

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toil-free: (866) 311-3268 fax: (480) 926-3598

http://www.ComplianceTesting.com info@ComplianceTesting.com

Test Report

Prepared for: Cellphone-Mate Inc.

Model: TriFlex-2Go-V

Description: Triband Signal Booster Upper 700 Band Vehicle/Marine/RV/Desktop

FCC ID: RSNTRIFLEX-2GO-V

То

FCC Part 20

Date of Issue: January 22, 2014

On the behalf of the applicant:

Cellphone-Mate Inc. 48346 Milmont Drive Fremont, CA 94538

To the attention of:

Hongtao Zhan, CEO Ph: (510) 770-0469 Email: hzhan@cellphone-mate.com

Prepared By Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> Project No: p1410003

Greg Corbin

Greg Corbin Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	I.0 January 22, 2014 Greg Corbir		Original Document

Table of Contents

Description P	Page
Standard Test Conditions and Engineering Practices	5
Test Result Summary	7
Authorized Frequency Band	8
Maximum Power and Gain	12
Intermodulation	14
Out-of-Band Emissions	18
Conducted Spurious Emissions	39
Noise Limits	54
Uplink Inactivity	63
Variable Gain	66
Occupied Bandwidth	68
Oscillation Detection	87
Radiated Spurious	98
Test Equipment Utilized	101

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to <u>http://www.compliancetesting.com/labscope.html</u> for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

Test and Measurement Data Sub-part 2.1033(c)(14):

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Part 2, Subpart J and the following individual Parts: 20.21 in conjunction with latest version of KDB 935210.

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI/C63.4-2009, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F), unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Environmental Conditions							
Temp (ºC)	Humidity (%)	Pressure (mbar)					
18.2 – 22.2	20.8 - 34.0	971.8 - 981.1					

Measurement results, unless otherwise noted, are worst-case measurements.

EUT Description

Model: TriFlex-2Go-V

Description: Triband Signal Booster Upper 700 Band Vehicle/Marine/RV/Desktop

Firmware: N/A

Software: Revision 2.0

Additional Information:

The EUT is a **(Mobile)** bi-directional amplifier for the boosting of cellular phone signals and data communication devices. The following frequency bands and emission types are utilized.

Frequency Band (MHz)							
Uplink	776 - 787	824 - 849	1850 - 1910				
Downlink	746 - 757	869 - 894	1930 - 1990				
Modulation Type	LTE	GSM, CDMA, EDGE, HSPA. EVDO, LTE	CDMA, HSPA, LTE, EDGE, EVDO				

Emission Designators							
CDMA HSPA LTE EVDO EDGE GSM							
F9W	F9W	G7D	F9W	G7W	GXW		

The modulation types and emission designators listed in the tables represent the modulations that the cell phone providers use for each frequency band. GSM, CDMA, and WCDMA represent all the modulation types (phase and amplitude or a combination thereof) utilized within the industry. EDGE, HSPA, LTE etc. are all protocols or multiplexing techniques using the base modulations.

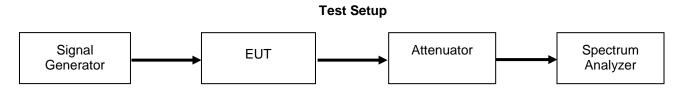
EUT Operation during Tests The EUT was in a normal operating condition.

Accessories:

Qty	Description	Mfg	Model	S/N
1	I.T.E. Power Supply	Surecall	GFP451DA-0945-1	N/A

Test Result Summary

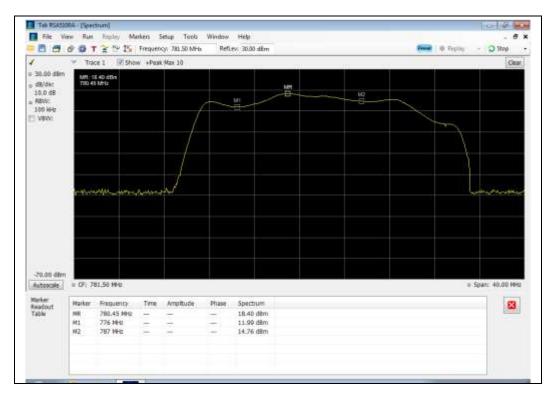
Specification	Test Name	Pass, Fail, N/A	Comments
20.21(e)(3)	Authorized Frequency Band	Pass	
20.21(e)(8)(i)(B) 20.21(e)(8)(i)(C) 20.21(e)(8)(i)(D)	Maximum Power and Gain	Pass	
20.21(e)(8)(i)(F)	Intermodulation	Pass	
20.21(e)(8)(i)(E)	Out-of-Band Emissions	Pass	
2.1051 22.917(a) 24.238((a) 27.53(c) 27.53(e)	Conducted Spurious Emissions	Pass	
20.21(e)(8)(i)(A)	Noise Limits	Pass	
20.21(e)(8)(i)(l)	Uplink Inactivity	Pass	
21(e)(8)(i)(C)	Variable Gain	Pass	
2.1049	Occupied Bandwidth	Pass	
20.21(e)(8)(ii)(A)	Oscillation Detection	Pass	
2.1053	Radiated Spurious	Pass	
20.21(e)(8)(i)(B)	Spectrum Block Filtering	N/A	This only applies to devices utilizing spectrum block filtering



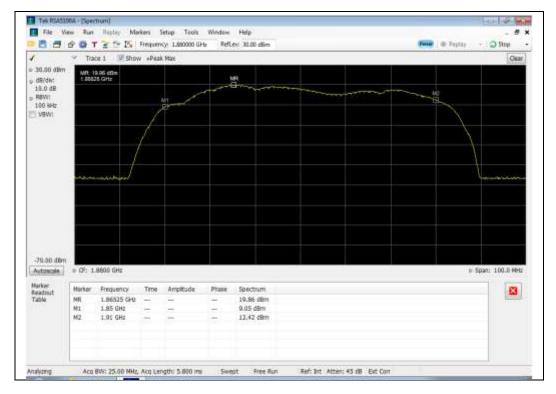
Authorized Frequency Band Name of Test: Test Equipment Utilized:

Authorized Frequency Band i00424, SMU 200A - S/N:101369 Engineer: Greg Corbin Test Date: 1/15/2014

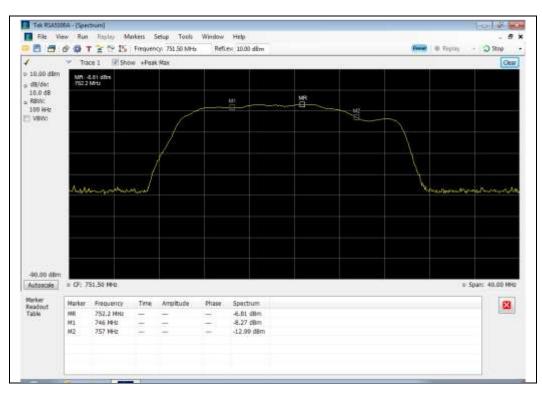
Test Procedure


The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as needed to ensure accurate readings. A signal generator was utilized to produce a CW input signal tuned to the center channel of the operational band. The RF input level was increased to a point just prior to the AGC being in control of the power. The Signal generator was set to sweep across 2X the operational band of the EUT while the spectrum analyzer was set to MAX HOLD. Two markers were placed at the edges of the operational band and a third marker was placed at the highest point within the band no closer than 2.5 MHz from the band edge.

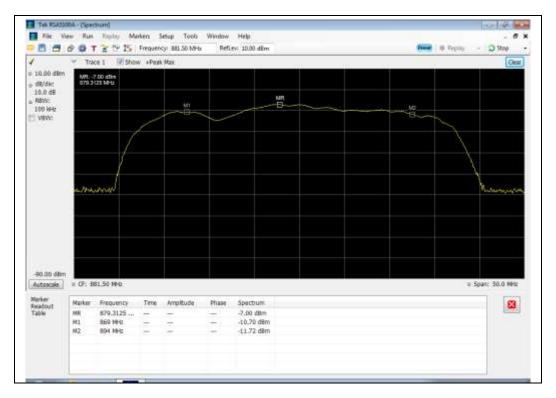
Uplink Test Results

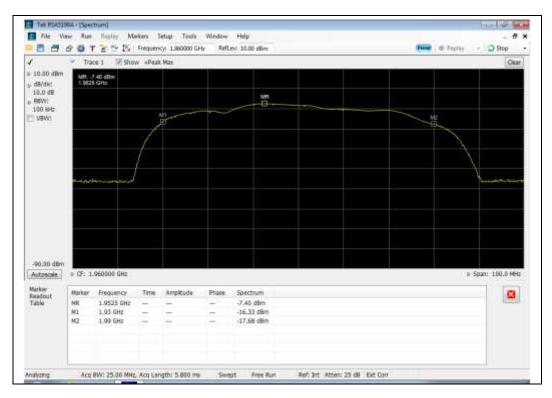

776 - 787 MHz Band

824 - 849 MHz Band


	6 (P) 1	学習話	Frequeo	Q1 836,50 MHs	Refl	evi 30.00 däm			(Frend)	@ Fetral	- 🔉 Stop
filen and	Y Tra	ce 1 🛛 Show	e «Peak	Max	201		0.0	10 52			Ce
30.00 dBm dB/dk: 10.0 dB	MH-2 829.1	0.17 dBn 175 MPu			-	en Dver-c			- 10		
RBW: 100 kHz VBW:			1	10							
		mining								LAN	myndana
-70.00 dBm											
Autoscale	= CF: B	36.50 MHz								* S	part: 50.0 MHU
farker leafout	Marker	Frequency	Time	Ampitude	Phase	Spectrum					83
Fable	MR	\$29.1875	-		-	20.17 dilm					1000
	M1 M2	824 MHz 849 MHz	=	-	-	14.60 dBm 17.87 dBm					
	1780		-	100		ar par Assert					

1850 - 1910 MHz Band

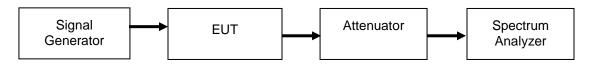

Downlink Test Results


746 - 757 MHz Band

1930 - 1990 MHz Band

Maximum Power and Gain Name of Test: Test Equipment Utilized:

Maximum Power and Gain i00424, SMU 200A - S/N:101369 Engineer: Greg Corbin Test Date: 1/15/2014


Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as needed to ensure accurate readings. The spectrum analyzer and signal generator were tuned to the frequency with the highest power level in the band, as determined by the Authorized Frequency Band test. The RF input level was increased to a point just prior to the AGC being in control of the power for both pulsed single time slot GSM modulation and 4.1 MHz AWGN modulation. The maximum power was measured and verified to meet the minimum and maximum levels allowed, with the maximum gain being computed from these values.

This is a mobile device with the maximum gain limit fixed at 50 dB for all bands.

The uplink and downlink gain under each condition was verified to be within 9 dB of each other.

Test Setup

Uplink Power Test Results

Frequency Band (MHz)	Input Level (dBm)	Output Power (dBm)	Lower Limit (dBm)	Upper Limit (dBm)	Result
776 - 787 MHz Pulsed GSM	-27.0	19.3	17	30	Pass
776 - 787 MHz AWGN	-29.2	18.2	17	30	Pass
824 - 849 MHz Pulsed GSM	-25.0	20.0	17	30	Pass
824 - 849 MHz AWGN	-26.5	18.9	17	30	Pass
1850 - 1910 MHz Pulsed GSM	-25.7	20.4	17	30	Pass
1850 - 1910 MHz AWGN	-28.2	19.4	17	30	Pass

Downlink Power Test Results

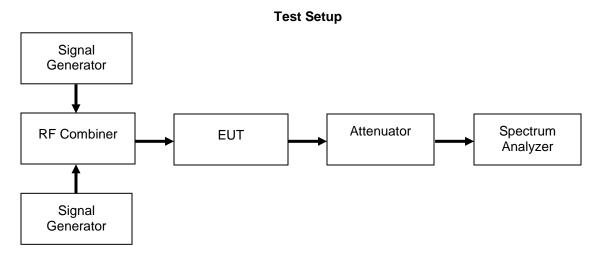
Frequency Band (MHz)	Input Level (dBm)	Output Power (dBm)	Upper Limit (dBm)	Result
746 - 757 MHz Pulsed GSM	-51.5	-6.3	17	Pass
746 - 757 MHz AWGN	-55.9	-9.5	17	Pass
869 - 894 MHz Pulsed GSM	-51.6	-6.8	17	Pass
869 - 894 MHz AWGN	-54.9	-8.6	17	Pass
1930 - 1990 MHz Pulsed GSM	-53.0	-7.4	17	Pass
1930 - 1990 MHz AWGN	-56.8	-9.6	17	Pass

Uplink and Downlink Gain Test Results

Modulation	Uplink Frequency (MHz)	Downlink Frequency (MHz)	Uplink Gain (dB)	Uplink Limit (dB)	Downlink Gain (dB)	Downlink Limit (dB)	Delta (dB)	Limit (dB)	Margin (dB)
Pulsed GSM	780.450	752.200	46.3	50	45.2	50	1.1	9	-7.9
AWGN	780.450	752.200	47.4	50	46.4	50	1.0	9	-8.0
Pulsed GSM	829.188	879.313	45.0	50	44.8	50	0.2	9	-8.8
AWGN	829.188	879.313	45.4	50	46.3	50	0.9	9	-8.1
Pulsed GSM	1865.250	1952.250	46.1	50	45.6	50	0.5	9	-8.5
AWGN	1865.250	1952.250	47.6	50	47.2	50	0.4	9	-8.6

Intermodulation

Name of Test: Test Equipment Utilized:


i00424, SMU 200A - S/N:101369

Intermodulation

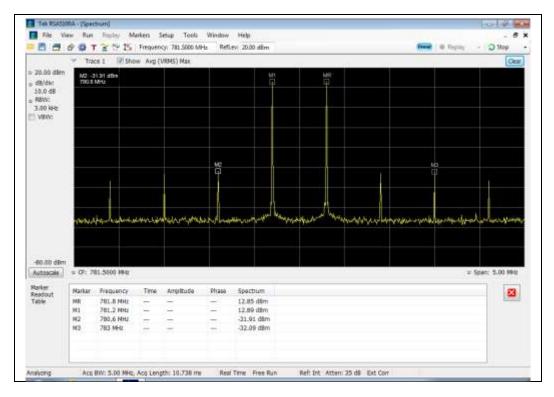
Engineer: Greg Corbin Test Date: 1/16/2014

Test Procedure

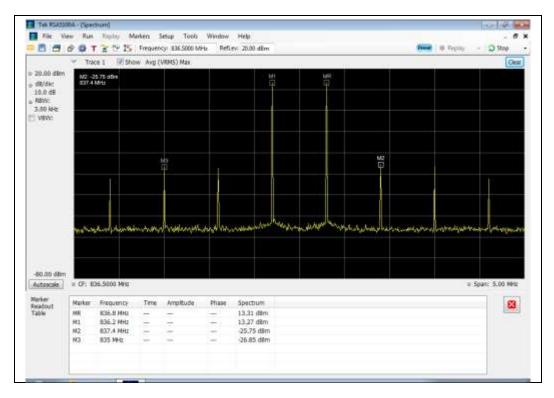
The EUT was connected to a spectrum analyzer through an attenuator. Two signal generators were utilized to produce two CW signals 600 kHz apart and centered in the operational band. Attenuator and cable insertion loss correction factors were input to either the signal generator or the spectrum analyzer as required to ensure that accurate measurements were recorded. The input power was set at the maximum allowable power and the RMS intermodulation products were measured to ensure they were less than -19 dBm in a 3 kHz RBW. The uplink and downlink intermodulation products were plotted, with the levels being listed in the summary tables.

