

Originator's Report Number: 3051978 Project Number: 3051978 February 16, 2004

Evaluation of the

Access Point, Model: Soling

to (checked standards)

FCC Part 15, Subpart B

ETSI 301 489-1

VCCI V-3 / 2000.04

Class B

For

Colubris Networks

Date of Test: December 15, 2003 – February 16 Testing performed by: Intertek Testing Services 70 Codman Hill Road Boxborough, MA, 01719

> Testing Authorized by: Colubris Networks 420 Armand-Frappier Suite 200 QC, H7V 4B4 Canada

Prepared by:

Nicholas Abbondante

Michael F. Murphy

Date:

 \square

Reviewed by:

Date:

This report is for the exclusive use of ITS's Client and is provided pursuant to the agreement between ITS and its Client. ITS's responsibility and liability are limited to the terms and conditions of the agreement. ITS assumes no liability to any party, other than to the client in accordance with the agreement, for any loss, expense, or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the ITS name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by ITS. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an ITS certification program.

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	3
1.1	SCOP	Е	3
1.2	EXEC	UTIVE SUMMARY	3
1.3	Job d	ESCRIPTION	4
1	1.3.1	Client Information	4
1	1.3.2	Equipment under test (EUT)	4
1	1.3.3	Test plan reference	4
1.4	Brief	F DESCRIPTION OF EUT AND RECEIVED CONDITION	5
1.5	Syst	EM TEST CONFIGURATION	6
1.6	Syst	EM BLOCK DIAGRAM	7
1.7	EUT	OPERATION AND EXERCISE	8
1.8	JUSTI	FICATIONS	8
1.9	MOD	FICATIONS REQUIRED FOR COMPLIANCE	8
2.0	TEST	ENVIRONMENT	9
2.1	TEST	FACILITY	9
2.2	TEST	EQUIPMENT	10
2.3	Field	STRENGTH CALCULATION	11
2.4	MEAS	SUREMENT UNCERTAINTY	12
3.0	FLEC	TROMAGNETIC RADIATION DISTURBANCE	13
31	TEST	I mits	13
3.2	TEST	PROCEDURE	14
33	TEST	RESULTS	14
3.4	TEST	CONFIGURATION PHOTOGRAPH	14
4.0			
4.0	AC ML	AINS LINE-CONDUCTED DISTUKBANCE	17
4.1	TEST	LIMITS	1/ 10
4.2	TESI	PROCEDURE	10
4.5	TEST	CONFIGURATION PROTOCOLORIS	10
4.4	TEST	CONFIGURATION PHOTOGRAPHS	18
5.0	LABE	LING AND INSTRUCTION MANUAL REQUIREMENTS	32
5.1	FCC	PART 15, SUBPART B	32
4	5.1.1	Labeling Requirements	32
-	5.1.2	Instruction Manual Requirements	32
5.2	ETSI	EN 301 489-1	34
-	5.2.1	Labeling Requirements	34
-	5.2.2	Instruction Manual Requirements	34
5.3	VCC	[35
4	5.3.1	Labeling Requirements	35
4	5.3.2	Instruction Manual Requirements	35

Appendix A - Harmonics and Flicker

1.0 INTRODUCTION

1.1 Scope

This report is designed to show compliance with the following standards:

- FCC Part 15, Subpart B rules for an unintentional radiator
- ETSI EN 301 489-1
- VCCI V-3 / 2000.04

The test procedures described in American National Standards Institute C63.4: 1992, VCCI V-3 / 2000.04, and CISPR 16-1: 1993 were employed. A description of the product and operating configurations, the various provisions of the rules, the methods for determining compliance and a detailed summary of the results are included within this test report.

1.2 Executive Summary

	Colubris Networks Equipment Under Test: Access Point, Model: Soling						
	Test Description	Class	Comments				
R٤	idiated Emissions						
•	FCC Part 15	В	Pass				
•	ETSI EN 301 489-1	В	Pass				
•	VCCI	В	Pass				
Ha	armonics & Flicker						
•	ETSI EN 301 489-1	-	Pass				
Co	onducted Emissions (AC Mains)						
•	FCC Part 15	В	Pass				
•	ETSI EN 301 489-1	В	Pass				
•	VCCI	В	Pass				

See section 1.9 for modifications required for compliance.

1.3 Job description

1.3.1 Client Information

The EUT has been tested at the request of						
Company:	Colubris Networks					
	420 Armand-Frappier Suite 200					
	QC, H7V 4B4 Canada					
Name of contact:	Mr. Claude Robitaille					
Telephone:	450-680-1661					
Fax:	450-680-1910					

1.3.2 Equipment under test (EUT)

Equipment type:	Access Point
Model number(s):	Soling
Part or serial number:	M021-00017
Manufacturer:	Colubris Networks
EUT receive date:	December 8, 2003
EUT received condition:	Good
EUT type:	Wireless LAN
Test start date:	December 15, 2003
Test end date:	February 16, 2004

1.3.3 Test plan reference

The test procedures described in American National Standards Institute C63.4: 1992, VCCI V-3 / 2000.04, and CISPR 16-1: 1993 were employed.

1.4 Brief Description of EUT and Received Condition

The Access Point, Model: Soling, is a wireless LAN router conforming to the IEEE 802.11a/b/g standards. The normal temperature range of operation is from 0 to 50 degrees celsius. The Soling unit contains two 802.11a/b/g radios, designated Wvlan0 and Wvlan1 during testing. The EUT is capable of being powered via an AC power supply or through power over ethernet via a power injector.

A Production version of the sample was received on December 8, 2003 in good condition.

1.5 System Test Configuration

Support Equipment								
Description	Manufacturer	Model Number	Serial Number					
Ethernet Power Injector (Power Over Ethernet)	PowerD Sine	PD-6001/AC	A03216040001249A01					
AC Adapter (Sparkle Power Supply)	FSP Group, Inc.	FSP015-1AD201A	H0000025					
AC Adapter (Delta Power Supply ADP-10SB)	Delta Electronics	ADP-10SB	4D24KD5615SC					
AC Adapter (Delta Power Supply ADP-10MB)	Delta Electronics	ADP-10MB	DNT0104007805					
Laptop	Dell	Latitude CPt	6V5IL					

	Cables									
Quantity	Туре	Length (m)	Shielding	Ferrite	Connector Type					
1	Ethernet Crossover Cable	2	Foil	None	Metal Side Plating					
1	Ethernet Cable	4	Foil	None	Metal Side Plating					
1	Serial Cable	1.5	None	None	Plastic					
1	AC Adapter AC Cable	2	None	None	Plastic					
1	AC Adapter DC Cable	2	None	Built-in	Metal/360					

1.6 System Block Diagram

The diagram shown below details the interconnections of the equipment under test to the support equipment.

Power Supply

Power over Ethernet

Terminated Ethernet

1.7 EUT Operation and Exercise

The EUT was activated from nominal power and set to transmit normally.

1.8 Justifications

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in C63.4 (2000).

The arrangement of the cables dangling from the rear of the table was varied to the extent possible to produce the maximum emissions.

For maximizing emissions, the system was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported.

