

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC EMC TEST REPORT

Applicant's company	Wistron NeWeb Corporation
Applicant Address	No.10-1,Li-hsin Road I,Hsinchu Science Park,Hsinchu 300,Taiwan,
	R.O.C.
Manufacturer's company	Wistron NeWeb Corporation
Manufacturer Address	No.10-1,Li-hsin Road I,Hsinchu Science Park,Hsinchu 300,Taiwan, R.O.C.

Product Name	WLAN a/b/g/n mini-PCI Module
Brand Name	WNC
Model Name	DNMA-83
Test Standard	47 CFR FCC Part 15 Subpart B
Classification of ITE	Class B
Received Date	Nov. 29, 2007
Final Test Date	Feb. 25, 2008
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart B. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CEF		1
2.	SUN	MMARY OF THE TEST RESULT	2
3.	GEI	ENERAL INFORMATION	3
	3.1.	I. Product Details	3
	3.2.	2. Accessories	7
	3.3.	3. Table for Filed Antenna	7
	3.4.	4. Table for Carrier Frequencies	9
	3.5.	5. Table for Test Modes	10
	3.6.	5. Table for Testing Locations	10
	3.7.	7. Table for Supporting Units	10
	3.8.	3. EUT Operation during Test	10
	3.9.	P. Test Configurations	11
4.	TESI	ST RESULT	
	4.1.	I. AC Power Line Conducted Emissions Measurement	13
	4.2.	2. Radiated Emissions Measurement	17
5.	LIST	T of measuring equipments	35
6.	TES	ST LOCATION	
7.	taf	F CERTIFICATE OF ACCREDITATION	
AP	PEN	NDIX A. PHOTOGRAPHS OF EUT	A1 ~ A13
AP	PEN	NDIX B. TEST PHOTOS	B1 ~ B9

History of This Test Report

Original Issue Date: Feb. 28, 2008

Report No.: FD7D1412

No additional attachment.

Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

1. CERTIFICATE OF COMPLIANCE

Product Name	:	WLAN a/b/g/n mini-PCI Module
Brand Name	:	WNC
Model Name	:	DNMA-83
Applicant	:	Wistron NeWeb Corporation
Test Standard	:	47 CFR FCC Part 15 Subpart B

Sporton International as requested by the applicant to evaluate the EMI performance of the product sample received on Nov. 29, 2007 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMI nature.

10 Zton 29,2008

Wayne Hsu SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart B				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.107	AC Power Line Conducted Emissions	Complies	13.16 dB
4.2	15.109	Radiated Emissions	Complies	4.31 dB

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Radiated Emissions	±1.9dB	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

For 5GHz Band:

802.11a Band 1

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Host System
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250MHz
Channel Number	4
Channel Band Width (99%)	16.96 MHz
Conducted Output Power	16.67 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Draft n

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Host System
Modulation	see the below table for draft n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for Draft n
Frequency Range	5150 ~ 5250MHz
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth
Channel Band Width (99%)	MCS16 (20MHz) : 18.08 MHz ; MCS16 (40MHz) : 36.48 MHz
Conducted Output Power	MCS16 (20MHz) : 16.78 dBm ; MCS16 (40MHz) : 16.54 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

802.11a Band 4

Items	Description
Power Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Host System
Modulation	DSSS for IEEE 802.11b ; OFDM for IEEE 802.11a/g
Data Modulation	DSSS (BPSK / QPSK / CCK) ; OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11) ; OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5725 ~ 5850MHz
Channel Number	5
Channel Band Width (99%)	17.76 MHz
Conducted Output Power	27.64 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Draft n

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Host System
Modulation	see the below table for draft n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for Draft n
Frequency Range	5725 ~ 5850MHz
Channel Number	3 for 20MHz bandwidth ; 2 for 40MHz bandwidth
Channel Band Width (99%)	MCS16 (20MHz) : 17.76 MHz ; MCS16 (40MHz) : 36.40 MHz
Conducted Output Power	MCS16 (20MHz) : 27.43 dBm ; MCS16 (40MHz) : 27.80 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

For 2.4GHz Band:

802.11b/g

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Host System
Modulation	DSSS for IEEE 802.11b ; OFDM for IEEE 802.11g
Data Modulation	DSSS (BPSK / QPSK / CCK) ; OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11) ; OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11
Channel Band Width (99%)	11b: 15.24 MHz ; 11g: 16.48 MHz
Conducted Output Power	11b: 24.18 dBm ; 11g: 22.01 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Draft n

