MPE Calculations

Below are MPE calculations for mobile use in each band of operation.

802.11b/g

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S \cup \frac{PG}{4 \cup R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

Maximum peak output power at the antenna terminal:	18.37 (dBm)
Maximum peak output power at the antenna terminal:	68.706844 (mW)
Antenna gain(typical):	4 (dBi)
Maximum antenna gain:	2.511886432 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	<u>2412</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1 (mW/cm^2)
Power density at prediction frequency:	0.034334 (mW/cm^2)
Maximum allowable antenna gain:	18.64269855 (dBi)

802.11a - (a)(1)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S \cup \frac{PG}{4 cR^2}$$

where: S = power density

P = power input to the antenna
G = power gain of the antenna in the direction of interest relative to an isotropic radiator

Maximum peak output power at the antenna terminal:	<u>13.33</u> (dBm)
Maximum peak output power at the antenna terminal:	21.52781735 (mW)
Antenna gain(typical):	<u>5</u> (dBi)
Maximum antenna gain:	3.16227766 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	5240 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1 (mW/cm^2)
Power density at prediction frequency:	0.013543 (mW/cm^2)
Maximum allowable antenna gain:	23.68269855 (dBi)

802.11a - (a)(2)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S \Box \frac{PG}{4 \Box R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

Maximum peak output power at the antenna terminal:	20.05 (dBm)
Maximum peak output power at the antenna terminal:	101.1579454 (mW)
Antenna gain(typical):	4.7 (dBi)
Maximum antenna gain:	2.951209227 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	5280 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1 (mW/cm^2)
Power density at prediction frequency:	0.059392 (mW/cm^2)
Maximum allowable antenna gain:	16.96269855 (dBi)

802.11a - (a)(3)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S \Box \frac{PG}{4 \Box R^2}$$

where: S = power density

P = power input to the antenna
G = power gain of the antenna in the direction of interest relative to an isotropic radiator

Maximum peak output power at the antenna terminal:	20.03 (dBm)
Maximum peak output power at the antenna terminal:	100.6931669 (mW)
Antenna gain(typical):	4.5 (dBi)
Maximum antenna gain:	2.818382931 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	5745 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1 (mW/cm^2)
Power density at prediction frequency:	0.056459 (mW/cm^2)
Maximum allowable antenna gain:	16.98269855 (dBi)

Conclusion

The above calculations are for a single radio. Since this device can operate with two radios simultaneously, a worst case prediction as to the power density with both radios can be determined by doubling the highest power density found above.

At 5745MHz Pd(single) = 0.06mW/cm² @ 20cm

Therefore $Pd(dual) = 0.12 \text{mW/cm}^2$ @ 20cm

which is well below the limit of 1mW/cm^2 @ 20cm