1.9 Modifications Required for Compliance

No modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Colubris Networks prior to compliance testing).

2.0 TEST ENVIRONMENT

2.1 Test Facility

Site 2C (Middle Site) is a 3m and 10m sheltered EMI measurement range located in a light commercial environment in Boxborough, Massachusetts. It meets the technical requirements of ANSI C63.4-1992 and CISPR 22:1993/EN 55022:1994 for radiated and conducted emission measurements. The shelter structure is entirely fiberglass and plastic, with outside dimensions of 33 ft x 57 ft. The structure resembles a quonset hut with a center ceiling height of 16.5 ft.

The testing floor is covered by a galvanized sheet metal groundplane that is earth-grounded via copper rods around the perimeter of the site. The joints between individual metal sheets are bridged with 2 inch wide metal strips to provide low RF impedance contact throughout. The sheets of metal are screwed in place with stainless steel, round-head screws every three inches. Site illumination and HVAC are provided from beneath the ground reference plane through flush entry ports, the port covers are electrically bonded to the ground plane.

A flush metal turntable with 12 ft. diameter and 5000 lb. load capacity is provided for floor-standing equipment. A wooden table 80 cm high is used for table-top equipment. The turntable is electrically connected to the ground plane with three copper straps. The straps are connected to the turntable at the center of it with ground braid. A copper strap is directly connected to the groundplane at the edges of the turntable. The turntable is located on the south end of the structure and the antennas are mounted 3 and 10 meters away to the north. The antenna mast is a non-conductive with remote control of antenna height and polarization. The antenna height is adjustable from 1 to 4 meters.

All final radiated emission measurements are performed with the testing personnel and measurement equipment located below the ground reference plane. The site has a full basement underneath the turntable where support equipment may be remotely located. Operation of the antenna, turntable and equipment under test is controlled by remote controls that manipulate the antenna height and polarization with a turntable control. Test personnel are located below the ellipse when measurements are performed, however the site maintains the ability of having personnel manipulate cables while monitoring test equipment. Ambient radiated emissions are 6 dB or more below the relevant FCC emission limits.

AC mains power is brought to the equipment under test through a power line filter, to remove ambient conducted noise. 50 Hz (240 VAC single phase), 60 Hz power (120 VAC single phase, 208 VAC three phase), and 60 Hz (480 VAC three phase) are available. Conducted emission measurements are performed with a Line Impedance Stabilization Network (LISN) or Artificial Mains Network (AMN) bonded to the ground reference plane. A removable vertical groundplane (2 meter X 2 meter area) is used for line-conducted measurements for table top equipment. The vertical groundplane is electrically connected to the reference groundplane.

2.2 Test Equipment

Table 2.1 contains a list of the test equipment used during the testing.

Description	Manufacturer	Model Number	ITS ID	Serial Number	Cal Due Date
Antenna	EMCO	3142	LOG4	9711-1225	02/18/2004
EMI Receiver Set	Hewlett Packard	8542E	REC2	3520A00125	12/18/2004
RF Filter	Hewlett Packard	85420E	RECFL2	3427A00126	12/18/2004
Spectrum Analyzer	Rohde & Schwarz	FSEK-30	ROS001	100225	05/26/2004
Spectrum Analyer	Agilent	E7405A	AGL001	US40240205	07/02/2004
Attenuator	Mini Circuits	20 dB, 50 Ohm	DS21	DS21	07/08/2004
LISN, 50 uH, 0.01-50 MHz, 24A	Solar Electronics	9252-50-R-24-BNC	LISN11	941713	05/29/2004
Cable, BNC-BNC 10m	Alpha	RG-58C/U	CBLBNC2	CBLBNC2	07/20/2004
Digital Multimeter	Fluke	87	SAF270	52951774	02/24/2004
LISN, 50 uH, 0.01-50 MHz, 24A	Solar Electronics	9252-50-R-24-BNC	LISN13	955107	03/11/2004
Cable, BNC-BNC 10m	Alpha	RG-58C/U	CBL10MS3	CBL10MS3	01/07/2004+
Variac	Powerstat	3PN236B	POW4	POW4	*
Attenuator	Mini Circuits	20 dB, 50 Ohm	DS26A	DS26A	01/07/2004+
Digital Multimeter	BK Precision	391	SAF013	099050522	5/19/2004
Digital 4 Line Barometer	Mannix	0ABA116	BAR2	BAR2	07/09/2004

Table 2.1 Test Equipment

+ - Note that these items were used prior to the calibration due date

* - AC Power Voltage was verified using a digital multimeter, listed in the test equipment section.

2.3 Field Strength Calculation

The following is how net radiated field strength readings were determined:

NF = RF + AF + CF - PF - AVF - DF

Where,

 $NF = Net Reading in dB\mu V/m$ $RF = Reading from receiver in dB\mu V$ AF = Antenna Correction Factor in dB(1/m) CF = Cable Correction Factor in dB PF = Pre-Amplifier Correction Factor in dB AVF = Duty Cycle Correction Factor in dB (only if applicable)DF = Distance Factor in dB (using 20 dB/decade unless otherwise specified)

To convert from $dB\mu V/m$ to $\mu V/m$ or mV/m the following was used:

 $UF = 10^{(NF/20)}$

Where,

UF = Net Reading in $\mu V/m$

Example:

 $NF = RF + AF + CF - PF - AVF - DF = 62.9 + 13.7 + 2.1 - 16.1 - 0.0 - 10.5 = 52.1 dB\mu V/m$

 $UF = 10^{(52.1 \text{ dB}\mu V/20)} = 403 \ \mu V/m$

2.4 Measurement Uncertainty

The expanded uncertainty (k = 2) for radiated emissions from 30 to 1000 MHz has been determined to be: $\pm 4 \text{ dB}$ at 10m, $\pm 5.4 \text{ dB}$ at 3m

The expanded uncertainty (k = 2) for mains conducted emissions from 150 kHz to 30 MHz has been determined to be:

 $\pm 2.6 \; dB$

3.0 ELECTROMAGNETIC RADIATION DISTURBANCE

3.1 Test Limits

Radiated Emission Limits at 10 meters							
Frequency (MHz)	Class A Quasi-Peak limits, dB (µV/m)	Class B Quasi-Peak limits, dB $(\mu V/m)^{(1)}$					
30 to 230	40	30					
230 to 1000	47	37					

Radiated Disturbance Limit for FCC, ETSI EN 301 489-1, and VCCI

⁽¹⁾ Note: If the field strength measurement at 10m cannot be made because of high ambient noise levels or for other reasons, measurement of Class B EUT's may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specific distance for determining compliance. For example, a factor of – 10.5 dB should be applied to a reading taken at 3 meters

3.2 Test Procedure

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4: 1992, ETSI EN 301 489-1, VCCI V-3 / 2000.04.

3.3 Test Results

The test results are located in Table 3.3-1.

3.4 Test Configuration Photograph

Figures 3.4-1 and 3.4-2 show the testing configurations used.