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Host System
Modulation&	see the below table for draft n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for Draft n
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Channel Band Width (99%)	MCS16 (20MHz) : 17.64 MHz ; MCS16 (40MHz) : 36.32 MHz
Conducted Output Power	MCS16 (20MHz) : 22.75 dBm ; MCS16 (40MHz) : 21.55 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna & Band width

Antenna	Single (TX)		Three	э (ТХ)
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz
802.11a	х	х	V	х
802.11b	х	х	V	х
802.11g	х	х	V	х
Draft n	Х	Х	V	V

Draft n Spec

MCS							NDBPS		Data rate(Mbps)	
Index	Nss	Modulation	R	NBPSC				DFJ	800	InsGl
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1⁄2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1⁄2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3⁄4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1⁄2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3⁄4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	² / ₃	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3⁄4	6	312	648	234	486	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0
8	2	BPSK	1⁄2	1	104	216	52	108	13.0	27.0
9	2	QPSK	1⁄2	2	208	432	104	216	26.0	54.0
10	2	QPSK	3⁄4	2	208	432	156	324	39.0	81.0
11	2	16-QAM	1⁄2	4	416	864	208	432	52.0	108.0
12	2	16-QAM	3⁄4	4	416	864	312	648	78.0	162.0
13	2	64-QAM	² / ₃	6	624	1296	416	864	104.0	216.0
14	2	64-QAM	3⁄4	6	624	1296	468	972	117.0	243.0
15	2	64-QAM	5/6	6	624	1296	520	1080	130.0	270.0
16	3	BPSK	1⁄2	1	156	324	78	162	19.5	40.5
17	3	QPSK	1⁄2	2	312	648	156	324	39	81
18	3	QPSK	3⁄4	2	312	648	234	486	58.5	121.5
19	3	16-QAM	1⁄2	4	624	1296	312	648	78	162
20	3	16-QAM	3⁄4	4	624	1296	468	972	117	243
21	3	64-QAM	² / ₃	6	936	1944	624	1296	156	324
22	3	64-QAM	3⁄4	6	936	1944	702	1458	175.5	364.5
23	3	64-QAM	5/6	6	936	1944	780	1620	195	4055

Draft n Bandwidth

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	guard interval

3.2. Accessories

N/A

3.3. Table for Filed Antenna

For 2.4GHz Band

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
A-1	Colubris Networks	XS7-RU	Dipole Antenna	Reversed-SMA	4.09	TX / RX Ant.
A-2	Colubris Networks	XS7-RU	Dipole Antenna	Reversed-SMA	4.09	TX / RX Ant.
A-3	Colubris Networks	XS7-RU	Dipole Antenna	Reversed-SMA	4.09	TX / RX Ant.
B-1	LCU	F1B-294405-32	Dipole Antenna	Reversed-SMA	1.82	TX / RX Ant.
B-2	LCU	F1B-294405-32	Dipole Antenna	Reversed-SMA	1.82	TX / RX Ant.
B-3	LCU	F1B-294405-32	Dipole Antenna	Reversed-SMA	1.82	TX / RX Ant.
C-1	Centurion	WTS2450-RPSMA	Dipole Antenna	Reversed-SMA	2.1	TX / RX Ant.
C-2	Centurion	WTS2450-RPSMA	Dipole Antenna	Reversed-SMA	2.1	TX / RX Ant.
C-3	Centurion	WTS2450-RPSMA	Dipole Antenna	Reversed-SMA	2.1	TX / RX Ant.
D-1	Centurion	NanoBlade	Emdeded Antenna	Reversed-SMA	3.8	TX / RX Ant.
D-2	Centurion	NanoBlade	Emdeded Antenna	Reversed-SMA	3.8	TX / RX Ant.
D-3	Centurion	NanoBlade	Emdeded Antenna	Reversed-SMA	3.8	TX / RX Ant.

Note:

The EUT has 12 antennas.

Due to Ant. A \sim Ant. C is the same type antenna, only the higher gain antenna "Ant. A" was tested. Both Ant. A and Ant. D were tested and recorded in the report.