Uplink Test Results

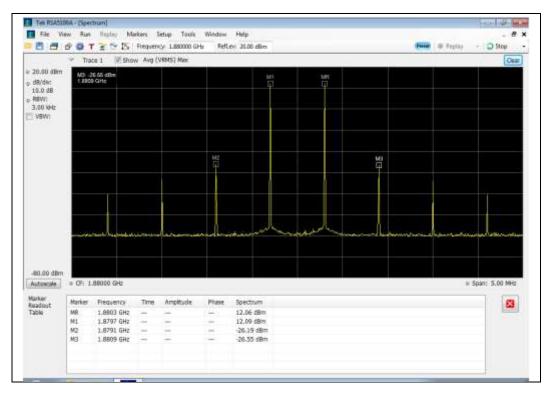
Frequency Band (MHz)	Intermodulation Level (dBm)	Limit (dBm)	Result
776 - 787 MHz	-31.9	-19	Pass
824 - 849 MHz	-25.7	-19	Pass
1850 - 1910 MHz	-26.6	-19	Pass


Downlink Test Results

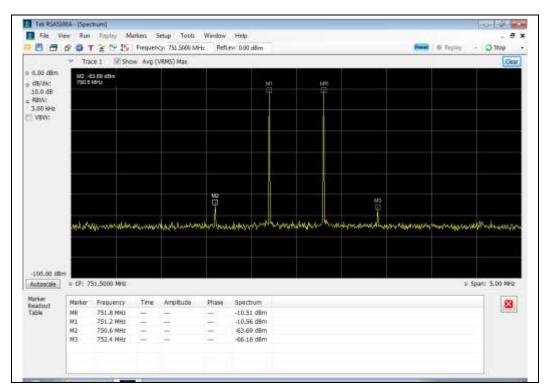
Frequency Band (MHz)	Intermodulation Level (dBm)	Limit (dBm)	Result
746 - 757 MHz	-63.7	-19	Pass
869 - 894 MHz	-67.9	-19	Pass
1930 - 1990 MHz	-72	-19	Pass



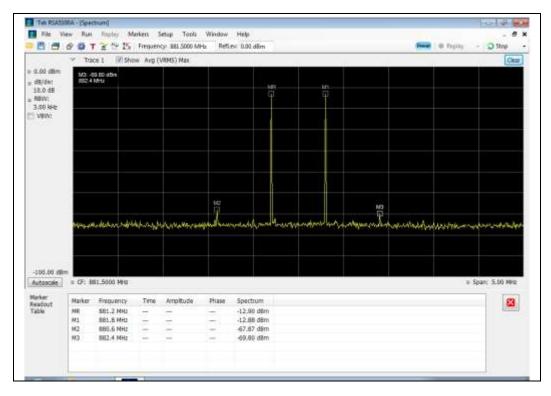
Uplink Test Results


776 - 787 MHz Band

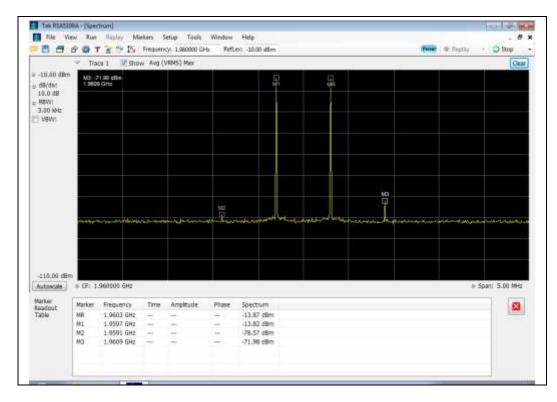
824 - 849 MHz Band



1850 - 1910 MHz Band

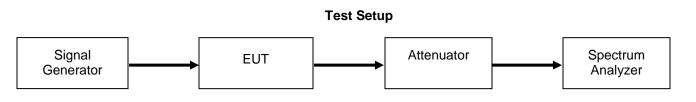

Downlink Test Results

746 - 757 MHz Band



1930 - 1990 MHz Band

Out-of-Band Emissions Name of Test: Test Equipment Utilized:


Out-of-Band Emissions i00424, SMU 200A - S/N:101369 Engineer: Greg Corbin Test Date: 1/16/2014

Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor in order to ensure accurate readings. A signal generator was utilized to produce the following signals: GSM, CDMA, and WCDMA. The signal generator was tuned to the lowest allowable upper and lower channel within the EUT operational band for each respective modulation type. The RF input level was increased to a point just prior to the AGC being in control of the power. For each modulation type the Out of Band Emissions were measured to ensure they met the limits.

The following formula was used for calculating the limits:

Limit = P1 - 6 - (43+10Log(P2)) = -19dBmP1 = power in dBm P2 = power in Watts

GSM Uplink Test Results

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
776 - 787	Lower	-39.9	-19	Pass
776 - 787	Upper	-31.7	-19	Pass
824 - 849	Lower	-43.7	-19	Pass
824 - 849	Upper	-42.7	-19	Pass
1850 - 1910	Lower	-49.8	-19	Pass
1850 - 1910	Upper	-48.4	-19	Pass

CDMA Uplink Test Results

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
776 - 787	Lower	-49.7	-19	Pass
776 - 787	Upper	-46.1	-19	Pass
824 - 849	Lower	-43.5	-19	Pass
824 - 849	Upper	-38.4	-19	Pass
1850 - 1910	Lower	-56.9	-19	Pass
1850 - 1910	Upper	-50.8	-19	Pass

WCDMA Uplink Test Results

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
776 - 787	Lower	-49.6	-19	Pass
776 - 787	Upper	-49.3	-19	Pass
824 - 849	Lower	-40.1	-19	Pass
824 - 849	Upper	-38.3	-19	Pass
1850 - 1910	Lower	-20.4	-19	Pass
1850 - 1910	Upper	-47.5	-19	Pass

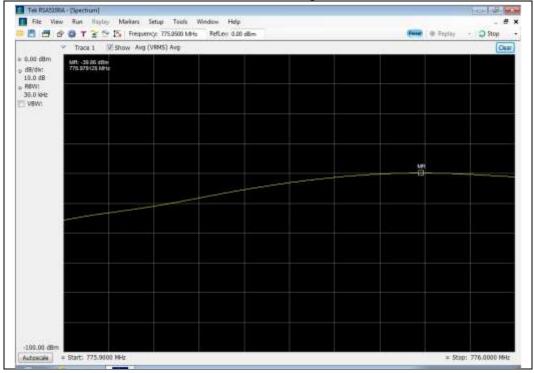
GSM Downlink Test Results

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
746 - 757	Lower	-58.8	-19	Pass
746 - 757	Upper	-60.5	-19	Pass
869 - 894	Lower	-70.9	-19	Pass
869 - 894	Upper	-70.5	-19	Pass
1930 - 1990	Lower	-75	-19	Pass
1930 – 1990	Upper	-76.3	-19	Pass

CDMA Downlink Test Results

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
746 – 757	Lower	-76.1	-19	Pass
746 – 757	Upper	-77.4	-19	Pass
869 - 894	Lower	-76	-19	Pass
869 – 894	Upper	-76.4	-19	Pass
1930 – 1990	Lower	-77.4	-19	Pass
1930 – 1990	Upper	-77.3	-19	Pass

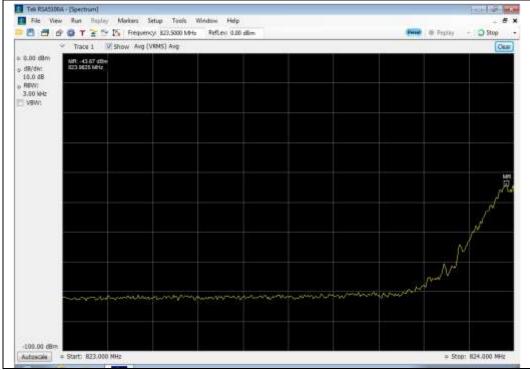
WCDMA Downlink Test Results

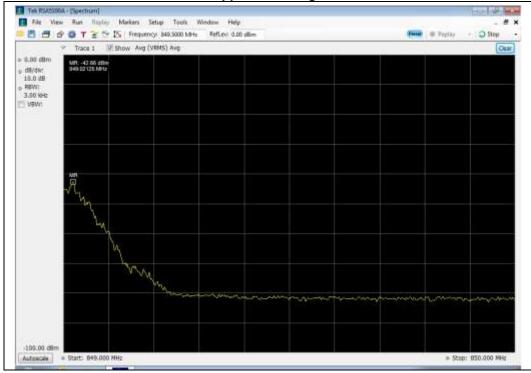

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
746 – 757	Lower	-76	-19	Pass
746 – 757	Upper	-77.5	-19	Pass
869 - 894	Lower	-70.8	-19	Pass
869 - 894	Upper	-70.7	-19	Pass
1930 – 1990	Lower	-72.4	-19	Pass
1930 - 1990	Upper	-72.1	-19	Pass

GSM Uplink Test Plots

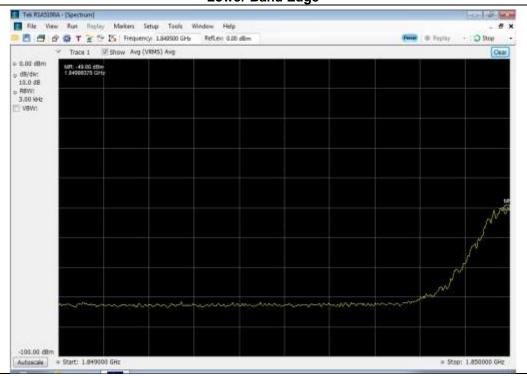
776 - 787 MHz Band

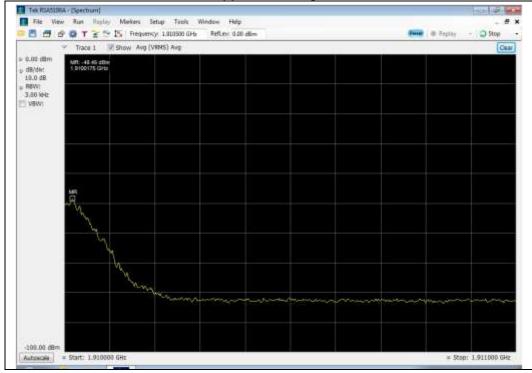
Lower Band Edge




	and the second se	ky: 767,0500 MHz Ref	Contract of and page in		Perce	an estimate	2 Stop	
1 Tr	Trace 1 📝 Show Avg (VRRS) Avg							
0.00 dBm MR: d8/dir: rer 10.0 dB ReVI: 36.0 kHz	-31.69 cflm eft							
l vewi								

824 - 849 MHz Band





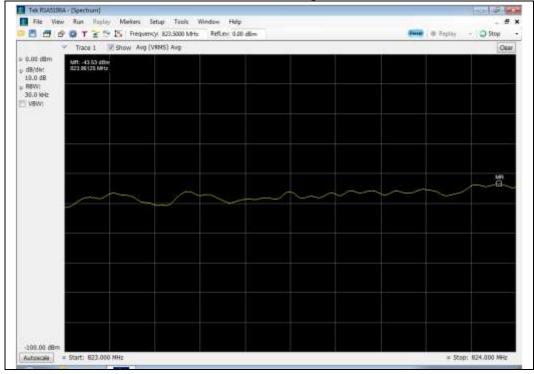
1850 - 1910 MHz Band

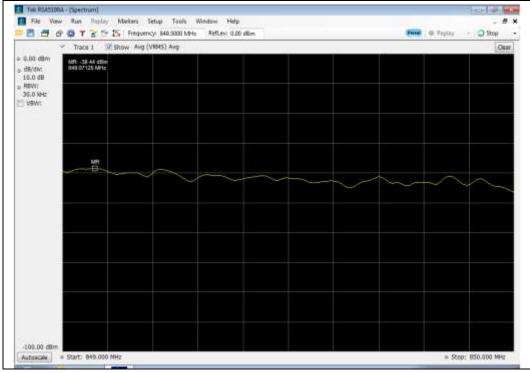
Lower Band Edge

CDMA Uplink Test Plots

776 - 787 MHz Band

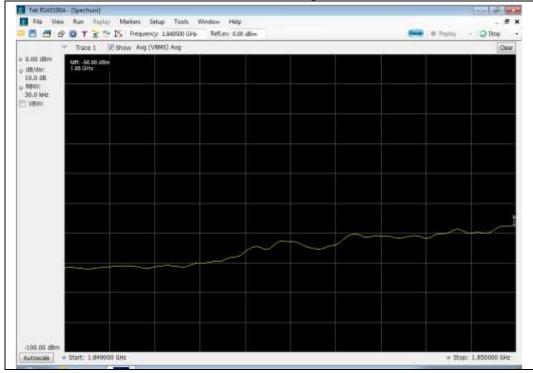
Lower Band Edge

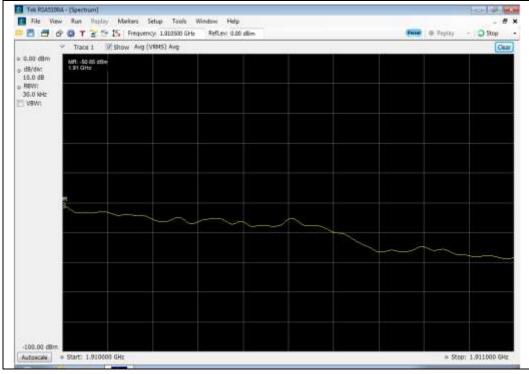

and the second se	And in case of the local division of the loc	and the second se	the second s	RefLex 0.00					@ Feplay	- Stop	
and the second	Trace 1 If Show Arg (VRMS) Avg										
d8/d%: 10.0 d8	891; -49:74 cElm 76 MPtz										
RBW1 36.0 KHz VBW1											