Table 3.3-1: Radiated Disturbance

Radiated Emissions / Interference

	Company:	Colubris No	etworks			Model #:	Soling			
	Engineer:	Nicholas A	bbondante	Location:	Site 2	Serial #:	M021-0001	7		
	Project #:	3051978		Pressure:	988 mb	Receiver:	HP 8542E			
	Date:	02/07/04		Temp:	21c	Antenna:	LOG4 2-18	-04 V10.ant	LOG4 2-18-	-04 H10.ant
	Standard:	Cispr 22		Humidity:	32%	PreAmp:	None			
	Class:	В	Group:	1		Cable(s):	Site2, 10M Flo	or 3-22-04.cbl	None	
	Lim	it Distance:	10	meters	Tes	st Distance:	10	meters		
	Voltage/	Frequency:	120V /	/ 60 Hz	Freque	ncy Range:	30 MHz	- 1 GHz		
Ant.			Antenna	Cable	Pre-amp	Distance				
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
V	40.070	5.9	11.2	0.9	0.0	0.0	18.0	30.0	-12.0	
V	62.290	11.6	7.1	1.1	0.0	0.0	19.9	30.0	-10.1	
V	114.900	10.9	7.4	1.6	0.0	0.0	19.9	30.0	-10.1	
V	139.200	19.1	7.5	1.8	0.0	0.0	28.5	30.0	-1.5	
V	168.800	18.1	9.2	2.0	0.0	0.0	29.3	30.0	-0.7	
V	241.700	8.4	12.0	2.5	0.0	0.0	23.0	37.0	-14.0	
V	268.300	7.3	12.9	2.7	0.0	0.0	22.9	37.0	-14.1	

Figure 3.4-1 Radiated Emission Front View

Figure 3.4-2 Radiated Emission Rear View

4.0 AC MAINS LINE-CONDUCTED DISTURBANCE

4.1 Test Limits

FCC, ETSI EN 301 489-1, and VCCI Limits for Mains Ports Conducted Disturbances

Frequency	Class A Lii	mit (dBµV)	Class B Limit (dBµV)		
band MHz	Quasi-Peak	Average	Quasi-Peak	Average	
0.15-0.50	79	66	66 to 56*	56 to 46*	
0.50-5.00	73	60	56	46	
5.00-30.00	73	60	60	50	

* The limit decreases linearly with the logarithm of the frequency in the range of 0.15 MHz to 0.50 MHz. Note: The lower limit shall apply at the transition frequency

4.2 Test Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

The EUT, where intended for table-top use, is placed 0.4m from a vertical metal reference plane of at least 2m by 2m and shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT.

Floor standing EUTs are place on a horizontal metal ground plane, the point(s) of contact being consistent with normal use but not in metallic contact with the ground plane. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.4: 1992, ETSI EN 301 489-1, VCCI V-3 / 2000.04.

4.3 Test Results

The test results are located in Tables 4.3-1 through 4.3-12.

4.4 Test Configuration Photographs

Figures 4.4-1 through 4.4-8 show the testing configurations used.

Table 4.3-1 & 2: FCC Part 15 Conducted Emissions at AC Main Power over Ethernet and Delta Power Supply ADP-10MB

Conducted Emissions / Interference

Engineer:Nicholas AbbondanteLocation:Site 2Serial #:M021-00017Project #:3051978Pressure:990mbReceiver:HP 8542EDate:01/28/04Temp:15cCable:CBLBNC2 7-20-04.cblStandard:CISPR 22Humidity:30%LISN 1, 2:LISN11 [1] 5-29-04.lsnLISN11 [2] 5-29-06Class:BGroup:1LISN 3, N:NoneNoneNonePreamp:NoneAttenuator:DS21 7-08-04.attVoltage/Frequency:120V/60HzFrequency Range:150 kHz - 30 MHzNet is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over EthernetQuasi-PeakFrequencyFrequencyLine 1Line 2Line 3NeutralNetLimitMHzdB(uV)dB(uV)dB(uV)dB(uV)dB(uV)dB(uV)dB(uV)	bl n LISN11 [2] None	2] 5-29-04.Isn
Project #: 3051978 Pressure: 990mb Receiver: HP 8542E Date: 01/28/04 Temp: 15c Cable: CBLBNC2 7-20-04.cbl Standard: CISPR 22 Humidity: 30% LISN 1, 2: LISN11 [1] 5-29-04.lsn LISN11 [2] 5-29-04.lsn Class: B Group: 1 LISN 3, N: None None Preamp: None Attenuator: DS21 7-08-04.att Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Quasi-Peak Frequency Line 1 Line 2 Line 3 Neutral MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV)	bl n LISN11 [2] None	2] 5-29-04.Isn
Date: 01/28/04 Temp: 15c Cable: CBLBNC2 7-20-04.cbl Standard: CISPR 22 Humidity: 30% LISN 1, 2: LISN 11 [1] 5-29-04.lsn LISN11 [2] 5-29-04.lsn Class: B Group: 1 LISN 3, N: None None Preamp: None Attenuator: DS21 7-08-04.att Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Power Over Ethernet Frequency Reading Reading Reading Quasi-Peak MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV)	bl n LISN11 [2] None	2] 5-29-04.Isn
Standard: CISPR 22 Humidity: 30% LISN 1, 2: LISN11 [1] 5-29-04.Isn LISN11 [2] 5-29-04 Class: B Group: 1 LISN 3, N: None None Preamp: None Attenuator: DS21 7-08-04.att None Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Frequency Reading Reading Reading Reading Reading Line 1 Line 2 Line 3 Neutral MHz dB(uV) dB(uV) dB(uV) dB(uV)	n LISN11 [2] None	2] 5-29-04.lsr.
Class: B Group: 1 LISN 3, N: None None Preamp: None Attenuator: DS21 7-08-04.att Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Power Over Ethernet Frequency Reading Reading Reading Quasi-Peak Frequency Line 1 Line 2 Line 3 Neutral MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV)	None	-
Preamp: None Attenuator: DS21 7-08-04.att Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Prequency Reading Reading Reading Frequency Line 1 Line 2 Line 3 Neutral MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV)		
Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Power Over Ethernet Reading Reading Reading Reading Reading Reading Frequency Line 1 Line 2 Line 3 Neutral Net Limit Margin MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV) dB(uV) dB(uV) dB(uV)		
Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Power Over Ethernet Reading Quasi-Peak MHz dB(uV) dB(uV)		
Power Over Ethernet Power Over Ethernet Quasi-Peak Reading Reading Reading Frequency Line 1 Line 2 Line 3 Neutral MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV)		
Reading FrequencyReading Line 1Reading Line 2Reading Line 3Reading NeutralQuasi-PeakMHzdB(uV)dB(uV)dB(uV)dB(uV)dB(uV)dB(uV)		
FrequencyLine 1Line 2Line 3NeutralNetLimitMarginMHzdB(uV)dB(uV)dB(uV)dB(uV)dB(uV)dB(uV)dB		
MHz dB(uV) dB(uV) dB(uV) dB(uV) dB(uV) dB(uV) dB		
0.198 35.9 34.4 57.9 63.7 -5.8		
0.903 17.1 16.9 37.5 56.0 -18.5		
1.623 19.3 19.1 39.6 56.0 -16.4		
8.704 12.9 15.9 36.3 60.0 -23.7	_	
15.670 20.5 9.2 41.1 60.0 -18.9		
28.560 5.5 9.1 30.0 60.0 -30.0		