For 5GHz Band

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
A-1	Colubris Networks	XS7-RU	Dipole Antenna	Reversed-SMA	1.23	TX / RX Ant.
A-2	Colubris Networks	XS7-RU	Dipole Antenna	Reversed-SMA	1.23	TX / RX Ant.
A-3	Colubris Networks	XS7-RU	Dipole Antenna	Reversed-SMA	1.23	TX / RX Ant.
B-1	LCU	F1B-294405-32	Dipole Antenna	Reversed-SMA	4.28	TX / RX Ant.
B-2	LCU	F1B-294405-32	Dipole Antenna	Reversed-SMA	4.28	TX / RX Ant.
B-3	LCU	F1B-294405-32	Dipole Antenna	Reversed-SMA	4.28	TX / RX Ant.
C-1	Centurion	WTS2450-RPSMA	Dipole Antenna	Reversed-SMA	3.4	TX / RX Ant.
C-2	Centurion	WTS2450-RPSMA	Dipole Antenna	Reversed-SMA	3.4	TX / RX Ant.
C-3	Centurion	WTS2450-RPSMA	Dipole Antenna	Reversed-SMA	3.4	TX / RX Ant.
D-1	Centurion	NanoBlade	Emdeded Antenna	Reversed-SMA	5.1	TX / RX Ant.
D-2	Centurion	NanoBlade	Emdeded Antenna	Reversed-SMA	5.1	TX / RX Ant.
D-3	Centurion	NanoBlade	Emdeded Antenna	Reversed-SMA	5.1	TX / RX Ant.

Note: The EUT has 12 antennas.

Due to Ant. A \sim Ant. C is the same type antenna, only the higher gain antenna "Ant. B" was tested. Both Ant. B and Ant. D were tested and recorded in the report.

Port 1: Ant. A-1 (2.4GHz) / Ant. B-1 (5GHz) / Ant. D-1

Port 2: Ant. A-2 (2.4GHz) / Ant. B-2 (5GHz) / Ant. D-2

Port 3: Ant. A-3 (2.4GHz) / Ant. B-3 (5GHz) / Ant. D-3

3.4. Table for Carrier Frequencies

For 2.4GHz Band: Frequency Allocation for 802.11b/g

There are two bandwidth systems for draft n.

For both 20MHz bandwidth systems, use Channel 1~Channel 13.

For both 40MHz bandwidth systems, use Channel 3~Channel 11.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400 2482 5MH-	3	2422 MHz	9	2452 MHz
2400~2403.5IVIH2	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz		

For 5GHz Band: Frequency Allocation for 802.11a

There are two bandwidth systems for draft n.

802.11a Band 1

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

802.11a Band 4

For 20MHz bandwidth systems, use Channel 149, 157, 165.

For 40MHz bandwidth systems	, use Channel 151,	159.
-----------------------------	--------------------	------

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz	36	5180 MHz	44	5220 MHz
Band 1	40	5200 MHz	48	5240 MHz
	149	5745 MHz		
5705 5850 MU-	153	5765 MHz		
5/25~5050 IVIHZ	157	5785 MHz		
Bana 4	161	5805 MHz		
	165	5825 MHz		

3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Antenna
AC Power Line Conducted Emissions	Normal Use	-
Radiated Emissions	CRX/Normal Use	A/B/D

Note: CRX=continuously receiving

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO04-HY	Conduction	Hwa Ya	101377	IC 4088	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D400	E2K24GBRL
Modem	ACEEX	DM1414	IFAXDM1414
Mouse	QSKY	Lx-619B	DoC
Printer	EPSON	LQ-300+	DOC
AP	PLANEX	GW-AP54SGX	DOC

3.8. EUT Operation during Test

An executive program, EMCTEST.EXE under WIN XP, which generates a complete line of continuously repeating "H " pattern was used as the test software.

The program was executed as follows:

- a. Turn on the power of all equipment.
- b. The NB sends "H" messages to the panel, and the panel displays "H" patterns on the screen.
- c. The NB sends "H " messages to the printer, then the printer prints them on the paper.
- d. The NB sends " H " messages to the modem.
- e. Repeat the steps from b to d.
- At the same time, the following programs were executed:

Executed "ping.exe" to link with the remote workstation to receive and transmit signal by LAN and WLAN.