	TETA	Frequency: 787.0500 M	the RefLexi 0.0	0 dBm			in the second	@ Peplay ·	- O Stop		
	Trace 1 V Show Avg (VRRS) Avg Quarter of the state of										
0.00 dBm , dB/dHt 10.0 dB , RØW(MPL: +46.07 cEller 787 MPuz										
36.0 KHz V9W1											
	R										
-109.00 dBm											

824 - 849 MHz Band

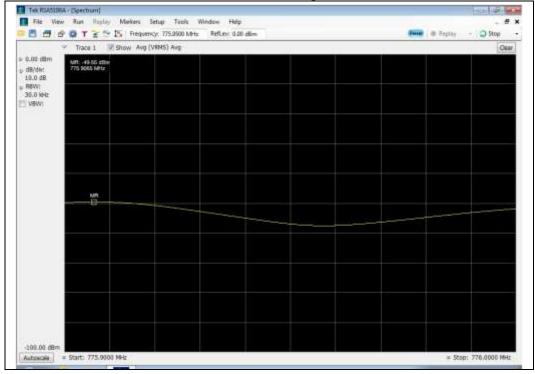
Lower Band Edge





1850 - 1910 MHz Band

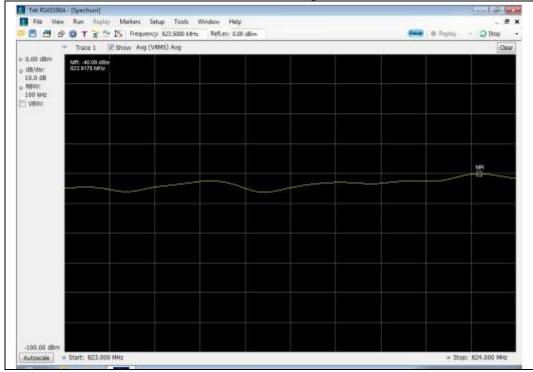
Lower Band Edge



WCDMA Uplink Test Plots

776 - 787 MHz Band

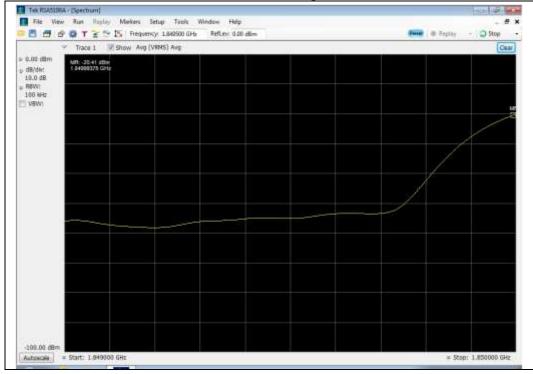
Lower Band Edge



	P 🕶 T 😤 🗠 🌆 F	rednese2i termoni i	ALL RECENTATION	pom				- w. estraj	orf C	
	* Trace 1 1 Show Arg (VRMS) Avg									
 0.02 dBm dB/dHt 10.0 dB R6WI 	WFL +49.33 effin 787 1 MHz									
36.0 KH2 199W1										

824 - 849 MHz Band

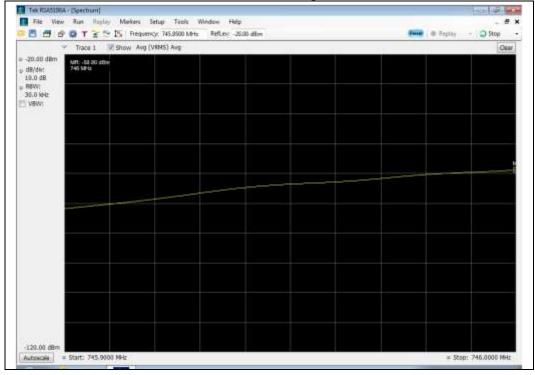
Lower Band Edge



			Setup Tools					-	1.00	
000	and the second data where the second data wh		Cyl 848,5000 MH	E Reflex 0.0	0 dBm			Freed	@ Pepiky	- Stop
	Trace 1 V Show Avg (VBRS) Avg									
d8/d%: 10.0 dB	MR: -34 26 dBH 049 125 MHz									
RØWI 100 kHr VBW1										
		мя — []								
109.00 dBm										

1850 - 1910 MHz Band

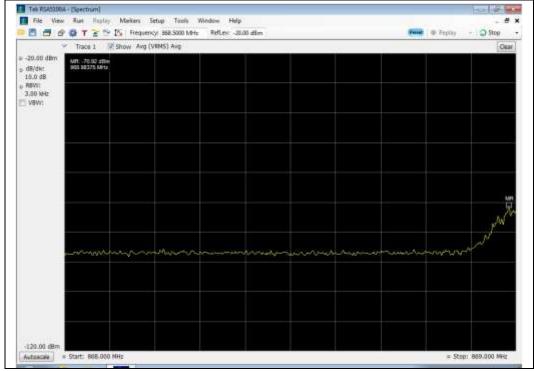
Lower Band Edge

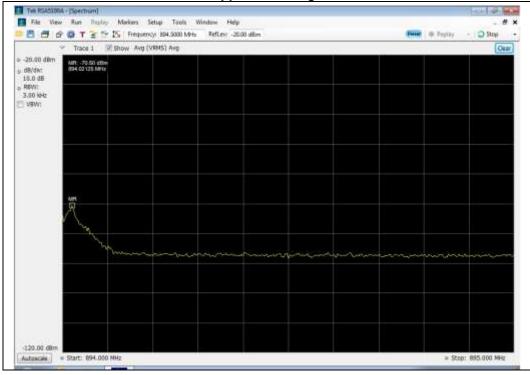

889	and the second designed of		the second second second second second						@ Peplay	- O Stop	
	Trace 1 V Show Avg (VRMS) Avg On										
0.00 dBm dB/dw: 10.0 dB ReW! 100 KHz	-47.50 cfla 1013 Gift										
VBW1											
		MR									

GSM Downlink Test Plots

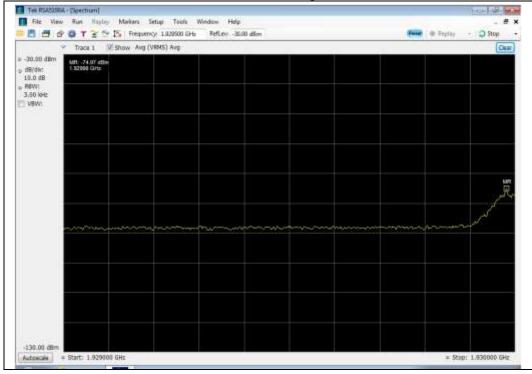
746 - 757 MHz Band

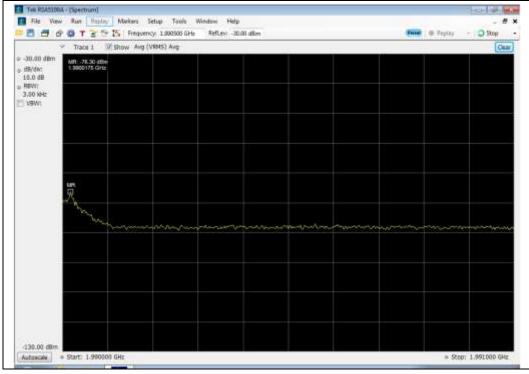
Lower Band Edge




	P 🖓 T 😤 🕾 🖪 P		te nerces -au	vo dam				@ Feplay	- O Stop
terms 1	Trace 1 IV Show Arg (VRRS) Avg								
20.00 dBm - dB/dW 10.0 dB - RBWI - 36.0 KHz - V9W1	NPL -60.54 cflm 757 MPz								
					-				
								_	

869 - 894 MHz Band





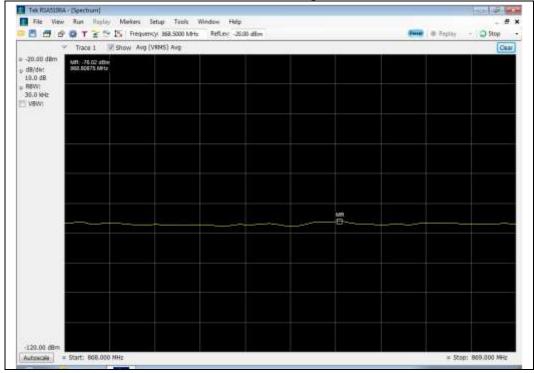
1930 - 1990 MHz Band

Lower Band Edge

CDMA Downlink Test Plots

746 - 757 MHz Band

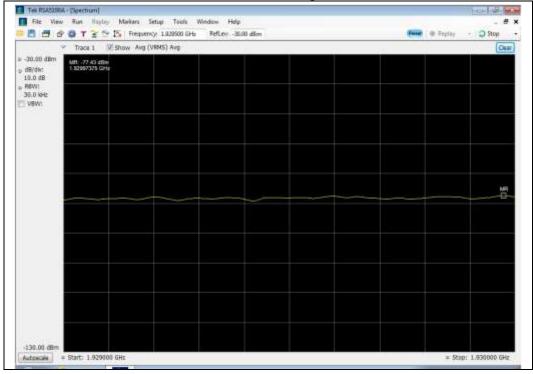
Lower Band Edge


	1 2 1	The successory	cy: 745.9500 MHz	- HELEN - JUJ	AD datum	 	Course of the local division of the local di	@ Peplay	- O Stop	
· · · · · · · · · · · · · · · · · · ·	Trace 1	Show Avg (/RHS) Avg						0	ear.
d8/dw: 0 10.0 dB RØWI:	40 76.09 20m 46 MPU:									
36.0 KHz VBW1										

and the second se	the second se	and the second	tz RefLex: -30.00 dilm		@ Replay - Stop
	Trace 1 9 Sho	W Avg (VRRS) Avg	WE	22 23	 Cea
20.00 dBm - d8/dw 15.0 dB - RRWI - 36.0 KHz - V9W1	WFL: -77.30 effin 767.022375 MPLE				
		MR.			

869 - 894 MHz Band

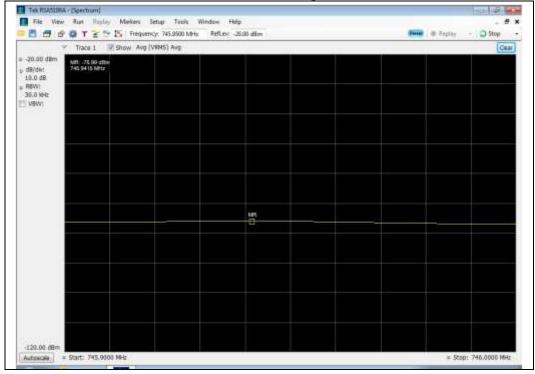
Lower Band Edge



and the second se	🕾 🌆 Frequencyi 894.5					@ Peplay -	2 Stop		
 Trace 1 	Trace 1 IV Show Arg (VRMS) Avg								
20.00 dBm Mit: 70 44 55 dS/dkr: 824 55120 Mit 0.0 dB RBWI 36.0 KHz									
YBW1									
	B				-				
-									

1930 - 1990 MHz Band

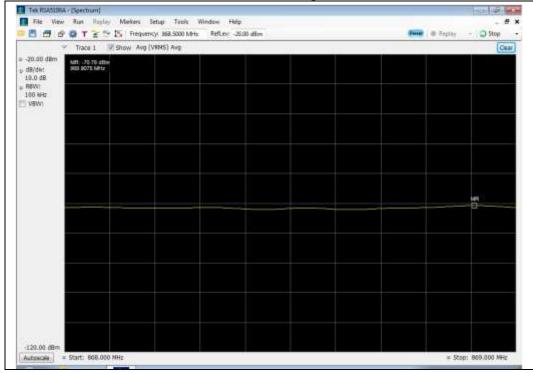
Lower Band Edge


		rikers Setup Tools					an market	- #
	OT 2 P IS	and the second second second second	Hu netles: -30	.00 dilm		(range	@ Peplay -	
	Trace 1 12 Sho			Ora				
- 30.40 dBm - 84/4kr 10.0 dB - 80WK - 80WK - 90WK - 90WK - 90WK	MR1: 77 20 ctlin 1: 59075875 GHz							