	Reading	Reading	Reading	Reading		Average	
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB
0.198	27.5	26.2			49.5	53.7	-4.2
0.903	9.4	9.2			29.8	46.0	-16.2
1.623	0.1	2.0			22.3	46.0	-23.7
8.704	-3.7	-0.7			20.3	50.0	-29.7
15.670	15.5	-1.5			36.1	50.0	-13.9
28.560	-2.4	3.1			24.0	50.0	-26.0

Conducted Emissions / Interference

Company: Colubris Netwo	orks		Model #:	Soling	
Engineer: Nicholas Abbo	ndante Location:	Site 2	Serial #:	M021-00017	
Project #: 3051978	Pressure:	990mb	Receiver:	HP 8542E	
Date: 01/28/04	Temp:	15c	Cable:	CBLBNC2 7-20-04.cbl	
Standard: CISPR 22	Humidity:	30%	LISN 1, 2:	LISN11 [1] 5-29-04.lsn	LISN11 [2] 5-29-04.lsn
Class: B	Group: 1		LISN 3, N:	None	None
Preamp: None			Attenuator:	DS21 7-08-04.att	
Voltage/Frequency:	120V/60Hz	Frequ	ency Range:	150 kHz - 30 MHz	
in the our of worst asso lies	apple 8 attenuate		roomn goin	and initial reading	

Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Delta Power Supply ADP-10MB

	Reading	Reading	Reading	Reading		Quasi-Peak	(
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin			
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB			
0.188	30.4	24.6			52.5	64.1	-11.6			
0.526	19.1	19.5			40.5	56.0	-15.5			
4.277	16.6	16.4			36.9	56.0	-19.1			
8.249	14.5	14.3			34.9	60.0	-25.1			
17.840	8.9	9.3			30.0	60.0	-30.0			
26.760	11.2	12.8			33.7	60.0	-26.3			

	Reading	Reading	Reading	Reading		Average	
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB
0.188	9.1	3.9			31.2	54.1	-22.9
0.526	4.1	3.3			25.1	46.0	-20.9
4.277	4.3	4.3			24.6	46.0	-21.4
8.249	1.7	1.1			22.1	50.0	-27.9
17.840	-0.6	0.1			20.8	50.0	-29.2
26.760	1.0	2.7			23.6	50.0	-26.4

Table 4.3-3: FCC Part 15 Conducted Emissions at AC Main Delta Power Supply ADP-10SB

	Company: Engineer: Project #: Date: Standard: Class: Preamp: Voltage/I	Colubris Ne Jeff Goulet 3051978 02/13/04 CISPR 22 B None Frequency:	etworks Group: 120V/	Location: Pressure: Temp: Humidity: None /60Hz	Site 2 1002mb 22c 24% Freque	Model #: Serial #: Receiver: Cable: LISN 1, 2: LISN 3, N: Attenuator: ncy Range:	Soling w/ D M021-0001 HP 8542E CBLBNC2 LISN13 [1] None DS21 7-08 0.15-3	elta P.S 7 7-20-04.cbl 3-11-04.lsn -04.att 00MHz	LISN13 [2] 3-11-04.lsn None
Net is	the sum of	worst-case	lisn, cable,	& attenuato	or losses, pr	eamp gain,	and initial re	eading	
r			Delta Pow	er Supply A	ADP-10SB				•
		Reading	Reading				Quasi-Peak		
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	
	0.249	19.6	18.7			41.3	61.8	-20.5	
	0.330	15.2	13.1			36.5	59.5	-23.0	
	0.429	18.5	16.3			39.4	57.3	-17.8	
	0.578	13.5	8.4			34.2	56.0	-21.8	
	0.653	16.8	15.0			37.4	56.0	-18.6	
	0.983	16.4	17.8			38.2	56.0	-17.8	
	1.191	14.3	14.8			35.1	56.0	-20.9	
	1.412	13.4	14.1			34.4	56.0	-21.6	
	2.825	10.1	8.7			30.5	56.0	-25.5	
[3.031	7.9	7.2			28.3	56.0	-27.7	
	3.690	3.3	2.4			23.7	56.0	-32.3	
l l	5.219	9.1	7.7			29.5	60.0	-30.5	
l	5.651	10.9	9.2			31.3	60.0	-28.7	
ľ	15.820	2.2	1.0			22.8	60.0	-37.2	
ľ	26.510	7.0	7.8			28.7	60.0	-31.3	
i	26.690	6.9	7.7			28.6	60.0	-31.4	
	26,880	6.6	7.2			28.1	60.0	-31.9	
i	28,420	4.5	5.8			26.7	60.0	-33.3	
	28 590	40	4.6			25.5	60.0	-34 5	
	28 800	53	6.2			27.1	60.0	-32.9	
	29 240	1.0	21			23.0	60.0	-37.0	
ı I		Pooding	Pooding				Average		,
	Frequency					Not	Limit	Margin	
								dP	
ŀ							UB(UV)		
-	0.249	5.4	2.7			27.1	01.0 40.5	-24.7	
ŀ	0.330	5.9	2.1			27.2	49.5	-22.3	
	0.429	1.4	-6.4			22.3	47.3	-24.9	
	0.578	-0.3	-4.8			20.4	46.0	-25.6	
	0.653	3.4	0.4			24.0	46.0	-22.0	
ļ	0.983	2.9	1.8			23.0	46.0	-23.0	-
ļ	1.191	-2.4	-4.2			19.9	46.0	-26.1	
ļ	1.412	-2.9	-2.2			19.9	46.0	-26.1	
ļ	2.825	-2.2	-4.3			20.1	46.0	-25.9	
	3.031	-4.5	-5.3			20.2	46.0	-25.8	

0.653	3.4	0.4		24.0	46.0	-22.0
0.983	2.9	1.8		23.0	46.0	-23.0
1.191	-2.4	-4.2		19.9	46.0	-26.1
1.412	-2.9	-2.2		19.9	46.0	-26.1
2.825	-2.2	-4.3		20.1	46.0	-25.9
3.031	-4.5	-5.3		20.2	46.0	-25.8
3.690	-9.0	-9.7		20.2	46.0	-25.8
5.219	-1.4	-2.8		20.2	50.0	-29.8
5.651	0.7	-1.1		21.1	50.0	-28.9
15.820	-4.1	-8.1		20.4	50.0	-29.6
26.510	1.6	1.0		22.5	50.0	-27.5
26.690	-1.2	-0.2		20.7	50.0	-29.3
26.880	0.4	1.1		22.0	50.0	-28.0
28.420	-1.3	-1.1		20.5	50.0	-29.5
28.590	-3.5	-1.4		20.5	50.0	-29.5
28.800	-1.4	0.0		20.9	50.0	-29.1
29.240	-2.8	-1.9		20.5	50.0	-29.5