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration

Test Mode: Ant. A / Ant. B / Ant. D

AP

3.9.2. AC Power Line Conduction Emissions Test Configuration

AP

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. Results of AC Power Line Conducted Emissions Measurement

Temperature	20 °C	Humidity	61%
Test Engineer	Andy Tsai	Phase	Line
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
10	0.17491	50.53	-14.19	64.72	50.18	0.15	0.20	QP	LINE
2	0.17491	40.11	-14.61	54.72	39.76	0.15	0.20	AVERAGE	LINE
3	0.23409	44.71	-17.59	62.30	44.41	0.10	0.20	QP	LINE
4	0.23409	37.49	-14.81	52.30	37.19	0.10	0.20	AVERAGE	LINE
5	0.33920	40.71	-18.51	59.22	40.41	0.10	0.20	QP	LINE
6	0.33920	28.64	-20.58	49.22	28.34	0.10	0.20	AVERAGE	LINE
7	3.509	29.77	-26.23	56.00	29.47	0.00	0.30	QP	LINE
8	3.509	18.21	-27.79	46.00	17.91	0.00	0.30	AVERAGE	LINE
9	4.180	18.93	-27.07	46.00	18.63	0.00	0.30	AVERAGE	LINE
10	4.180	31.72	-24.28	56.00	31.42	0.00	0.30	QP	LINE
11	5.390	20.71	-29.29	50.00	20.39	0.02	0.30	AVERAGE	LINE
12	5.390	31.43	-28.57	60.00	31.11	0.02	0.30	QP	LINE

Temperature	20 ℃	Humidity	61%
Test Engineer	Andy Tsai	Phase	Neutral
Configuration	Normal Link		

	Freq		freq Leve		Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	ă-			
1 @	0.17307	41.65	-13.16	54.81	41.20	0.25	0.20	AVERAGE	NEUTRAL		
2 @	0.17307	50.83	-13.98	64.81	50.38	0.25	0.20	QP	NEUTRAL		
3	0.18152	35.08	-19.34	54.42	34.63	0.25	0.20	AVERAGE	NEUTRAL		
4	0.18152	46.39	-18.03	64.42	45.94	0.25	0.20	QP	NEUTRAL		
5	3.615	38.23	-17.77	56.00	37.83	0.10	0.30	QP	NEUTRAL		
6	3.615	26.47	-19.53	46.00	26.07	0.10	0.30	AVERAGE	NEUTRAL		
7	3.854	41.18	-14.82	56.00	40.78	0.10	0.30	QP	NEUTRAL		
8	3.854	25.51	-20.49	46.00	25.11	0.10	0.30	AVERAGE	NEUTRAL		
9	4.027	25.40	-20.60	46.00	25.00	0.10	0.30	AVERAGE	NEUTRAL		
10	4.027	40.51	-15.49	56.00	40.11	0.10	0.30	QP	NEUTRAL		
11	5.153	35.68	-24.32	60.00	35.28	0.10	0.30	QP	NEUTRAL		
12	5.153	25.79	-24.21	50.00	25.39	0.10	0.30	AVERAGE	NEUTRAL		
13	15.639	25.69	-24.31	50.00	25.19	0.10	0.40	AVERAGE	NEUTRAL		
14	15.639	29.51	-30.49	60.00	29.01	0.10	0.40	QP	NEUTRAL		

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Radiated Emissions Measurement

4.2.1. Limit

Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30 MHz to 5th harmonic of highest frequency. The quasi-peak measuring receiver shall be in accordance with clause 2 of CISPR 16-1. Receivers with peak detectors shall be in accordance with clause 3 of CISPR 16-1, and shall have a 6 dB bandwidth in accordance with clause 2 of CISPR 16-1.

Frequency of Emission (MHz)	Field Strength QP Limit (dBuV/m) at 3m
30~88	40
88~216	43.5
216~960	46
Above 960	54

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Spectrum Parameter	Setting
Start Frequency	1000 MHz
Stop Frequency	5th harmonic of highest frequency
RB / VB	1 MHz / 1 MHz for Peak ; 1 MHz / 10Hz for Average

4.2.3. Test Procedures

- The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26 ℃	Humidity	56%		
Test Engineer	Roy Huang	Configurations	Ant. A		