WCDMA Downlink Test Plots

746 - 757 MHz Band

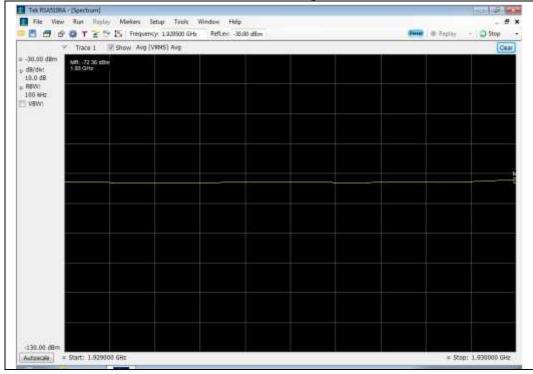
Lower Band Edge



	W 1 2 2 4	Frequency: 757,0500	MPTE NOLOS: -21	wo dam				@ Peplay .	2 Stop	
and a	Trace 1 💟 Show Avg (VRRS) Avg									
 -20.00 dBm -20.00 dBm -20.0 dB 10.0 dB - R6WI 	MR: -77.46 #8m 767.3 MHz									
36.0 KHz 1 VBW1										
							_			

869 - 894 MHz Band

Lower Band Edge


Upper Band Edge

	and the second se	Frequencyi 804.5000 M				2 Stop
and the second second	Trace 1 💟 Show	v Avg (VRRS) Avg	205	 		 Os
tB/dw: 0.0 dB NOVI:	1: -70.74 cflie 4 0225 MHz					
00 KH2 VBW1						
	ï	-				

1930 - 1990 MHz Band

Lower Band Edge

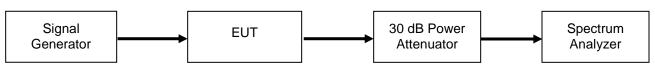
Upper Band Edge

	and the second se	uency: 1.990500 GHz	 100000	 	 Sen de la ser	2 Stop
	ace 1 9 Show A	ng (VRMS) Avig				Ote
-30.00 dBm 400 d8/dk: 400 t0.0 dB RDWI	-72.11 cflie Gite					
100 RH2 VBW1						
8						

Conducted Spurious Emissions

Name of Test: Test Equipment Utilized: Conducted Spurious Emissions i00424, SMU 200A - S/N:101369

Engineer: Greg Corbin Test Date: 1/17/2014


Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator, with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as needed to ensure accurate readings. A signal generator was utilized to produce a 4.1 MHz AWGN signal operating at the maximum allowable power. The conducted spurious emissions from 9 kHz to 10 times the highest tunable frequency for each operational band were measured (excluding the band defined by the Out of band emissions test). The emissions were plotted and the highest level was recorded in the summary table.

The following formulas are used for calculating the limits.

Conducted Spurious Emissions Limit = P1 - (43 + 10Log(P2)) = -13 dBmP1 = power in dBm P2 = power in Watts

Test Setup

Uplink Test Results

Frequency Band (MHz)	Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
776 - 787	787.1	-28.7	-13	Pass
824 - 849	6622	-34.2	-13	Pass
1850 - 1910	3760.5	-33.9	-13	Pass

Downlink Test Results

Frequency Band (MHz)	Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
746 - 757	54.831	-44.8	-13	Pass
869 - 894	8332.6	-44.6	-13	Pass
1930 - 1990	17329.4	-41.2	-13	Pass

For the 746 – 758 downlink and 776 – 788 Uplink bands of operation, the following additional spurious emissions requirements apply.

FCC 27.53(c)

For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

The test is performed using a 10 kHz RBW. Since the limit is referenced to a 6.25 kHz BW, the following correction factor is applied to the measured data.

BW correction Factor = 10Log B1/B2 BW correction Factor =10Log 6.25 / 10 = - 2.0 dB

Final Value (dBm) = conducted measurement +BW correction factor

776 – 787 MHz Uplink Band

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dB)	Bandwidth Correction Factor (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
763 – 775	764.506	-76	-2.0	-78.04	-35	-43.04
793 – 805	796.9	-76.6	-2.0	-78.64	-35	-43.64

746 - 757 MHz Downlink Band

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dB)	Bandwidth Correction Factor (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
763 – 775	769.462	-82.4	-2.0	-84.44	-35	-49.44
793 – 805	793.573	-82.4	-2.0	-84.44	-35	-49.44

FCC 27.53(e)

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Since the limit is referenced to EIRP, the final data is computed using the Conducted Spurious Emission data and adding the BW correction factor plus the final gain/loss data from the antenna kitting information supplied by the manufacturer.

For the Narrowband measurement, the test is performed using a 10 kHz RBW. Since the limit is referenced to a 700 Hz BW, the following correction factor is applied to the measured data.

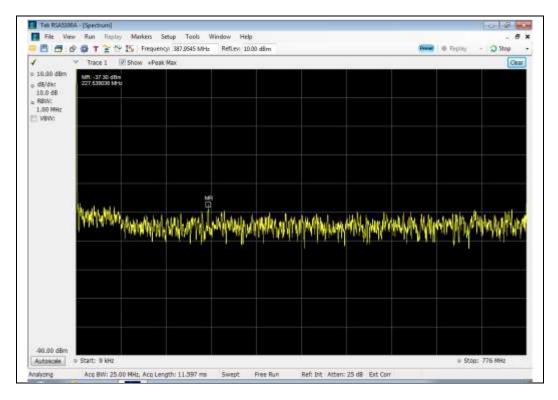
BW correction Factor = 10Log B1/B2 BW correction Factor =10Log 700 / 10000 = -11.55 dB

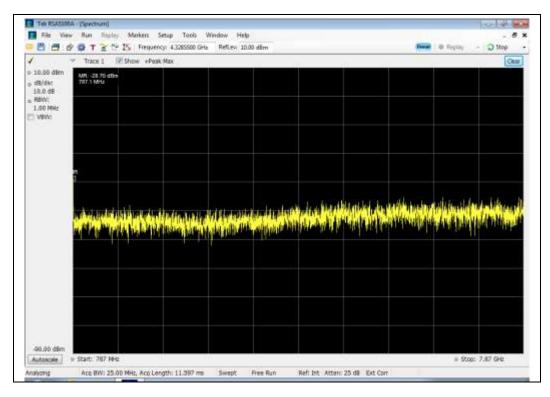
Final Value (dBm) = conducted measurement +BW correction factor + final gain/loss from Antenna Kitting document

The Limit for discreet (narrowband) emissions is -80dBW (-50 dBm) in 700 MHz BW. The Limit for (wideband Emissions) is -70 dBW (-40 dBm) in a 1 MHz BW.

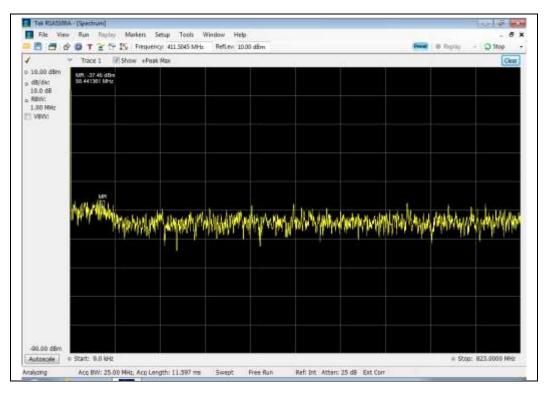
Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dBm)	Bandwidth Correction Factor (dB)	Gain/Loss from Antenna Kitting Information (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
1559 – 1610 (Wideband)	1594.48	-56.4	0	-0.52	-56.92	-40	-16.92
1559 – 1610 (Narrowband)	1581.1	-76.2	-11.55	-0.52	-88.27	-50	-38.27

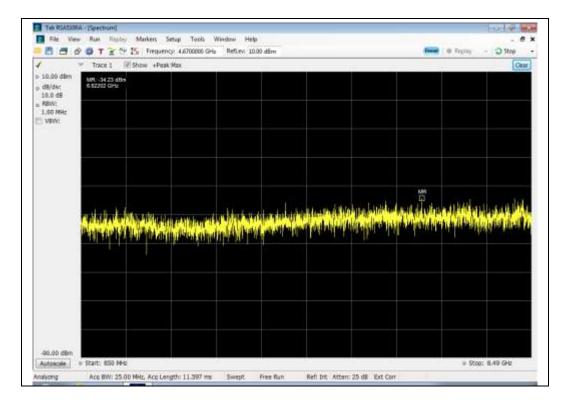
776 – 787 MHz Uplink Band

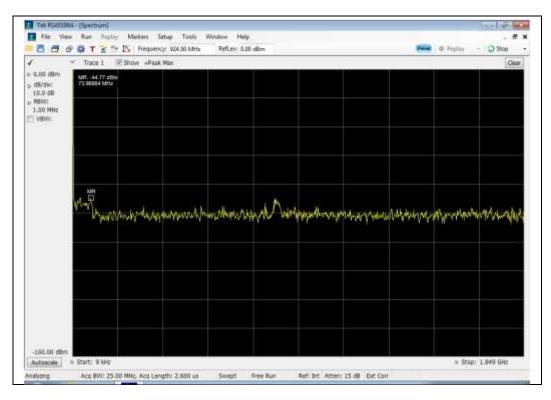

746 - 757 MHz Downlink Band

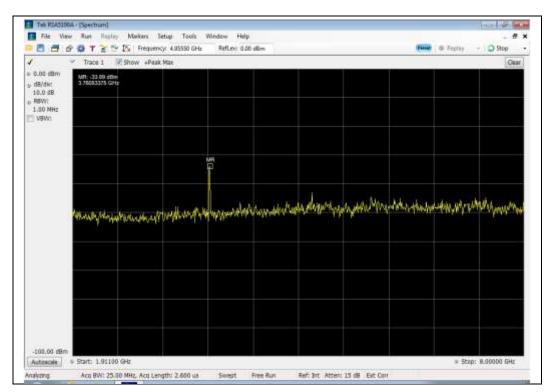

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dBm)	Bandwidth Correction Factor (dB)	Gain/Loss from Antenna Kitting Information (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
1559 – 1610 (Wideband)	1578.482	-62.1	0	-4.94	-67.04	-40	-27.04
1559 – 1610 (Narrowband)	1603.433	-81.6	-11.55	-4.94	-98.09	-50	-48.09