Table 4.3-4: FCC Part 15 Conducted Emissions at AC Main Sparkle Power Supply

Net is	Company: Engineer: Project #: Date: Standard: Class: Preamp: Voltage// the sum of	Colubris Ne Jeff Goulet 3051978 02/13/04 CISPR 22 B None Frequency: worst-case	etwroks Group: 120V. lisn, cable,	Location: Pressure: Temp: Humidity: None /60Hz & attenuato	Site 2 1002mb 22c 24% Freque	Model #: Serial #: Receiver: LISN 1, 2: LISN 3, N: Attenuator: ncy Range: eamp gain,	Soling w/ S M021-0001 HP 8542E CBLBNC2 LISN13 [1] None DS21 7-08 0.15-3 and initial re	5parkle P.S 7 7-20-04.cbl 3-11-04.lsn -04.att 30MHz eading	LISN13 [2] 3-11-04.lsn None
		Reading	Reading		supply		Quasi-Peak	(1
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	
	0.156	28.9	29.0			51.3	65.7	-14.4	
	0.213	23.4	24.6			46.5	63.1	-16.6	
	0.369	16.5	16.0			37.6	58.5	-20.9	
	0.895	7.4	8.7			29.3	56.0	-26.7	
	1.423	7.5	7.2			27.7	56.0	-28.3	
	1.897	5.9	5.9			26.3	56.0	-29.7	

1.423	7.5	7.2		27.7	56.0	-28.3
1.897	5.9	5.9		26.3	56.0	-29.7
2.424	6.6	6.3		27.0	56.0	-29.0
2.956	7.7	4.6		28.1	56.0	-27.9
3.483	6.9	4.9		27.3	56.0	-28.7
4.006	8.7	7.0		29.1	56.0	-26.9
4.479	8.6	5.5		29.0	56.0	-27.0
10.640	6.3	5.8		26.7	60.0	-33.3
14.850	6.4	5.8		27.0	60.0	-33.0
15.920	8.0	6.5		28.6	60.0	-31.4
17.840	12.3	10.2		33.0	60.0	-27.0

	Reading	Reading			Average	
Frequency	Line 1	Line 2		Net	Limit	Margin
MHz	dB(uV)	dB(uV)		dB(uV)	dB(uV)	dB
0.156	21.1	19.5		43.4	55.7	-12.3
0.213	17.1	18.0		39.9	53.1	-13.2
0.369	14.3	14.4		35.7	48.5	-12.9
0.895	3.9	7.0		27.6	46.0	-18.4
1.423	4.8	4.1		25.0	46.0	-21.0
1.897	2.1	0.6		22.5	46.0	-23.5
2.424	0.0	-1.9		20.4	46.0	-25.6
2.956	0.1	-4.8		20.5	46.0	-25.5
3.483	-1.0	-2.6		20.2	46.0	-25.8
4.006	0.2	-0.6		20.6	46.0	-25.4
4.479	-1.6	-4.2		20.2	46.0	-25.8
10.640	-6.7	-4.9		20.2	50.0	-29.8
14.850	-5.1	-5.2		20.3	50.0	-29.7
15.920	-3.2	-3.9		20.4	50.0	-29.6
17.840	10.0	6.0		30.7	50.0	-19.3

Table 4.3-5 & 6: ETSI EN 301 489-1 AC Main Conducted Emissions Power Over Ethernet and
Delta Power Supply ADP-10MB

Conducted Emissions / Interference

	Company: Engineer: Project #: Date: Standard:	Colubris Ne Nicholas Al 3051978 01/28/04 CISPR 22	etworks bbondante	Location: Pressure: Temp: Humidity:	Site 2 990mb 15c 30%	Model #: Serial #: Receiver: Cable: LISN 1, 2:	Soling M021-0001 HP 8542E CBLBNC2 LISN11 [1]	7 7-20-04.cbl 5-29-04.lsn	LISN11 [2] 5-29-04.lsn
	Class:	в	Group:	1		LISN 3, N	None		None
	Preamp:	None				Attenuator:	DS21 7-08	-04.att	
	Voltage/	Frequency:	230V/	/50Hz	Freque	ncy Range:	150 kHz	- 30 MHz	
Net is	the sum of	worst-case	lisn, cable,	& attenuato	or losses, pr	eamp gain,	and initial re	eading	
			Powe	er Over Eth	ernet				_
		Reading	Reading	Reading	Reading		Quasi-Peak		
	Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
	0.201	34.4	34.1			56.4	63.6	-7.2	
	0.547	26.1	26.3			47.3	56.0	-8.7	
	1.978	23.9	24.6			44.9	56.0	-11.1	
	8.477	21.8	17.2			42.2	60.0	-17.8	1
	15.670	23.7	27.5			48.1	60.0	-11.9	1
	27 620	11.3	10.7			32.2	60.0	-27.8	1

	Reading	Reading	Reading	Reading		Average	
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB
0.201	27.1	26.8			49.1	53.6	-4.5
0.547	14.7	12.4			35.6	46.0	-10.4
1.978	4.1	5.3			25.6	46.0	-20.4
8.477	16.8	-0.1			37.2	50.0	-12.8
15.670	18.1	23.1			43.7	50.0	-6.3
27.620	-0.9	5.5			26.4	50.0	-23.6

Conducted Emissions / Interference

Company:	Colubris Netwo	orks		Model #:	Soling	
Engineer:	Nicholas Abbo	ndante Location:	Site 2	Serial #:	M021-00017	
Project #:	3051978	Pressure:	990mb	Receiver:	HP 8542E	
Date:	01/28/04	Temp:	15c	Cable:	CBLBNC2 7-20-04.c	bl
Standard:	CISPR 22	Humidity:	30%	LISN 1, 2:	LISN11 [1] 5-29-04.ls	n LISN11 [2] 5-29-04.lsn
Class:	В	Group: 1		LISN 3, N:	None	None
Preamp:	None			Attenuator:	DS21 7-08-04.att	
Voltage/	Frequency:	230V/50Hz	Freque	ency Range:	150 kHz - 30 MHz	

Net is the sum of worst-case lisn, cable, & attenuator losses, preamp gain, and initial reading Delta Power Supply ADP-10MB

	Reading	Reading	Reading	Reading		Quasi-Peak					
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin				
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB				
0.169	25.1	27.0			49.5	65.0	-15.6				
0.337	20.6	21.0			42.5	59.3	-16.8				
0.851	21.2	20.7			41.8	56.0	-14.2				
4.080	20.9	20.9			41.2	56.0	-14.8				
8.008	19.6	19.9			40.4	60.0	-19.6				
18.980	23.2	20.0			43.9	60.0	-16.1				

	Reading	Reading	Reading	Reading		Average	
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB
0.169	15.8	10.3			38.2	55.0	-16.8
0.337	15.7	15.8			37.3	49.3	-12.0
0.851	14.3	13.5			34.9	46.0	-11.1
4.080	11.0	12.1			32.4	46.0	-13.6
8.008	6.4	6.7			27.2	50.0	-22.8
18.980	17.9	15.8			38.6	50.0	-11.4

Table 4.3-7: ETSI EN 301 489-1 AC Main Conducted Emissions Delta Power Supply ADP-10SB