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	deg	cm	÷
10	166.770	37.61	-5.89	43.50	54.55	8.79	27.27	1.53	Peak	0	100	HORIZONTAL
2 @	233.700	40.69	-5.31	46.00	55.85	10.04	27.03	1.83	Peak	0	100	HORIZONTAL
30	299.660	41.55	-4.45	46.00	53.45	12.90	26.90	2.10	Peak	152	255	HORI ZONTAL
4 @	431.580	39.35	-6.65	46.00	48.24	16.38	27.76	2.49	Peak	0	100	HORIZONTAL
50	531.490	40.13	-5.87	46.00	47.60	17.87	28.10	2.76	Peak	0	100	HORIZONTAL
6 @	663.410	40.06	-5.94	46.00	45.75	18.90	28.04	3.45	Peak	0	100	HORI ZONTAL
70	832.190	39.45	-6.55	46.00	43.02	20.60	27.54	3.36	Peak	0	100	HORI ZONTAL

Vertical

		Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	deg	cm	
1 @ 98.870	35.66	-7.84	43.50	51.98	10.10	27.61	1.18	Peak	0	400	VERTICAL
2 @ 165.800	36.84	-6.66	43.50	53.76	8.82	27.27	1.53	Peak	0	400	VERTICAL
3 @ 257.950	34.94	-11.06	46.00	47.51	12.48	26.98	1.93	Peak	0	400	VERTICAL
4 @ 296.750	35.89	-10.11	46.00	47.87	12.84	26.91	2.09	Peak	0	400	VERTICAL
5 @ 428.670	36.88	-9.12	46.00	45.73	16.42	27.75	2.47	Peak	0	400	VERTICAL
6 @ 564.470	39.30	-6.70	46.00	45.97	18.60	28.10	2.83	Peak	0	400	VERTICAL
7 @ 664.380	36.90	-9.10	46.00	42.61	18.89	28.04	3.44	Peak	0	400	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	Ant. D

Horizontal

			Over	Limit	Readi	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	deg	cm	
10	99.840	37.65	-5.85	43.50	53.80	10.25	27.60	1.20	Peak	0	100	HORIZONTAL
2 @	132.820	37.17	-6.33	43.50	51.91	11.37	27.43	1.33	Peak	0	100	HORIZONTAL
30	230.790	40.93	-5.07	46.00	56.43	9.71	27.04	1.82	Peak	0	100	HORIZONTAL
4 0	365.620	41.04	-4.96	46.00	51.59	14.58	27.36	2.23	Peak	0	100	HORIZONTAL
5 @	397.630	41.28	-4.72	46.00	50.78	15.79	27.58	2.30	Peak	0	100	HORI ZONTAL
6 @	432.550	40.05	-5.95	46.00	48.94	16.37	27.76	2.50	Peak	0	100	HORI ZONTAL
7 @	567.380	41.16	-4.84	46.00	47.80	18.62	28.10	2.83	Peak	0	100	HORIZONTAL
8 @	664.380	41.69	-4.31	46.00	47.39	18.89	28.04	3.44	Peak	339	158	HORI ZONTAL

Vertical

		Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	deg	cm	
1 @ 98.870	37.05	-6.45	43.50	53.37	10.10	27.61	1.18	Peak	0	400	VERTICAL
2 @ 165.800	36.55	-6.95	43.50	53.47	8.82	27.27	1.53	Peak	0	400	VERTICAL
3 @ 257.950	36.23	-9.77	46.00	48.80	12.48	26.98	1.93	Peak	0	400	VERTICAL
4 @ 440.310	40.03	-5.97	46.00	48.99	16.30	27.80	2.54	Peak	0	400	VERTICAL
5 @ 454.860	37.80	-8.20	46.00	46.76	16.30	27.87	2.61	Peak	0	400	VERTICAL
6 @ 564.470	40.05	-5.95	46.00	46.73	18.60	28.10	2.83	Peak	0	400	VERTICAL
7 @ 664.380	39.00	-7.00	46.00	44.71	18.89	28.04	3.44	Peak	0	400	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.2.7. Results for Radiated Emissions (1GHz~5th harmonic of highest frequency)

emperature	26 ℃	Humidity	56%	
est Engineer	Roy Huang	Configurations	802.11g Ch	annel 6 / Ant. A
orizontal				
130 Leve	l (dBuV/m)		Da	ate: 2008-01-31 Time: 23:02:5
				TCC CLASS I
				-6dl
65				
				FCC CLASS-B AN
				-64
1				
0 1000	6100.	11200.	16300.	21400. 265

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg	2
1	1039.500	41.98	-32.02	74.00	50.15	24.11	3.75	36.04	PEAK	100	145	HORIZONTAL
2 @	1060.900	28.78	-25.22	54.00	36.85	24.22	3.75	36.04	AVERAGE	100	145	HORIZONTAL

