LED & Shaker Mode (Remote)


		EDIT	PEAR	LIST	(Final	Measure	ement	Results)	
Tra	ce1:		CF15I	MQP						
Tra	ce2:		CF15I	VAN						
Tra	ce3:									
	TRACE]	FREQUE	NCY	LEVEL	dBµV	D	ELTA LIMIT	dВ
1	Quasi Pe	eak	159 l	kHz		43.35	L1	-	22.15	
1	Quasi Pe	eak	235.	5 kHz		38.59	N	-	23.66	
1	Quasi Pe	eak	393]	kHz		38.71	N	-	19.28	
1	Quasi Pe	eak	415.	5 kHz		37.29	L1	-	20.24	
2	CISPR A	verage	420	kHz		36.12	L1	_	11.32	

Date: 22.DEC.2010 18:46:56

Test Report Number: HK10120315-1 Page 24 of 30

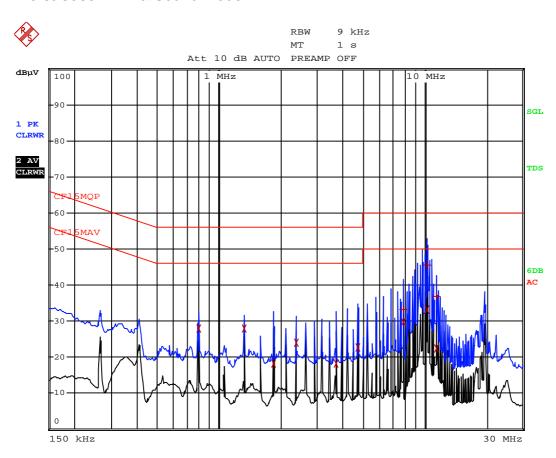
Model No.: AMPLICALL 20

Worst Case: Sound & Shaker Mode (Remote)

Date: 22.DEC.2010 18:51:18

Test Report Number: HK10120315-1 Page 25 of 30

Model No.: AMPLICALL 20


Worst Case: Sound & Shaker Mode (Remote)

	EDI	T PEAK LIST (Fina	ıl Measure	ment	Results)
Tra	cel:	CF15MQP			
Tra	ce2:	CF15MAV			
Tra	ce3:				
	TRACE	FREQUENCY	LEVEL d	ΒμV	DELTA LIMIT dB
1	Quasi Peak	159 kHz	43.07	N	-22.43
1	Quasi Peak	235.5 kHz	38.61	L1	-23.63
1	Quasi Peak	393 kHz	38.83	N	-19.16
2	CISPR Averag	g∈397.5 kHz	33.97	L1	-13.93
1	Quasi Peak	415.5 kHz	37.58	L1	-19.94
2	CISPR Averag	g∈420 kHz	35.94	L1	-11.50
2	CISPR Averag	g∈1.455 MHz	20.74	N	-25.25
2	CISPR Averag	g∈3.201 MHz	15.80	L1	-30.19
2	CISPR Averag	g∈7.5795 MHz	27.78	L1	-22.21
2	CISPR Averag	g∈10.491 MHz	28.79	N	-21.20
1	Quasi Peak	10.4955 MHz	44.84	N	-15.15

Date: 22.DEC.2010 18:51:08

Test Report Number: HK10120315-1 Page 26 of 30

Model No.: AMPLICALL 16 Worst Case: LED & Sound Mode

Date: 22.DEC.2010 18:58:26

Test Report Number: HK10120315-1 Page 27 of 30

Model No.: AMPLICALL 16

Worst Case: LED & Sound Mode

		EDIT	PEAK	LIST	(Final	Measure	ment	Results)
Tra	cel:		CF15M	QΡ				
Trace2:		CF15MAV						
Trace3:								
	TRAC	CE	FI	REQUEN	1CY	LEVEL d	lΒμV	DELTA LIMIT dB
2	CISPR	Average	793.5	kHz		28.07	N	-17.92
2	CISPR	Average	1.324	5 MHz		27.86	N	-18.13
2	CISPR	Average	1.851	MHz		18.35	N	-27.64
2	CISPR	Average	2.382	MHz		24.10	L1	-21.89
2	CISPR	Average	3.705	MHz		18.18	N	-27.81
2	CISPR	Average	4.767	MHz		22.81	L1	-23.19
2	CISPR	Average	7.948	5 MHz		29.75	N	-20.24
1	Quasi	Peak	7.948	5 MHz		33.30	N	-26.69
1	Quasi	Peak	10.33	35 MHz	z	45.64	N	-14.35
2	CISPR	Average	10.33	35 MHz	z	33.26	N	-16.73
1	Quasi	Peak	11.39	55 MHz	Z	36.81	N	-23.18
2	CISPR	Average	11.39	55 MHz	z	22.32	N	-27.67

Date: 22.DEC.2010 18:58:18

Test Report Number: HK10120315-1 Page 28 of 30

EXHIBIT 5 EQUIPMENT LIST

Test Report Number: HK10120315-1 Page 29 of 30

5.0 **Equipment List**

1) Radiated Emissions Test

Equipment	Biconical Antenna	Log Periodic Antenna	Double Ridged Guide
			Antenna
Registration No.	EW-0954	EW-0446	EW-1015
Manufacturer	EMCO	EMCO	EMCO
Model No.	3104C	3146	3115
Calibration Date	Apr. 14, 2010	Apr. 26, 2010	Feb. 09, 2010
Calibration Due Date	Oct. 14, 2011	Oct. 26, 2011	Aug. 09, 2011

Equipment	EMI Test Receiver	Spectrum Analyzer	
Registration No.	EW-2251	EW-2188	
Manufacturer	ROHDESCHWARZ	AGILENTTECH	
Model No.	ESCI	E4407B	
Calibration Date	Oct. 22, 2009	Dec. 25, 2009	
Calibration Due Date	Apr. 22, 2011	Dec. 31, 2011	

2) Conducted Emissions Test

Equipment	EMI Test Receiver	Artificial Mains	Pulse Limiter
Registration No.	EW-2666	EW-0090	EW-0699
Manufacturer	ROHDESCHWARZ	ROHDESCHWARZ	ROHDESCHWARZ
Model No.	ESCI7	ESH3-Z5	ESH3-Z2
Calibration Date	Oct. 12, 2010	Feb. 05, 2010	Dec. 24, 2009
Calibration Due Date	Oct. 12, 2011	May 05, 2011	Jun. 24, 2011

END OF TEST REPORT

Test Report Number: HK10120315-1 Page 30 of 30