Conducted Emissions / Interference

	Company:	Colubris Ne	etwroks			Model #:	Soling w/ D	elta P.S	
	Engineer:	Jeff Goulet		Location:	Site 2	Serial #:	M021-0001	7	
	Project #:	3051978		Pressure:	1002mb	Receiver:	HP 8542E		
	Date:	02/13/04		Temp:	22c	Cable:	CBLBNC2	7-20-04.cbl	
	Standard:	CISPR 22		Humidity:	24%	LISN 1, 2:	LISN13 [1]	3-11-04.lsn	LISN13 [2] 3-11-04.lsn
	Class:	В	Group:	None		LISN 3, N:	None		None
	Preamp:	None				Attenuator:	DS21 7-08	-04.att	
	Voltage/I	Frequency:	230V	/50Hz	Freque	ncy Range:	0.15-3	0MHz	
Net is	the sum of	worst-case	lisn, cable,	& attenuato	or losses, pr	eamp gain,	and initial re	eading	
			Delta Pow	er Supply /	ADP-10SB				_
		Reading	Reading				Quasi-Peak		
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	
	0.219	31.4	31.0			53.3	62.9	-9.6	
	0.330	24.1	25.2			46.5	59.5	-12.9	
	0.434	25.2	19.1			46.1	57.2	-11.0	
	0.545	20.0	18.4			40.7	56.0	-15.3	
	0.653	16.1	14.1			36.7	56.0	-19.3	
	0.983	27.1	23.2			47.2	56.0	-8.8	
	1.191	20.1	21.4			41.7	56.0	-14.3	ļ
	1.412	19.4	21.5			41.8	56.0	-14.2	
	2.825	17.7	18.1			38.4	56.0	-17.6	
	3.031	18.5	18.8			39.2	56.0	-16.8	
	3.690	14.1	13.2			34.5	56.0	-21.5	
	5.219	16.4	19.8			40.2	60.0	-19.8	
	5.651	17.8	16.7			38.2	60.0	-21.8	
	15.820	5.4	7.5			28.1	60.0	-31.9	
	26.490	5.6	6.7			27.6	60.0	-32.4	
	26.670	6.5	6.4			27.4	60.0	-32.6	
	26.850	7.8	8.6			29.5	60.0	-30.5	
	28.380	6.3	5.1			27.2	60.0	-32.8	
	28.560	6.8	2.6			27.7	60.0	-32.3	
	28.690	4.3	3.4			25.2	60.0	-34.8	
	28.760	7.3	5.0			28.2	60.0	-31.8	
	29.240	5.8	4.7			26.7	60.0	-33.3	
	29.910	2.5	2.2			23.4	60.0	-36.6	1
						r	-		т
	_	Reading	Reading				Average		ļ
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHZ	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	+
	0.219	20.5	11.7			42.4	52.9	-10.5	-
	0.330	15.9	18.3			39.6	49.5	-9.8	-
	0.434	17.4	8.9			38.3	47.2	-8.8	+
	0.545	10.1	1.1			30.8	46.0	-15.2	l T
	0.653	6.3	3.4			26.9	46.0	-19.1	1
	0.983	17.4	8.9			37.5	46.0	-8.5	
	1.191	6.6	6.7			27.0	46.0	-19.0	
	1.412	7.1	1.1			28.0	46.0	-18.0	
	2.825	0.4	4.8			20.8	46.0	-19.2	ł
	3.031	1.1	8.6			29.0	46.0	-17.0	ł
	3.690	3.6	2.5			24.0	46.0	-22.0	ł
	5.219	5.5	4.6			25.9	50.0	-24.1	ł
	5.651	0.8	0.4 2.7			27.2	50.0	-22.8	ł
	15.820	1./	2.1			23.3 20.7	50.0	-20.7	ł
	20.490	-2.0	-0.2			20.7	0.00	-29.3	1

20.7

22.3 20.5

21.6 22.4 22.1

24.4

20.6

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

-29.3

-27.7 -29.5

-28.4

-27.6

-27.9 -25.6

-29.4

26.670

26.850

28.380

28.560

28.690

28.760

29.240

29.910

-0.2

1.4

-0.7

0.7

1.5

1.2

3.5

-0.3

-1.7

-1.4

-1.7

-1.8

0.7

-1.3

2.2

-0.7

Table 4.3-8: ETSI EN 301 489-1 AC Mains Conducted Emissions Sparkle Power Supply

	Company:	Colubris Ne	etwroks			Model #:	Soling w/ S	parkle P.S	
	Engineer:	Jeff Goulet		Location:	Site 2	Serial #:	M021-0001	7	
	Project #:	3051978		Pressure:	1002mb	Receiver:	HP 8542E		
	Date:	02/13/04		Temp:	22c	Cable:	CBLBNC2	7-20-04.cbl	
	Standard:	CISPR 22		Humidity:	24%	LISN 1, 2:	LISN13 [1] :	3-11-04.lsn	LISN13 [2] 3-11-04.lsn
	Class:	В	Group:	None		LISN 3, N:	None		None
	Preamp:	None	·			Attenuator:	DS21 7-08	-04.att	
	Voltage/	Frequency:	230V	/50Hz	Frequer	ncy Range:	0.15-3	80MHz	
Net is	the sum of	worst-case	lisn, cable,	& attenuato	r losses, pr	eamp gain,	and initial re	eading	
			Sparl	kle Power S	upply	-		-	
		Reading	Reading				Quasi-Peak	(]
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	
	0 156	32.1	30.1			54.4	65.7	11 3	1

MHz	dB(uV)	dB(uV)		dB(uV)	dB(uV)	dB
0.156	32.1	30.1		54.4	65.7	-11.3
0.213	28.0	26.8		49.9	63.1	-13.2
0.369	21.0	18.5		42.1	58.5	-16.4
0.895	12.0	10.8		32.3	56.0	-23.7
1.423	12.4	9.2		32.6	56.0	-23.4
1.897	11.9	10.3		32.3	56.0	-23.7
2.424	11.7	10.0		32.1	56.0	-23.9
2.956	11.2	8.4		31.6	56.0	-24.4
3.483	10.3	8.9		30.7	56.0	-25.3
4.006	11.4	9.5		31.8	56.0	-24.2
4.479	11.0	6.2		31.4	56.0	-24.6
10.640	8.4	6.9		28.8	60.0	-31.2
14.850	11.4	10.6		32.0	60.0	-28.0
15.920	11.3	12.7		33.3	60.0	-26.7
17.840	21.1	13.2		41.8	60.0	-18.2

	Reading	Reading			Average	
Frequency	Line 1	Line 2		Net	Limit	Margin
MHz	dB(uV)	dB(uV)		dB(uV)	dB(uV)	dB
0.156	18.5	16.3		40.8	55.7	-14.9
0.213	14.8	20.7		42.6	53.1	-10.5
0.369	19.0	16.8		40.1	48.5	-8.4
0.895	11.6	10.4		31.9	46.0	-14.1
1.423	11.8	8.1		32.0	46.0	-14.0
1.897	11.2	8.8		31.6	46.0	-14.4
2.424	10.9	8.5		31.3	46.0	-14.7
2.956	5.9	6.3		26.6	46.0	-19.4
3.483	4.3	6.2		26.6	46.0	-19.4
4.006	8.9	6.1		29.3	46.0	-16.7
4.479	9.1	2.9		29.5	46.0	-16.5
10.640	2.8	-0.5		23.2	50.0	-26.8
14.850	5.5	4.2		26.1	50.0	-23.9
15.920	1.8	5.6		26.2	50.0	-23.8
17.840	17.3	-0.5		38.0	50.0	-12.0