Vertical

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Channel 40 / Ant. B

Horizontal

		Over	Limit	Readi	Antenna	Preamp	Cable		Table	Ant	
Freq I	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
MHz dl	BuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	deg	cm	
0.452 4	42.79	-17.21	60.00	47.85	26.42	34.78	3.29	AVERAGE	329	100	HORI ZONTAL
.764 4	41.66	-38.34	80.00	46.72	26.42	34.78	3.29	PEAK	329	100	HORI ZONTAL
).150 3	31.27	-28.73	60.00	31.28	30.34	34.96	4.61	AVERAGE	358	117	HORI ZONTAL
).150 3	31.27	-48.73	80.00	31.28	30.34	34.96	4.61	PERK	358	117	HORI ZONTAL
	Freq 2 MHz d 0.452 4 0.764 4 0.150 5 0.150 5	Freq Level MHz dBuV/m 0.452 42.79 0.764 41.66 0.150 31.27 0.150 31.27	Over Freq Level Limit MHz dBuV/m dB 0.452 42.79 -17.21 0.764 41.66 -38.34 0.150 31.27 -28.73 0.150 31.27 -48.73	Breq Level Over Limit MHz Level Limit Lime 0.452 42.79 -17.21 60.00 0.764 41.66 -38.34 80.00 0.150 31.27 -28.73 60.00	Over Limit Reading Freq Level Limit Lime Level MHz dBuV/m dB dBuV/m dBuV/m dBuV/m 0.452 42.79 -17.21 60.00 47.85 0.764 41.66 -38.34 80.00 46.72 0.150 31.27 -28.73 60.00 31.28	Breq Level Over Limit ReadAntenna MHz Level Limit Lime Level Factor MHz dBuV/m dB dBuV/m dBuV dBuV dB/m 0.452 42.79 -17.21 60.00 47.85 26.42 0.764 41.66 -38.34 80.00 46.72 26.42 0.150 31.27 -28.73 60.00 31.28 30.34 0.150 31.27 -48.73 80.00 31.28 30.34	Breq Level Over Limit ReadAntenna Preamp MHz Level Limit Line Level Factor Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB/m dB 0.452 42.79 -17.21 60.00 47.85 26.42 34.78 0.764 41.66 -38.34 80.00 46.72 26.42 34.78 0.150 31.27 -28.73 60.00 31.28 30.34 34.96	Over Limit ReadAntenna Preamp Cable Freq Level Limit Line Level Factor Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 0.452 42.79 -17.21 60.00 47.85 26.42 34.78 3.29 0.764 41.66 -38.34 80.00 46.72 26.42 34.78 3.29 0.150 31.27 -28.73 60.00 31.28 30.34 34.96 4.61 0.150 31.27 -48.73 80.00 31.28 30.34 34.96 4.61	Over Limit ReadAntenna Preamp Cable Freq Level Limit Line Level Factor Factor Loss Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB/m dB dB 0.452 42.79 -17.21 60.00 47.85 26.42 34.78 3.29 AVERAGE 0.764 41.66 -38.34 80.00 46.72 26.42 34.78 3.29 PEAK 0.150 31.27 -28.73 60.00 31.28 30.34 34.96 4.61 AVERAGE 0.150 31.27 -48.73 80.00 31.28 30.34 34.96 4.61 PEAK	Over Limit ReadAntenna Preamp Cable Table Freq Level Limit Line Level Factor Factor Loss Remark Pos MHz dBuV/m dB dBuV/m dBuV dB/m dB/m dB dB dB deg deg 0.452 42.79 -17.21 60.00 47.85 26.42 34.78 3.29 AVERAGE 329 0.764 41.66 -38.34 80.00 46.72 26.42 34.78 3.29 PEAK 329 0.150 31.27 -28.73 60.00 31.28 30.34 34.96 4.61 AVERAGE 358 0.150 31.27 -48.73 80.00 31.28 30.34 34.96 4.61 PEAK 358	Over Limit ReadAntenna Preamp Cable Table Ant Freq Level Limit Line Level Factor Factor Loss Remark Pos Pos MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB dB Pos Pos