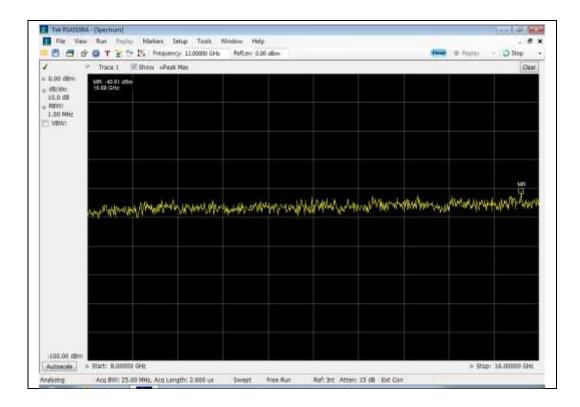
Uplink Test Plots


776 - 787 MHz Band

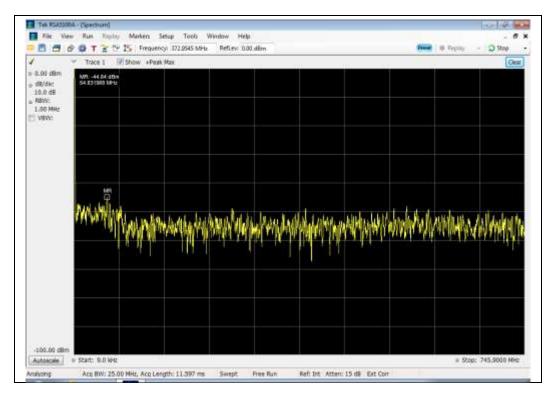


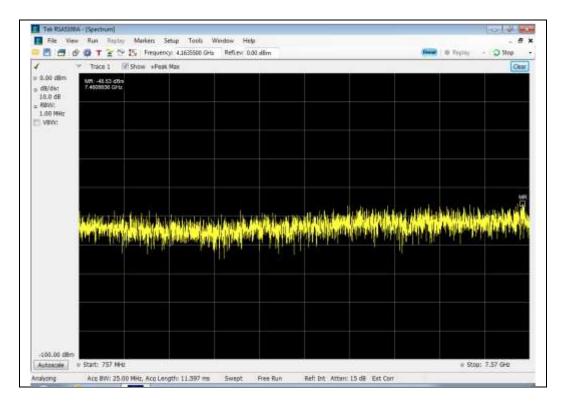




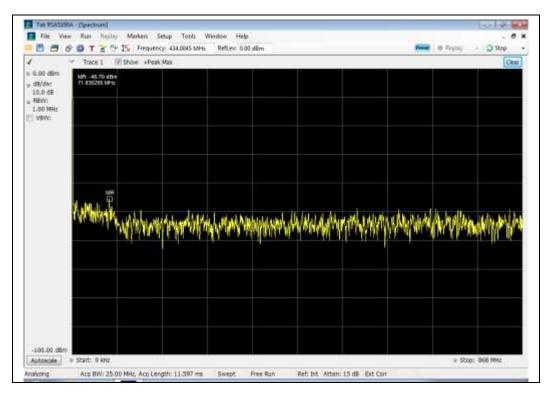


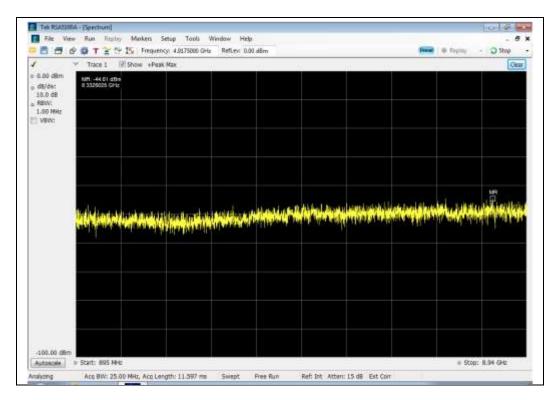
1850 - 1910 MHz Band

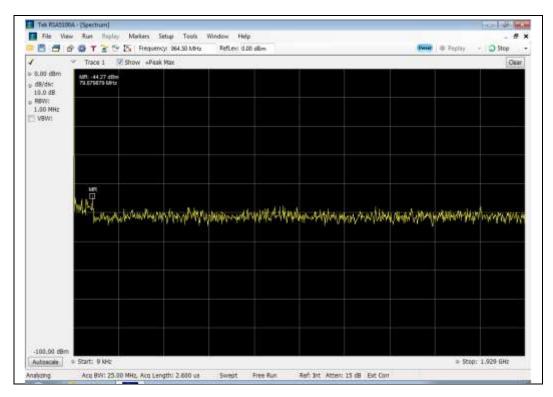


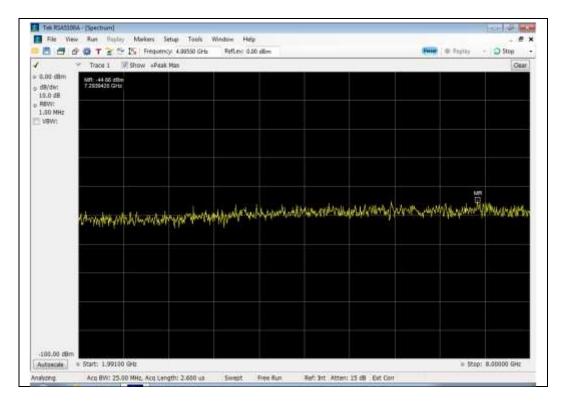


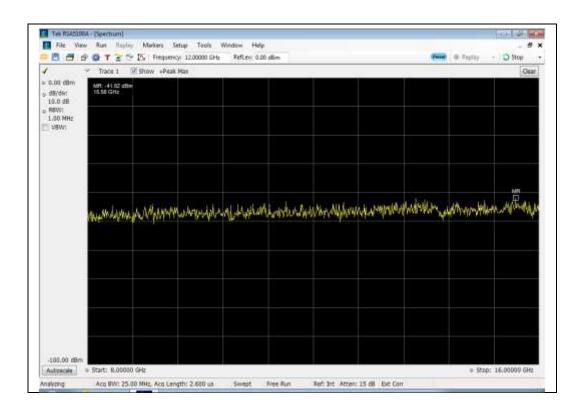
Downlink Test Plots

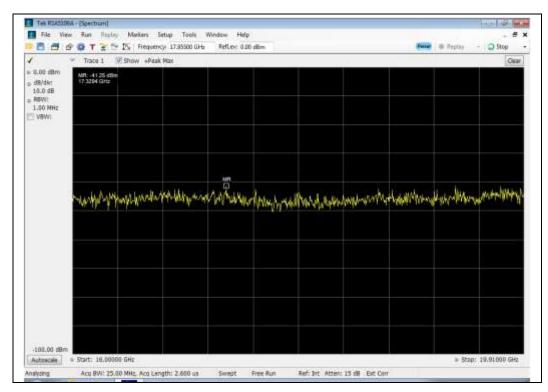


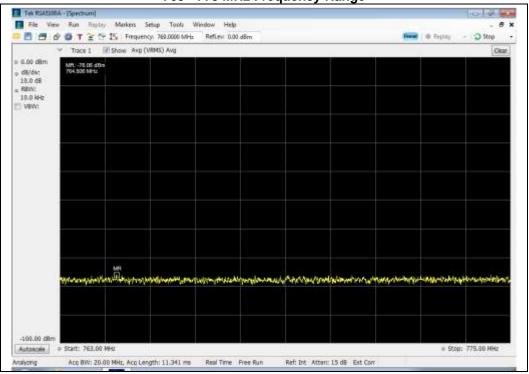


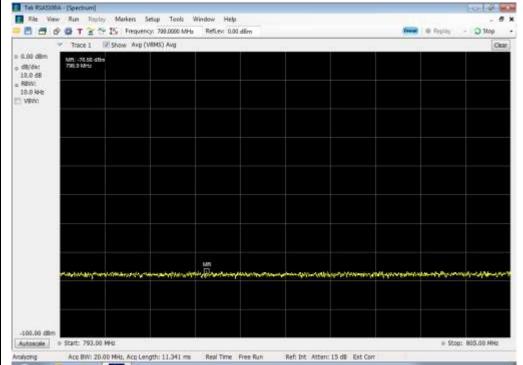

869 - 894 MHz Band



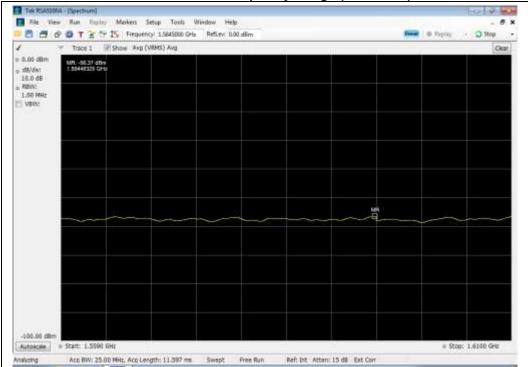



1930 - 1990 MHz Band

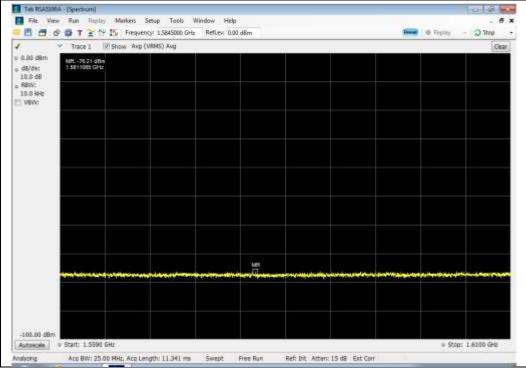




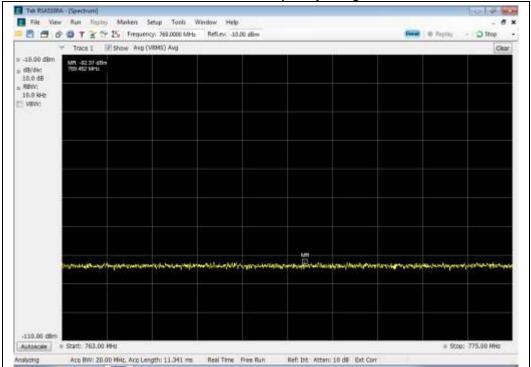
776 - 787 MHz Uplink Test Plots for the


763 - 775 MHz Frequency Range

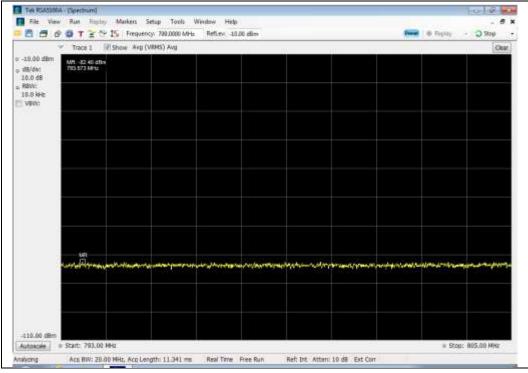
793 - 805 MHz Frequency Range



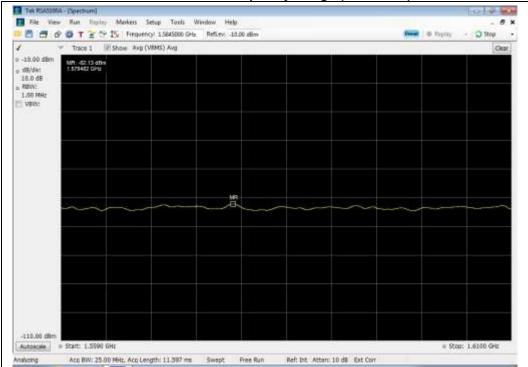
776 - 787 MHz Uplink Test Plots for the


1559 - 1610 MHz Frequency Range (Wideband)

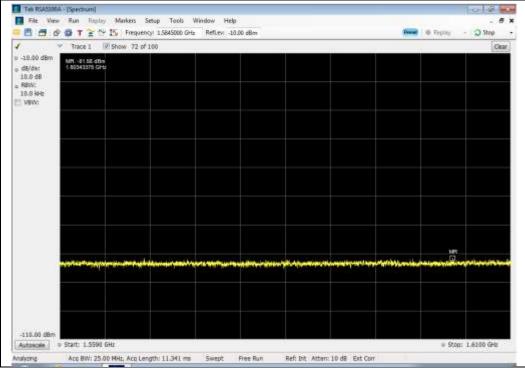
1559 - 1610 MHz Frequency Range (Narrowband)



746 - 757 MHz Downlink Test Plots for the


763 - 775 MHz Frequency Range

793 - 805 MHz Frequency Range



746 - 757 MHz Downlink Test Plots for the

1559 - 1610 MHz Frequency Range (Wideband)

1559 - 1610 MHz Frequency Range (Narrowband)

Noise Limits

Name of Test:

Test Equipment Utilized:

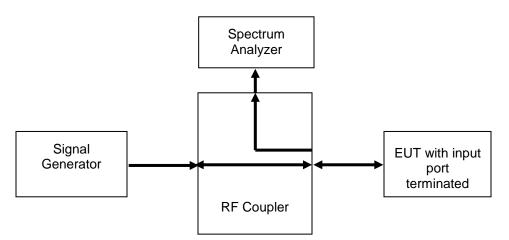
Noise Limits i00413, i00424 SMU 200A - S/N:101369 Engineer: Greg Corbin

Test Date: 1/17/2014

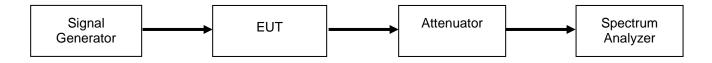
Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as necessary to ensure that accurate readings were obtained. A series of three tests were performed: the maximum uplink and downlink noise, the variable noise for the uplink and downlink in the presence of a downlink signal, and the variable uplink noise timing. The detailed procedures from KDB 935210 D03 Wideband Consumer Signal Booster Measurement Guidance DR04-41516c were followed.

The EUT is a mobile booster.


The noise power limit is fixed at -59 dBm for mobile boosters.

Test Setup


Maximum Noise Power

Variable Uplink Noise Power and Timing

Variable Downlink Noise Power and Timing

Maximum Uplink Noise Test Results

Frequency Band (MHz)	Measured Noise (dBm)	Limit (dBm)	Margin (dB)	Result
776 - 787	-62.6	-59.0	-3.6	Pass
824 - 849	-62.3	-59.0	-3.3	Pass
1850 - 1910	-60.5	-59.0	-1.5	Pass

Maximum Downlink Noise Test Results

Frequency Band (MHz)	Measured Noise (dBm)	Limit (dBm)	Margin (dB)	Result
746 - 757	-63	-59.0	-4.0	Pass
869 - 894	-62.2	-59.0	-3.2	Pass
1930 - 1990	-61.4	-59.0	-2.4	Pass

Uplink Noise Timing Test Results

Frequency Band (MHz)	Measured Timing (Seconds)	Limit (Seconds)	Result
776 - 787	0.70	1.0	Pass
824 - 849	0.48	1.0	Pass
1850 - 1910	0.45	1.0	Pass

Variable Uplink Noise Limit Test Results

	776 -	787 MHz	
RSSI (dBm)	Noise Limit (dBm)	Measured Noise (dBm)	Margin (dB)
-81.0	-59.0	-61	-2.0
-82.0	-59.0	-61	-2.0
-83.0	-59.0	-61	-2.0
-84.0	-59.0	-61	-2.0
-33.0	-70.0	-74.3	-4.3
-34.0	-69.0	-74.3	-5.3

824 - 849 MHz

RSSI (dBm)	Noise Limit (dBm)	Measured Noise (dBm)	Margin (dB)
-62.0	-59.0	-61.7	-2.7
-65.0	-59.0	-61.8	-2.8
-70.0	-59.0	-62.1	-3.1
-81.0	-59.0	-62.1	-3.1
-33.0	-70.0	-78.2	-8.2
-34.0	-69.0	-78.2	-9.2

1850 - 1910 MHz

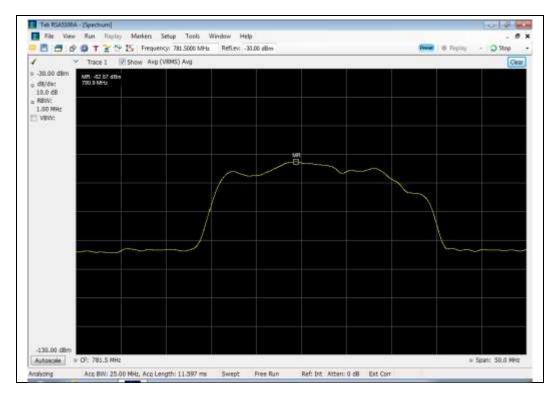
RSSI (dBm)	Noise Limit (dBm)	Measured Noise (dBm)	Margin (dB)
-64.0	-59.0	-60.9	-1.9
-67.0	-59.0	-60.9	-1.9
-71.0	-59.0	-60.9	-1.9
-72.0	-59.0	-60.9	-1.9
-33.0	-70.0	-77.5	-7.5
-34.0	-69.0	-77.5	-8.5

Variable Downlink Noise Limit Test Results

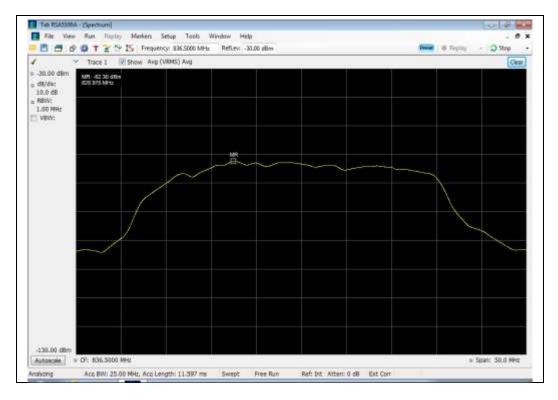
	746 - 757 MHz								
RSSI (dBm)	Noise Limit (dBm)	Measured Noise (dBm)	Margin (dB)						
-61.0	-59.0	-62.3	-3.3						
-71.0	-59.0	-62.5	-3.5						
-73.0	-59.0	-62.5	-3.5						
-76.0	-59.0	-62.7	-3.7						
-33.0	-70.0	-76.7	-6.7						
-34.0	-69.0	-76.7	-7.7						