Table 4.3-9 & 10: ETSI EN 301 489-1 AC Mains Conducted Disturbance Power Over Ethernet and Delta Power Supply ADP-10MB

Conducted Emissions / Interference

	Company: Engineer: Project #: Date: Standard:	Colubris Ne Nicholas Al 3051978 01/28/04	etworks obondante	Location: Pressure: Temp: Humidity:	Site 2 990mb 15c 30%	Model #: Serial #: Receiver: Cable:	Soling M021-0001 HP 8542E CBLBNC2	7 7-20-04.cbl	1 ISN11 121 5-20-04 Isn
	Class: Preamp:	B None	Group:	1	0070	LISN 3, N: Attenuator:	None DS21 7-08	-04.att	None
Net is	Voltage/ the sum of	Frequency: worst-case	100V/ lisn, cable, Powe	/60Hz & attenuato er Over Eth	Freque r losses, pr ernet	ncy Range: eamp gain,	150 kHz and initial re	- 30 MHz eading	
		Reading	Reading	Reading	Reading		Quasi-Peak	1	
	Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
	0.199	35.8	34.1			57.8	63.7	-5.9	
	0.795	20.3	19.3			41.0	56.0	-15.0	
	1.460	19.8	19.5			40.0	56.0	-16.0	
	10.190	16.8	17.2			37.6	60.0	-22.4	
	15.830	12.4	24.5			45.1	60.0	-14.9]
	27.240	7.0	6.4			27.9	60.0	-32.1	

	Reading	Reading	Reading	Reading	Average			
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin	
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
0.199	27.3	26.0			49.3	53.7	-4.4	
0.795	9.5	9.2			30.2	46.0	-15.8	
1.460	4.3	3.7			24.5	46.0	-21.5	
10.190	3.2	2.7			23.5	50.0	-26.5	
15.830	9.2	20.1			40.7	50.0	-9.3	
27.240	-2.0	-3.0			20.5	50.0	-29.5	

Company: Co	olubris Networks			Model #:	Soling	
Engineer: Ni	icholas Abbondante	Location:	Site 2	Serial #:	M021-00017	
Project #: 30	051978	Pressure:	990mb	Receiver:	HP 8542E	
Date: 01	1/28/04	Temp:	15c	Cable:	CBLBNC2 7-20-04.cbl	
Standard: V(CCI	Humidity:	30%	LISN 1, 2:	LISN11 [1] 5-29-04.lsn	LISN11 [2] 5-29-04.lsn
Class: B	Group:	1		LISN 3, N:	None	None
Preamp: No	one			Attenuator:	DS21 7-08-04.att	
Voltage/Fre	equency: 100V	/60Hz	Freque	ency Range:	150 kHz - 30 MHz	
Net is the sum of wo	orst-case lisn, cable,	& attenuato	r losses, pi	reamp gain,	and initial reading	

	Reading	Reading	Reading	Reading	Quasi-Peak						
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin				
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB				
0.174	25.1	24.4			47.4	64.8	-17.4				
0.470	18.9	19.0			40.1	56.5	-16.4				
3.970	15.8	16.0			36.3	56.0	-19.7				
8.125	12.4	11.9			32.8	60.0	-27.2				
18.980	22.3	19.1			43.0	60.0	-17.0				
26.580	7.8	10.2			31.1	60.0	-28.9				

	Reading	Reading	Reading	Reading	Average			
Frequency	Line 1	Line 2	Line 3	Neutral	Net	Limit	Margin	
MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
0.174	9.9	2.6			32.2	54.8	-22.6	
0.470	8.4	6.5			29.5	46.5	-17.0	
3.970	3.8	5.1			25.4	46.0	-20.6	
8.125	0.1	-0.5			20.5	50.0	-29.5	
18.980	21.6	17.6			42.3	50.0	-7.7	
26.580	-0.8	1.7			22.6	50.0	-27.4	

Table 4.3-11: ETSI EN 301 489-1 AC Mains Conducted Emissions Delta Power Supply ADP-10SB

	Company:	Colubris Ne	etworks			Model #:	Soling w/ D	elta P.S	
	Engineer:	Jeff Goulet		Location:	Site 2	Serial #:	M021-0001	7	
	Project #:	3051978		Pressure:	1002mb	Receiver:	HP 8542E		
	Date:	02/13/04		Temp:	22c	Cable:	CBLBNC2	7-20-04.cbl	
	Standard:	VCCI		Humidity:	24%	LISN 1, 2:	LISN13 [1]	3-11-04.lsn	LISN13 [2] 3-11-04.lsn
	Class:	В	Group:	None		LISN 3. N:	None		None
	Preamp:	None				Attenuator:	DS21 7-08	-04.att	
	Voltage/	Frequency:	100V	/60Hz	Freque	ncv Range:	0.15-3	OMHz	
Net is	the sum of	worst-case	lisn. cable.	& attenuato	r losses, pr	eamp gain.	and initial re	eading	
			Delta Pow	er Supply A	ADP-10SB	10 /		Ū	
		Reading	Reading				Quasi-Peak	[
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	
	0.281	17.8	15.9			39.3	60.8	-21.5	
	0.330	16.1	10.0			37.4	59.5	-22.1	
	0.429	10.5	8.5			31.4	57.3	-25.8	
	0.578	11.4	7.0			32.1	56.0	-23.9	
	0.653	11.0	12.0			32.9	56.0	-23.1	
	0.983	13.5	11.8			33.6	56.0	-22.4	
	1.191	14.3	9.3			34.5	56.0	-21.5	
	1.412	12.0	15.7			36.0	56.0	-20.0	
	2.825	7.1	5.7			27.5	56.0	-28.5	
	3.031	5.1	4.8			25.5	56.0	-30.5	
	15.820	2.2	3.4			24.0	60.0	-36.0	
	26.550	6.2	7.5			28.4	60.0	-31.6	
	26.720	5.5	7.4			28.3	60.0	-31.7	
	26.920	5.9	7.3			28.2	60.0	-31.8	
	28,440	4.8	5.1			26.0	60.0	-34.0	
	28.630	3.4	4.1			25.0	60.0	-35.0	
	28.820	5.1	6.5			27.4	60.0	-32.6	
							•		•
									_
		Reading	Reading				Average		
	Frequency	Line 1	Line 2			Net	Limit	Margin	
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB	
	0.281	9.9	9.1			31.4	50.8	-19.4	
	0.330	4.0	11.9			33.2	49.5	-16.2	
	0.429	2.1	4.2			25.3	47.3	-22.0	
	0.578	0.9	4.5			25.4	46.0	-20.6	
	0.653	6.2	-0.1			26.8	46.0	-19.2	
	0.983	10.0	5.8			30.1	46.0	-15.9	
	1.191	8.4	5.9			28.6	46.0	-17.4	
	1.412	4.1	5.0			25.3	46.0	-20.7	
	2.825	-2.3	-1.1			20.1	46.0	-25.9	
	3.031	3.1	3.9			24.3	46.0	-21.7	
	15.820	6.5	4.3			27.1	50.0	-22.9	
	26.550	8.1	7.9			29.0	50.0	-21.0	
	26.720	5.4	2.7			26.3	50.0	-23.7	
	26.920	4.9	3.6			25.8	50.0	-24.2	
	28.440	1.9	1.0			22.8	50.0	-27.2	
	28.630	-3.2	-3.3			20.5	50.0	-29.5	
	28.820	-1.4	0.1			21.0	50.0	-29.0	