Vertical

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	deg	cm	-
1	1590.086	46.65	-33.35	80.00	51.72	26.42	34.78	3.29	PERK	272	100	VERTICAL
2 @	1590.392	43.16	-16.84	60.00	48.22	26.42	34.78	3.29	AVERAGE	272	100	VERTICAL
3	3199.778	47.34	-32.66	80.00	47.35	30.34	34.96	4.61	PEAK	98	114	VERTICAL
4	3200.006	38.79	-21.21	60.00	38.80	30.34	34.96	4.61	AVERAGE	98	114	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Channel 157 / Ant. B

Horizontal

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Preamp Factor	Cable Loss	Remark	Table Pos	Ant Pos	Pol/Phase
<u>12</u>	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	4 <u></u>	deg	cm	
10 1	198.680	29.39	-30.61	60.00	37.89	24.39	35.73	2.85	AVERAGE	343	115	HORIZONTAL
2 1	199.680	43.32	-30.98	74.30	51.81	24.39	35.73	2.85	PERK	343	115	HORI ZONTAL

Vertical

Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Preamp Factor	Cable Loss	Remark	Table Pos	Ant Pos	Pol/Phase
Mrz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	4	deg	cm	
1198.120	40.77	-33.53	74.30	49.27	24.39	35.73	2.85	PEAK	351	100	VERTICAL
1198.560	28.14	-31.86	60.00	36.63	24.39	35.73	2.85	AVERAGE	351	100	VERTICAL
	Freq MHz 1198.120 1198.560	Freq Level 10Hz dBuV/m 1198.120 40.77 1198.560 28.14	Over Over Freq Level Limit MHz dBuV/m dB 1198.120 40.77 -33.53 1198.560 28.14 -31.86	Over Limit Freq Level Limit Line MHz dBuV/m dB dBuV/m 1198.120 40.77 -33.53 74.30 1198.560 28.14 -31.86 60.00	Over Limit Readility Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV/m dBuv/m 1198.120 40.77 -33.53 74.30 49.27 1198.560 28.14 -31.86 60.00 36.63	Over Limit ReadAntenna Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB/m 1198.120 40.77 -33.53 74.30 49.27 24.39 1198.560 28.14 -31.86 60.00 36.63 24.39	Over Limit ReadAntenna Preamp Freq Level Limit Line Level Factor Factor MHz dBuV/m dB dBuV/m dBuV/m dBuV/m dB/m dB 1198.120 40.77 -33.53 74.30 49.27 24.39 35.73 1198.560 28.14 -31.86 60.00 36.63 24.39 35.73	Over Limit ReadAntenna Preamp Cable Freq Level Limit Line Level Factor Factor Loss MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB dB 1198.120 40.77 -33.53 74.30 49.27 24.39 35.73 2.85 1198.560 28.14 -31.86 60.00 36.63 24.39 35.73 2.85	Over Limit ReadAntenna Preamp Cable Freq Level Limit Line Level Factor Factor Loss Remark MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB dB 1198.120 40.77 -33.53 74.30 49.27 24.39 35.73 2.85 PEAK 1198.560 28.14 -31.86 60.00 36.63 24.39 35.73 2.85 AVERAGE	Over Limit ReadAntenna Preamp Cable Table Freq Level Limit Line Level Factor Factor Loss Remark Pos MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB deg 1198.120 40.77 -33.53 74.30 49.27 24.39 35.73 2.85 PEAK 351 1198.560 28.14 -31.86 60.00 36.63 24.39 35.73 2.85 AVERAGE 351	Over Limit ReadAntenna Preamp Cable Table Ant Freq Level Limit Line Level Factor Factor Loss Remark Pos Pos MHz dBuV/m dB dBuV/m dBuV dB/m dB dB deg cm 1198.120 40.77 -33.53 74.30 49.27 24.39 35.73 2.85 PEAK 351 100 1198.560 28.14 -31.86 60.00 36.63 24.39 35.73 2.85 AVERAGE 351 100

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26 °C	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11g Channel 6 / Ant. D

Horizontal

	Freq	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	BuV/m dB dBuV/m		dBuV dB/m		dB dB		A	cm	deg	÷
1	1129.000	41.24	-32.76	74.00	48.80	24.44	3.88	35.88	PEAK	100	261	HORIZONTAL
2 @	1131.000	29.54	-24.46	54.00	37.10	24.44	3.88	35.88	AVERAGE	100	261	HORIZONTAL