869 - 894 MHz

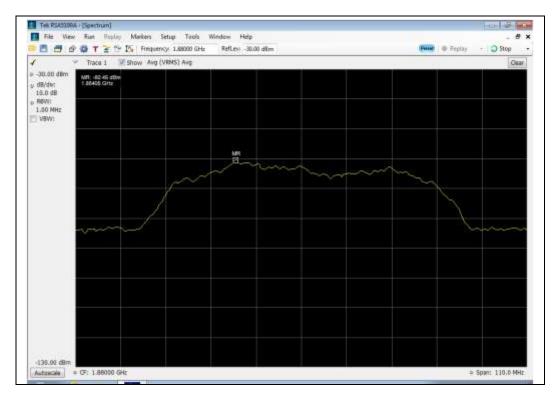
RSSI (dBm)	Noise Limit (dBm)	Measured Noise (dBm)	Margin (dB)
-69.0	-59.0	-61.4	-2.4
-83.0	-59.0	-62.2	-3.2
-82.0	-59.0	-62.2	-3.2
-81.0	-59.0	-62.2	-3.2
-33.0	-70.0	-77.5	-7.5
-34.0	-69.0	-77.5	-8.5


1930 - 1990 MHz

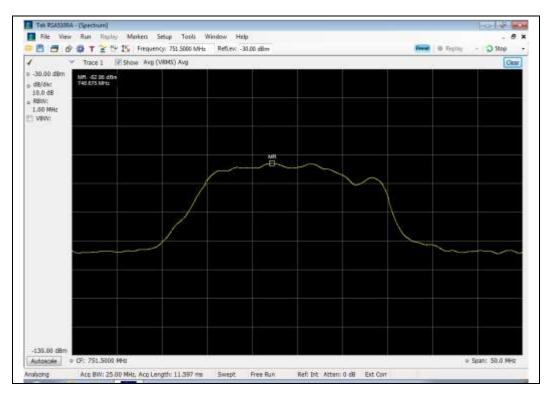
RSSI (dBm)	Noise Limit (dBm)	Measured Noise (dBm)	Margin (dB)
-63.0	-59.0	-61.0	-2.0
-66.0	-59.0	-61.0	-2.0
-64.0	-59.0	-61.1	-2.1
-65.0	-59.0	-61.1	-2.1
-34.0	-69.0	-84.0	-15.0
-35.0	-68.0	-84.0	-16.0



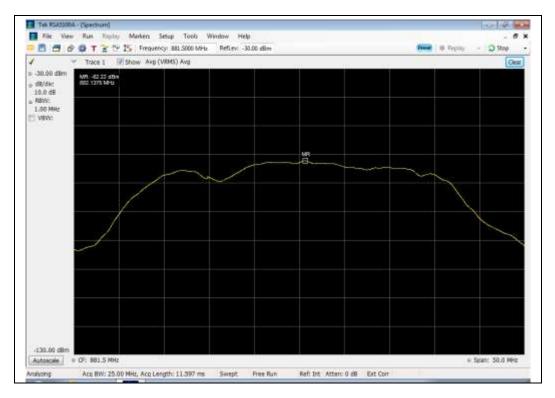
Maximum Uplink Noise Test Plots

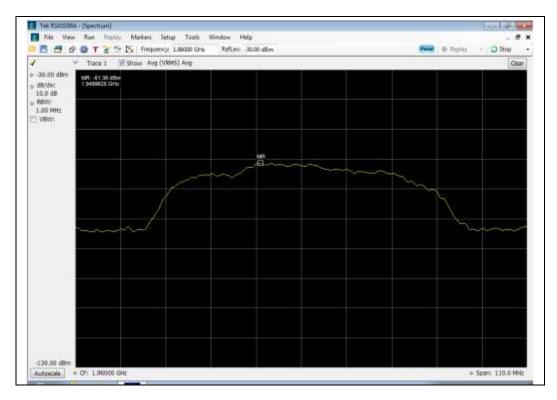

776 - 787 MHz Band

824 - 849 MHz Band

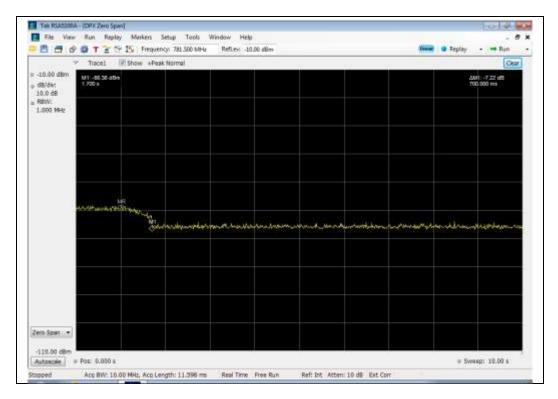


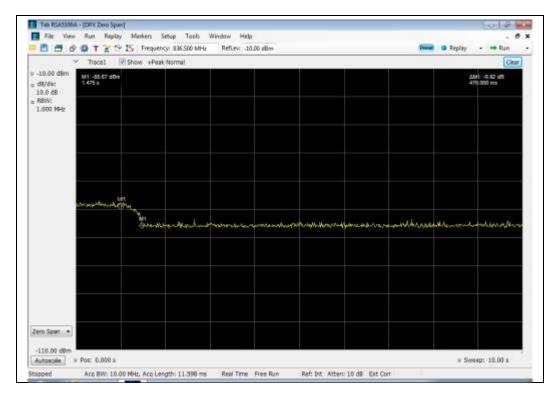
1850 - 1910 MHz Band


Maximum Downlink Noise Test Plots

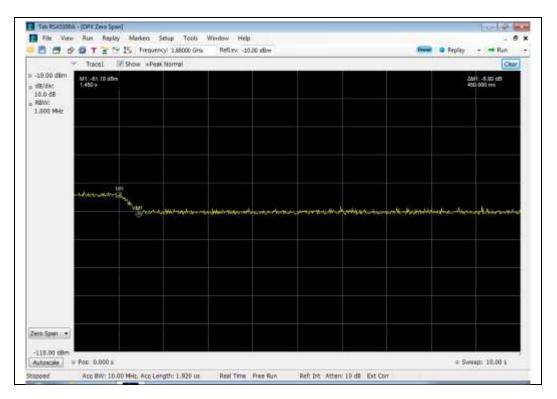


869 - 894 MHz Band


1930 - 1990 MHz Band



Uplink Noise Timing Test Plots

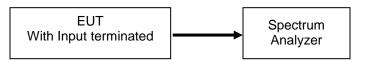

776 - 787 MHz Band

824 - 849 MHz Band

1850 - 1910 MHz Band

Uplink Inactivity

Name of Test: U Test Equipment Utilized: i0

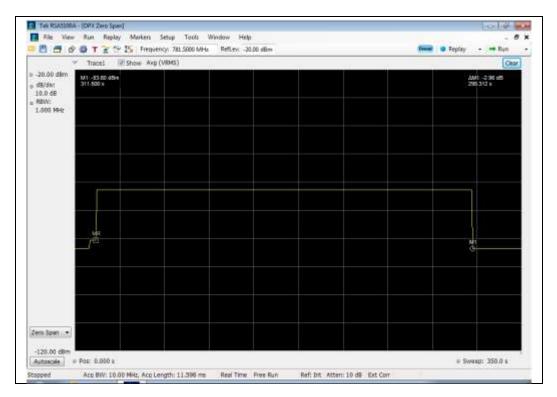

Uplink Inactivity i00424

Engineer: Greg Corbin Test Date: 1/17/2014

Test Procedure

The EUT was connected directly to a spectrum analyzer set to operate in the center of the EUT operational uplink and downlink bands. The span was set to 0 Hz with a sweep time of 330 seconds and MAX HOLD operation. The EUT was powered on and the time for the uplink to return to an inactive state was measured using the DELTA MARKER method to ensure that it was less than 300 seconds. The noise level after the return to an inactive state was less than -70 dBm/MHz.

Test Setup


Uplink Test Results

Frequency Band (MHz)	Measured Time (Seconds)	Limit (Seconds)	Result
776 - 787	295.3	300	Pass
824 - 849	295.3	300	Pass
1850 - 1910	294.9	300	Pass

Uplink Inactivity Test Results

824 - 849 MHz

	The second se	Contract of Station and Academ	a figure of the state of the st	z Reflex -X				-
-20.00 dBm dB/de:	M1:-63-44 dBm 313.250 s	Show Axp (VID45.)		7	1 - I	40 29	Ces 11-352:45 53:21
10.0 dB RBW: 1.400 MHz								
								;
ero Span								
ero Spari •								

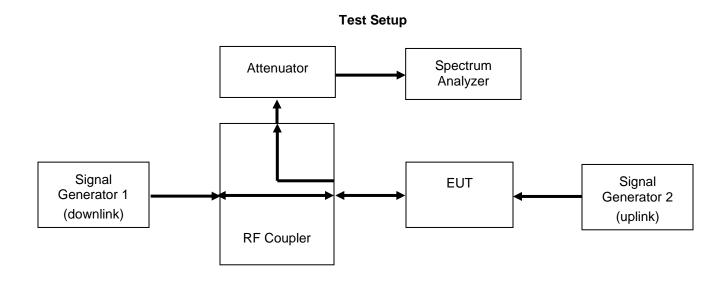
1850 - 1910 MHz

	TYPE	Requency 1,88000 G	Ha Reflext -30	00 dilm		@ Feplay - O Stop	
	Trace1 9 Show	The second s				Os	-
 -20.00 dBm d8/det 10.0 dB REWI 1.500 MHz 	W1 - 43 73 dBm 312 812 8					294.575 s	
	ter ter					Na	
						¢	Ī
Zaro Span 🔹							

Variable Gain

Name of Test: Test Equipment Utilized:

Variable Gain i00413, i00424 SMU 200A - S/N:101369 Engineer: Greg Corbin


Test Date: 1/20/14

Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor in order to ensure accurate readings were obtained. The uplink gain in the presence of a downlink signal was measured for each operational uplink band using the detailed procedures from KDB 935210 D03 Wideband Consumer Signal Booster Measurement Guidance DR04-41516.

The following formula is used for calculating the limits:

Variable Gain = -34 dB - RSSI +MSCL

Uplink Test Results

	776 - 787 MHz							
RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)		
-62	24.4	50.0	-34.2	12.7	46.9	-3.1		
-63	24.4	50.0	-34.2	12.7	46.9	-3.1		
-64	24.4	50.0	-34.2	12.7	46.9	-3.1		
-65	24.4	50.0	-34.2	12.7	46.9	-3.1		
-47	24.4	37.4	-34.2	-1.9	32.3	-5.1		
-48	24.4	36.4	-34.2	-3.0	31.2	-5.2		

824 - 849 MHz

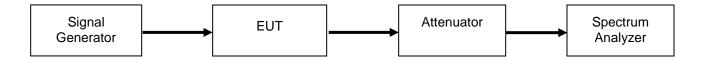
RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)
-62	25.1	50.0	-31.5	14.0	45.5	-4.5
-63	25.1	50.0	-31.5	14.0	45.5	-4.5
-64	25.1	50.0	-31.5	14.0	45.5	-4.5
-65	25.1	50.0	-31.5	14.0	45.5	-4.5
-61	25.1	50.0	-31.5	13.0	44.5	-5.5
-60	25.1	50.0	-31.5	12.0	43.5	-6.5

1850 - 1910 MHz

RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)
-62	30.4	50.0	-33.2	12.2	45.4	-4.6
-63	30.4	50.0	-33.2	12.2	45.4	-4.6
-65	30.4	50.0	-33.2	12.2	45.4	-4.6
-67	30.4	50.0	-33.2	12.2	45.4	-4.6
-49	30.4	45.4	-33.2	-0.5	32.7	-12.7
-48	30.4	44.4	-33.2	-1.6	31.6	-12.8

Uplink Gain Timing Test Results

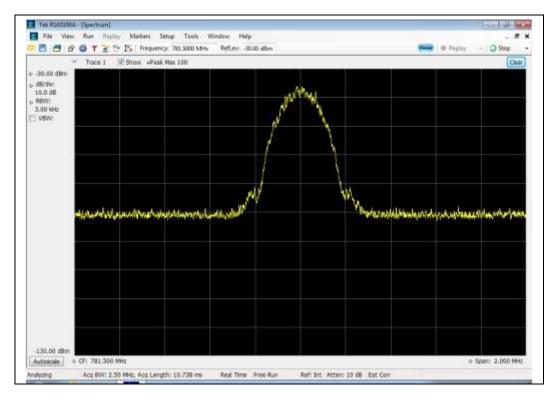
Frequency Band (MHz)	Measured Timing (Seconds)	Limit (Seconds)	Result
776 - 787	0.63	1.0	Pass
824 - 849	0.49	1.0	Pass
1850 - 1910	0.48	1.0	Pass

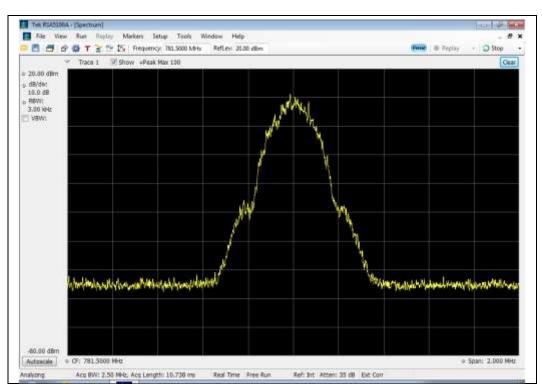

Occupied Bandwidth

Name of Test: Test Equipment Utilized: Occupied Bandwidth i00379, SMU 200A - S/N:101369 Engineer: Greg Corbin Test Date: 1/17/2014

Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as required to ensure that accurate readings were obtained. A signal generator was utilized to produce the following signals: GSM, CDMA, and WCDMA. The signal generator was tuned to the center channel of each of the EUT operational uplink and downlink bands with the RF level set at a point just prior to the AGC being in control of the power. For each modulation type, the input and output signal was measured and plotted to ensure that the signals were similar.