Table 4.3-12: VCCI Conducted Emissions at AC Main Sparkle Power Supply

	Company:	Colubris Ne	etwroks	Model #: Soling w/ Sparkle P.S						
	Engineer:	Jeff Goulet		Location:	Site 2	Serial #:	M021-0001	7		
	Proiect #:	3051978		Pressure:	1002mb	Receiver:	HP 8542E			
	Date:	02/13/04		Temp:	22c	Cable:	CBLBNC2	7-20-04.cbl		
	Standard:	VCCI		Humidity:	24%	LISN 1. 2:	LISN13 [1]	3-11-04.lsn	LISN13 [2] 3-11-04.lsn	
	Class.	B	Group.	None		LISN 3 N	None		None	
	Preamn:	None	croup.			Attenuator:	DS21 7-08	-04 att		
	Voltage/	Frequency:	1001/	/60Hz	Freque	ency Range:	0 15-3	0MHz		
Not is	the sum of	worst-case	lien cable	& attenuato	r lossos n	reamn gain	and initial re	ading		
INCL 13		w0i3t-0a3e	Snarl	de Power S	lunnly	reamp gain,		aung		
		Reading	Reading		աթթույ				1	
	Frequency	Line 1	Line 2			Net	Limit	Margin		
	MH ₇							dB		
	0.156	28.0	202			61.2	0D(0V)	14.5		
	0.150	20.9	20.3			45.0	62.1	-14.5		
	0.213	23.1	22.0			43.0	03.1 59.5	-10.1		
	0.369	10.4	15.4			37.5	56.5	-21.0		
	0.895	3.8	7.6			28.2	56.0	-27.8		
	1.423	6.9	7.8			28.1	56.0	-27.9		
	1.897	5.7	6.4			26.7	56.0	-29.3		
	2.424	6.3	6.4			26.7	56.0	-29.3		
	2.956	7.1	4.1			27.5	56.0	-28.5		
	3.483	6.9	6.2			27.3	56.0	-28.7		
	4.006	8.8	6.9			29.2	56.0	-26.8		
	4.479	8.1	5.2			28.5	56.0	-27.5		
	10.640	6.5	6.7			27.1	60.0	-32.9		
	14.850	5.1	4.2			25.7	60.0	-34.3		
	15.920	8.6	1.8			29.2	60.0	-30.8		
	17.840	16.0	20.6			41.3	60.0	-18.7		
		Reading	Reading				Average			
	Frequency	Line 1	Line 2			Net	Limit	Margin		
	MHz	dB(uV)	dB(uV)			dB(uV)	dB(uV)	dB		
	0.156	20.3	18.7			42.6	55.7	-13.1		
	0.213	16.0	15.7			37.9	53.1	-15.2		
	0.369	13.9	13.2			35.0	48.5	-13.5		
	0.895	-0.8	4.0			24.6	46.0	-21.4		
	1.423	5.2	5.1			25.4	46.0	-20.6		
	1.897	2.3	1.7			22.7	46.0	-23.3		
	2.424	2.9	2.5			23.3	46.0	-22.7		
	2.956	3.3	-0.1			23.7	46.0	-22.3		
	3 483	32	15			23.6	46.0	-22.4		
	4 006	3.8	1.3			24.2	46.0	-21.8		
	4 479	3.7	0.2			24.1	46.0	_21.0		
	10.640	-3.5	22			22.6	50.0	-27.4		
	14 850	-2.7	-5.6			20.3	50.0	_29.7		
	15 020	-3.5	-6.6			20.0	50.0	-20.6		
	17.840	-3.3	-0.0			20.4	50.0	-23.0		
	17.040	13.2	10.0		1	30.7	50.0	-11.5	J	

Figure 4.4-1 Conducted Emission Front View, FCC & ETSI EN 301 489-1 120V and 230V Power Supply

Figure 4.4-2 Conducted Emission Rear or Side View, FCC & ETSI EN 301 489-1 120V and 230V Power Supply

Figure 4.4-3 Conducted Emission Front View, FCC & ETSI EN 301 489-1 120V and 230V Power over Ethernet

Figure 4.4-4 Conducted Emission Rear or Side View, FCC & ETSI EN 301 489-1 120V and 230V Power over Ethernet

Figure 4.4-5 Conducted Emission Front View, VCCI Power Supply 100V

Figure 4.4-6 Conducted Emission Rear or Side View, VCCI Power Supply 100V

Figure 4.4-7 Conducted Emission Front View, VCCI Power over Ethernet 100V

Figure 4.4-8 Conducted Emission Rear or Side View, VCCI Power over Ethernet 100V

5.0 LABELING AND INSTRUCTION MANUAL REQUIREMENTS

5.1 FCC Part 15, Subpart B

5.1.1 Labeling Requirements

Devices must be labeled with the following statement:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

5.1.2 Instruction Manual Requirements

The users manual or instruction manual for an unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

CLASS A

For a Class A digital device or peripheral, the instructions furnished to the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

If shielded cables or other specialized accessories are necessary for the unit to achieve compliance, a statement similar to the following should be added:

Shielded cables must be used with this unit to ensure compliance with the Class A FCC limits.

CLASS B

For a Class B digital device or peripheral, the instructions furnished to the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

- *NOTE:* This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio TV technician for help.

If shielded cables or other specialized accessories are necessary for the unit to achieve compliance, a statement similar to the following should be added:

Shielded cables must be used with this unit to ensure compliance with the Class B FCC limits.

5.2 ETSI EN 301 489-1

5.2.1 Labeling Requirements

There are no specific labeling requirements for ETSI EN 301 489-1.

5.2.2 Instruction Manual Requirements

Class A equipment should not be restricted in sale but the following warning shall be in the instructions for use:

Warning

This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

5.3 VCCI

5.3.1 Labeling Requirements

The VCCI specifies that the following labels must be placed on equipment meeting Class A and Class B VCCI limits.

<u>CLASS A</u>

CLASS B

5.3.2 Instruction Manual Requirements

The VCCI requires that statements be placed in the user's manual for devices meeting VCCI Class A and Class B limits.

CLASS A

CLASS B

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準 に基づくクラス目情報技術装置です。この装置は、家庭環境で使用すること を目的としていますが、この装置がラジオやテレビジョン受信機に近接して 使用されると、受信障害を引き起こすことがあります。 取扱説明書に従って正しい取り扱いをして下さい。