Vertical

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	dB	œBuV/m	dBuV	dB/m	dB	dB			deg	-
1	1125.200	28.44	-25.56	54.00	36.05	24.39	3.88	35.88	AVERAGE	100	351	VERTICAL
2	1161.800	32.35	-41.65	74.00	39.70	24.55	3.92	35.83	PEAK	100	351	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Channel 40 / Ant. D

Horizontal

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant		
	Freq	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	deg	cm	0 	
10	1590.390	43.30	-16.70	60.00	48.37	26.42	34.78	3.29	AVERAGE	330	100	HORIZONTAL	
2	1590.666	48.10	-31.90	80.00	53.17	26.42	34.78	3.29	PEAK	330	100	HORIZONTAL	
3	3199.500	31.09	-28.91	60.00	31.11	30.34	34.96	4.61	AVERAGE	325	100	HORIZONTAL	
4	3199.500	41.65	-38.35	80.00	41.66	30.34	34.96	4.61	PEAK	325	100	HORI ZONTAL	

Vertical

			Over	Limit	Readi	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	<u>.</u>	deg	cm	
1	1590.408	45.82	-34.18	80.00	50.89	26.42	34.78	3.29	PEAK	272	100	VERTICAL
2	1590.410	42.09	-17.91	60.00	47.16	26.42	34.78	3.29	AVERAGE	272	100	VERTICAL
3	3199.970	37.29	-22.71	60.00	37.30	30.34	34.96	4.61	AVERAGE	98	116	VERTICAL
4	3200.040	46.89	-33.11	80.00	46.90	30.34	34.96	4.61	PEAK	98	116	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Channel 157 / Ant. D

Horizontal

		Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBu∛	dB/m	dB	dB	2	deg	cm	
1499.720	48.41	-31.59	80.00	54.45	25.50	34.75	3.20	PEAK	49	100	HORI ZONTAL
1499.990	40.26	-19.74	60.00	46.31	25.50	34.75	3.20	AVERAGE	49	100	HORI ZONTAL

1 2

Vertical

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Preamp Factor	Cable Loss	Remark	Table Pos	Ant Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	deg	cm	
1	1499.970	38.75	-21.25	60.00	44.80	25.50	34.75	3.20	AVERAGE	104	100	VERTICAL
2	1500.100	46.46	-33.54	80.00	52.50	25.50	34.75	3.20	PEAK	104	100	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No. Serial No.		Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Mar. 03, 2007	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 31, 2007	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2007	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2007	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	Mar. 27, 2007	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Mar. 03, 2007	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 14, 2007	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz - 2 GHz	Jan. 14, 2008	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jun. 07, 2007	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5 GHz - 40 GHz	Jan. 22, 2007*	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100305	9 kHz - 40 GHz	Sep. 27, 2007	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Jul. 21, 2007	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	May 04, 2007	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jan. 18. 2008	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec. 03, 2007	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec. 03, 2007	Radiation (03CH03-HY)
Turn Table	HD	D\$ 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

* Calibration Interval of instruments listed above is two year.

NCR means Non-Calibration required.

6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

7. TAF CERTIFICATE OF ACCREDITATION

Cer	Certificate No. : L1190-070110 財團法人全國認證基金會 Taiwan Accreditation Foundation
EMC 4 No.52, Hwa Ya 1st Rd	This is to certify that Sporton International Inc. & Wireless Communications Laboratory ., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
is	accredited in respect of laboratory
Accreditation Criteria Accreditation Number Originally Accredited Effective Period Accredited Scope Specific Accreditation Program	 ISO/IEC 17025:2005 1190 December 15, 2003 January 10, 2007 to January 09, 2010 Testing Field, see described in the Appendix Accreditation Program for Designated Testing Laboratory for Commodities Inspection Accreditation Program for Telecommunication Equipment Testing Laboratory
P1, total 9 pages	Jay-San Chen Jay-San Chen President, Taiwan Accreditation Foundation Date : January 10, 2007

APPENDIX A. Photographs of EUT

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

Appendix B. Test Photos

1. Photographs of Conducted Emissions Test Configuration

FRONT VIEW

REAR VIEW

2. Photographs of Radiated Emissions Test Configuration

For 2.4GHz: Ant. A

FRONT VIEW

REAR VIEW

For 5GHz: Ant. B

FRONT VIEW

REAR VIEW

Ant. D

FRONT VIEW

REAR VIEW