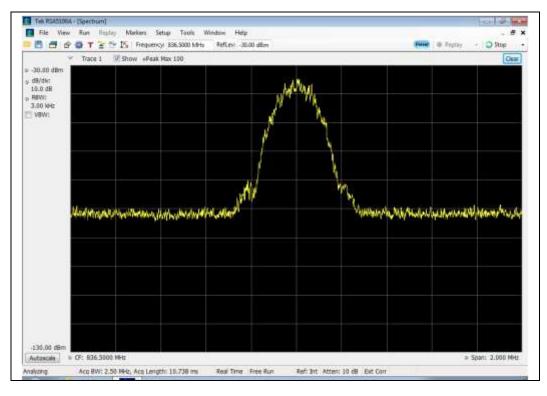


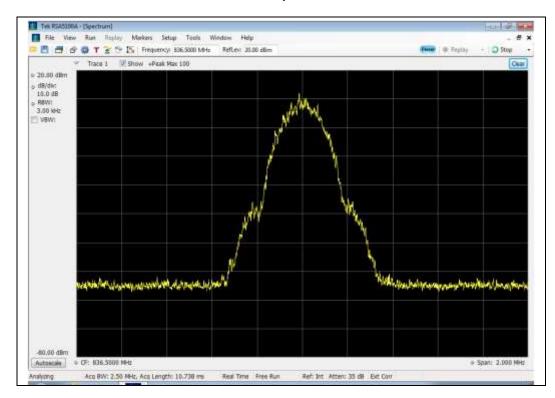


GSM Uplink Test Plots

776 - 787 MHz Band

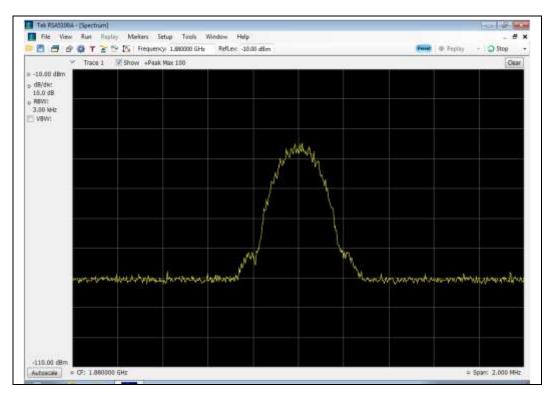
Input

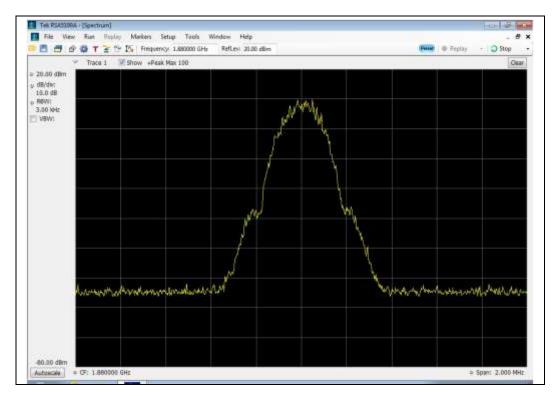



Output

824 - 849 MHz Band

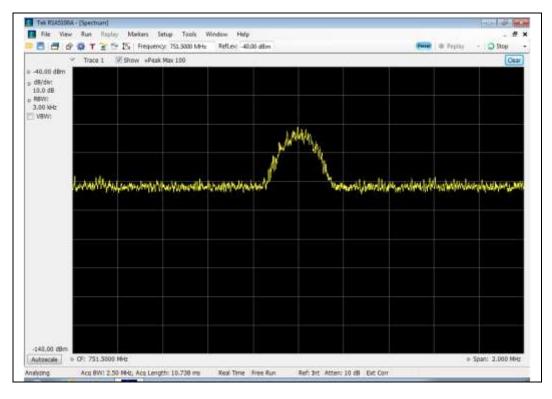
Input

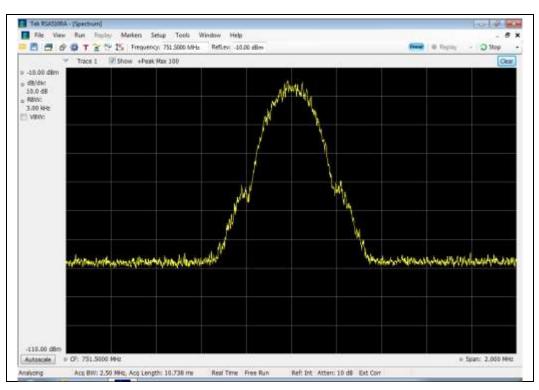




1850 - 1910 MHz Band

Input

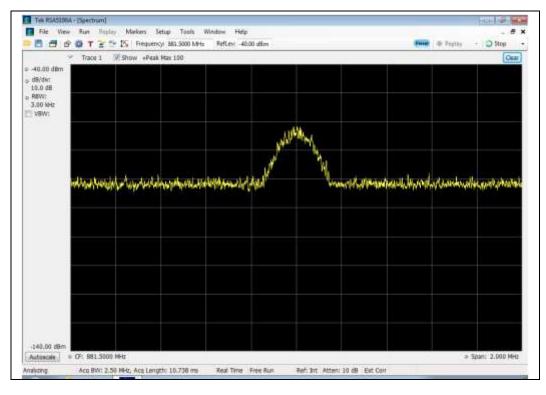


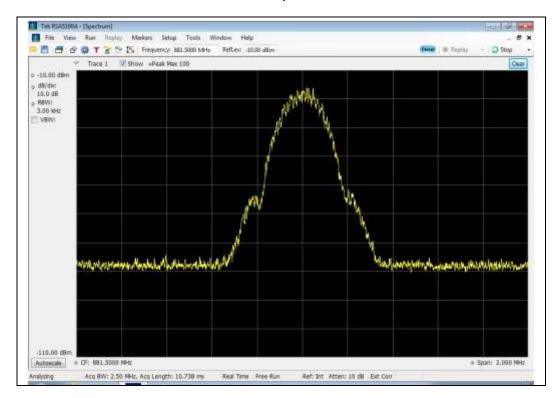


GSM Downlink Test Plots

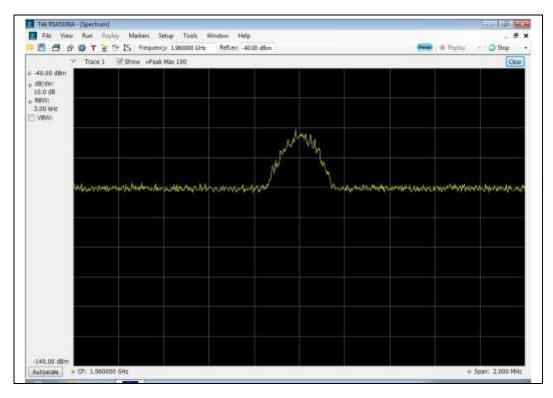
746 - 757 MHz Band

Input

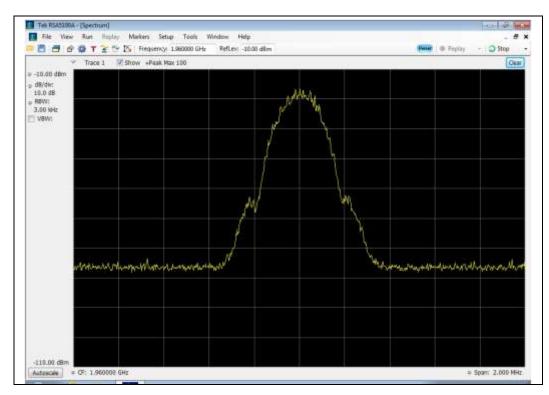



Output

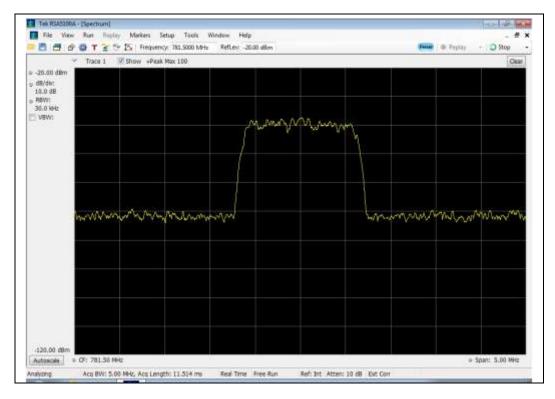
869 - 894 MHz Band

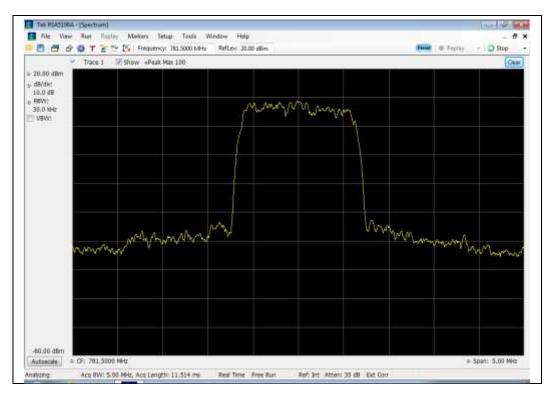


Out	tput	



1930 - 1990 MHz Band

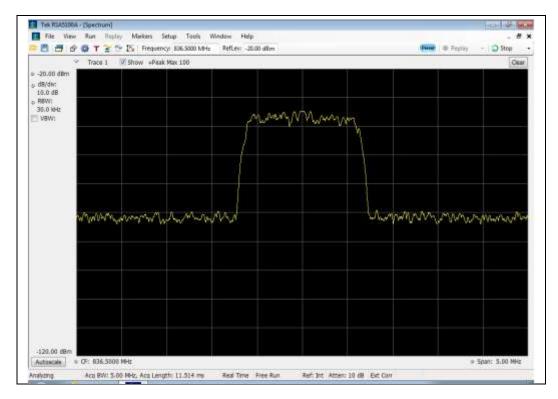


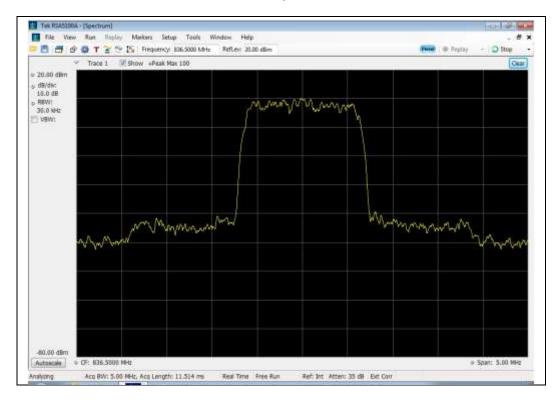


CDMA Uplink Test Plots

776 - 787 MHz Band

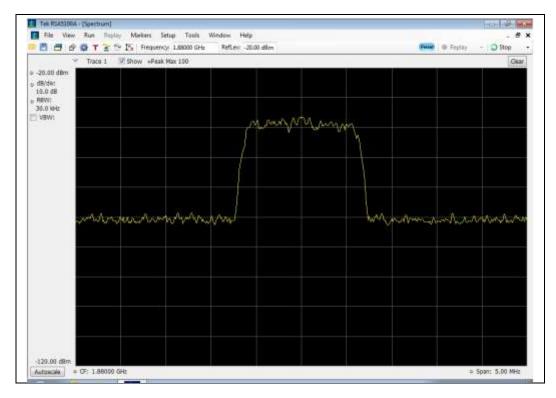
Input

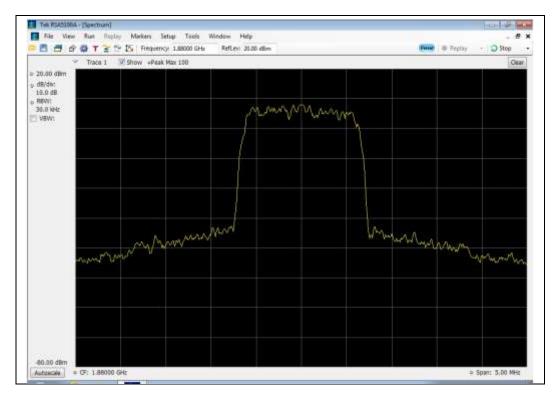




824 - 849 MHz Band

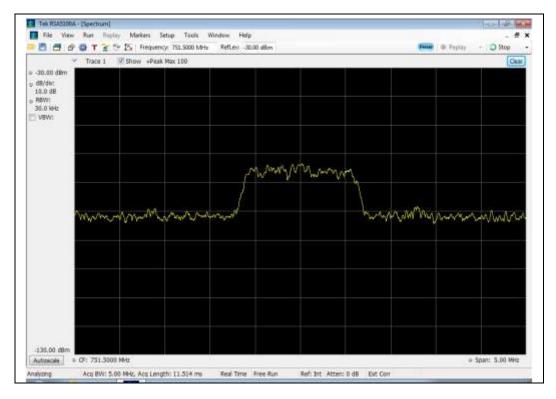
Input

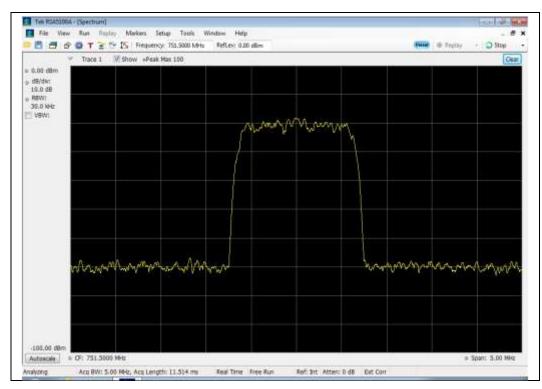




1850 - 1910 MHz Band

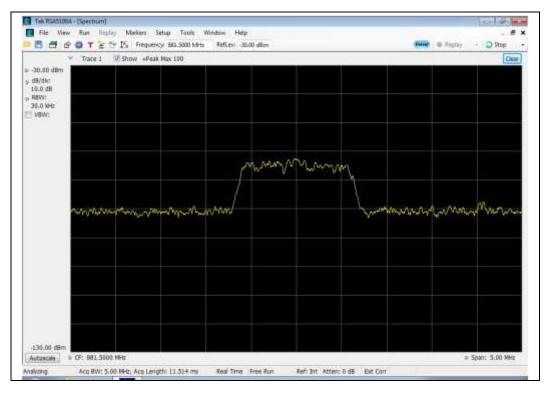
Input

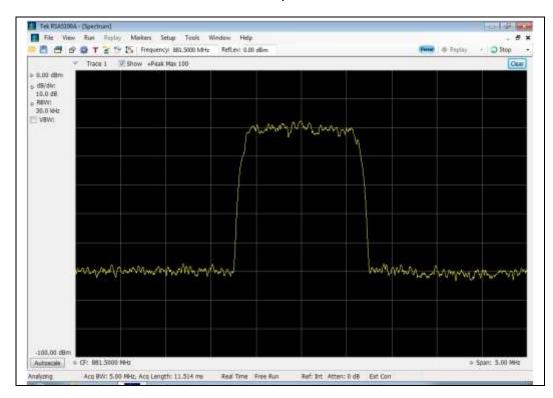


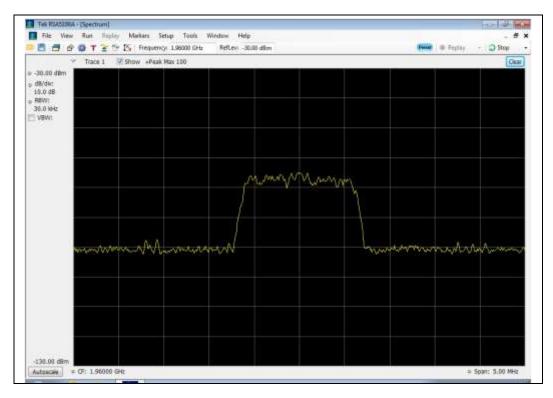


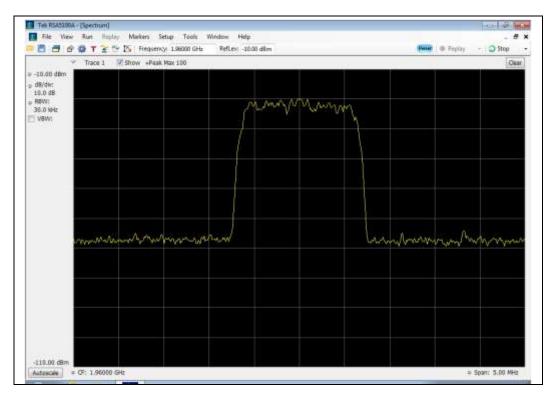
CDMA Downlink Test Plots

746 - 757 MHz Band

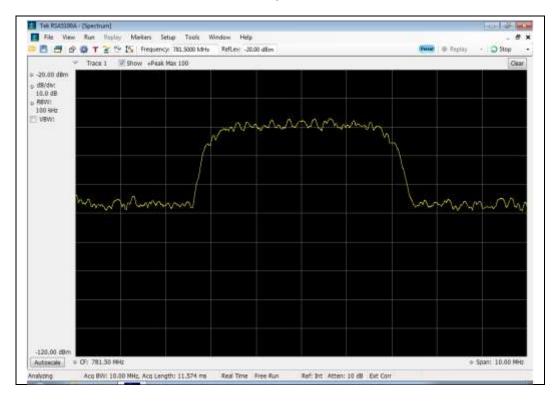


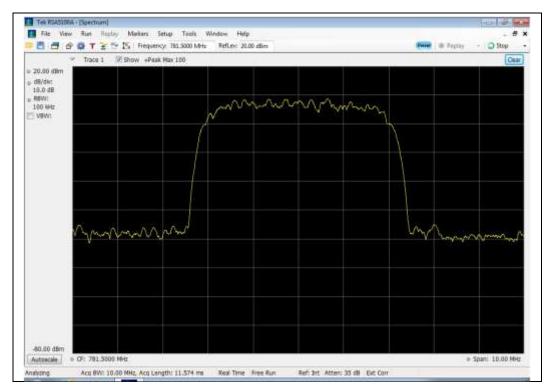

Output


869 - 894 MHz Band



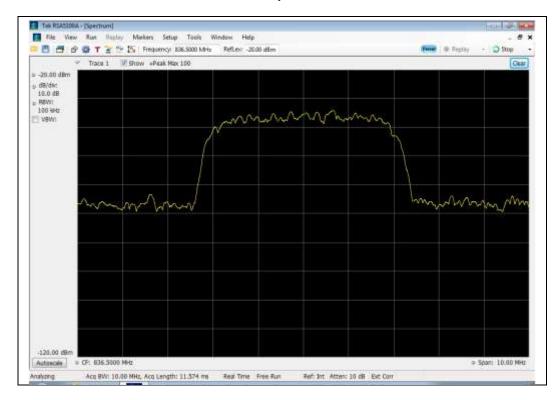
1930 - 1990 MHz Band

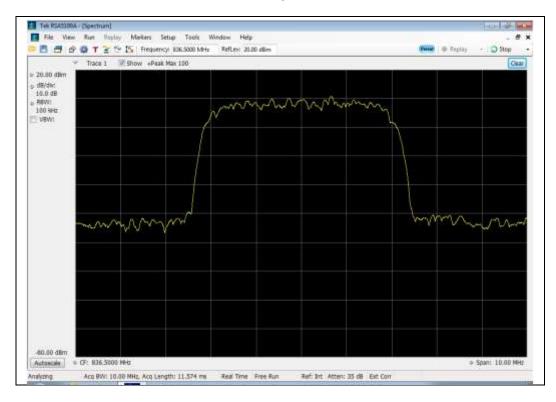

Output	



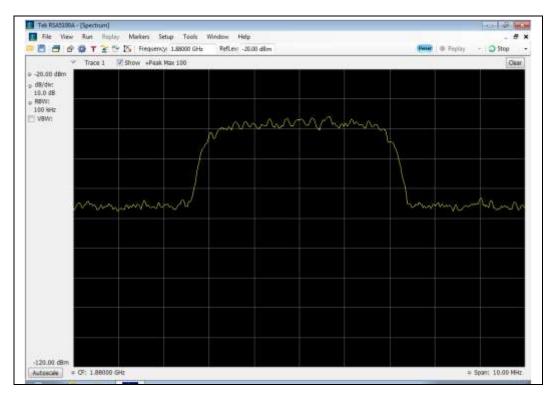
WCDMA Uplink Test Plots

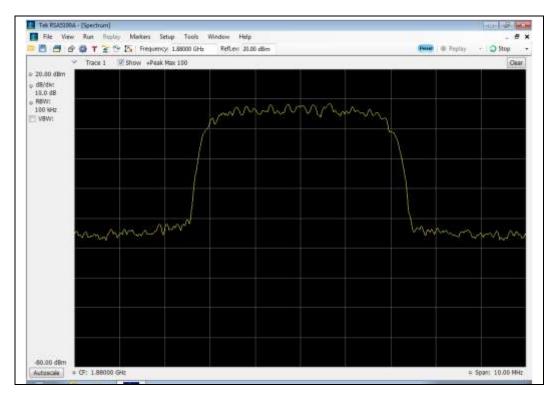
776 - 787 MHz Band



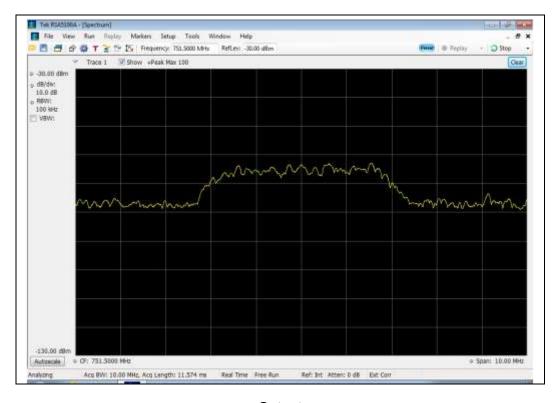


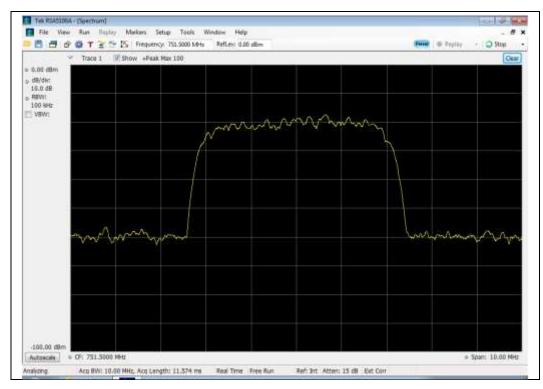
824 - 849 MHz Band


Input

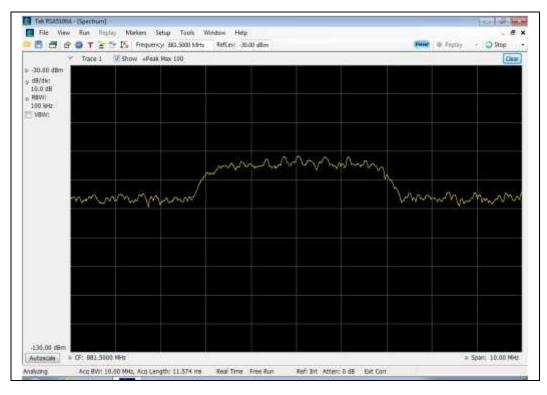


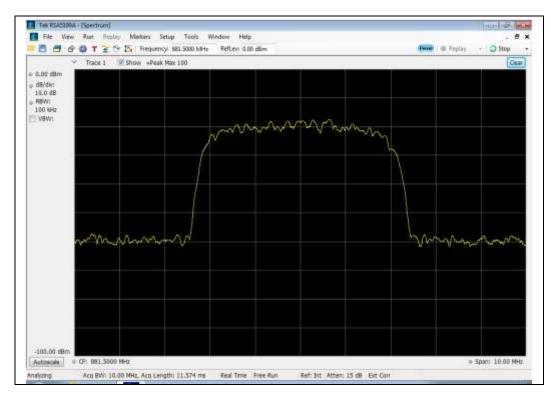
1850 - 1910 MHz Band


Output

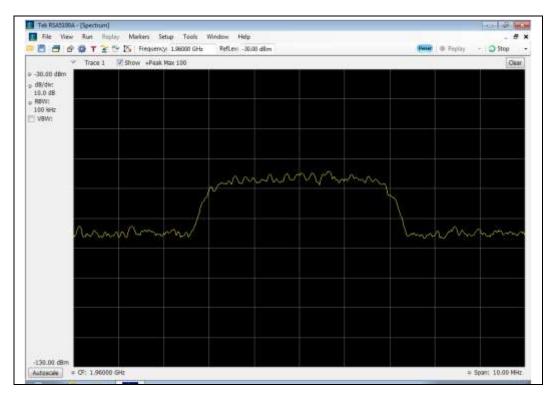


WCDMA Downlink Test Plots

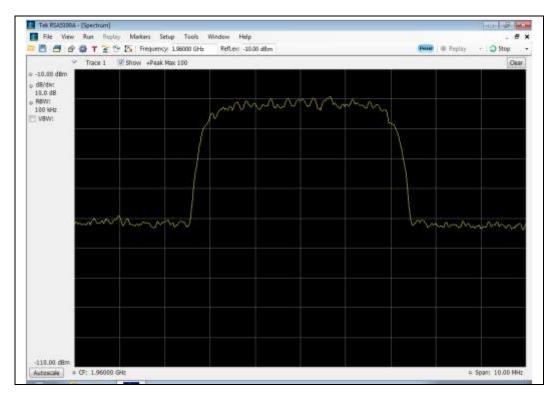

746 - 757 MHz Band



869 - 894 MHz Band



Out	put



1930 - 1990 MHz Band

Output

Oscillation Detection

Name of Test: Test Equipment Utilized: Oscillation Detection i00411, i00413, i00424 Engineer: Greg Corbin Test Date: 1/20/2014

Test Procedure

The EUT was connected to a spectrum analyzer set for 0 Hz operation. The EUT uplink and downlink were fed back upon each other through a selectable band pass filter and variable attenuator. The EUT uplink and downlink were tested to ensure that the presence of oscillation was detected and that the EUT output turned off within 300 mS for the Uplink and 1 second for the Downlink and remained off for 1 minute. A EUT with test software was utilized to ensure that the EUT only had a maximum of 5 attempts at restart from oscillation before permanently shutting off.

Frequency Band (MHz)	Measured Time (mS)	Limit (mS)	Result
776 - 787	72.5	300	Pass
824 - 849	131.25	300	Pass
1850 - 1910	45.0	300	Pass

Unlink Dat ... -+ D

Downlink Detection Time Test Results

Frequency Band (MHz)	Measured Time (mS)	Limit (mS)	Result
746 - 757	68.25	1000	Pass
869 - 894	37.5	1000	Pass
1930 - 1990	16.25	1000	Pass

Uplink Restart Time Test Results

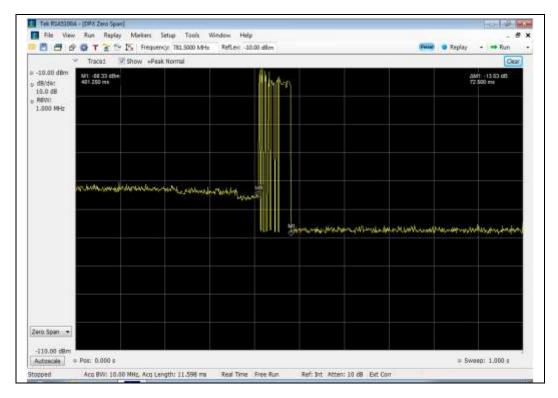
Frequency Band (MHz)	Measured Time (S)	Limit (S)	Result
776 - 787	68.6	≥60	Pass
824 - 849	69.25	≥60	Pass
1850 - 1910	68.8	≥60	Pass

Downlink Restart Time Test Results

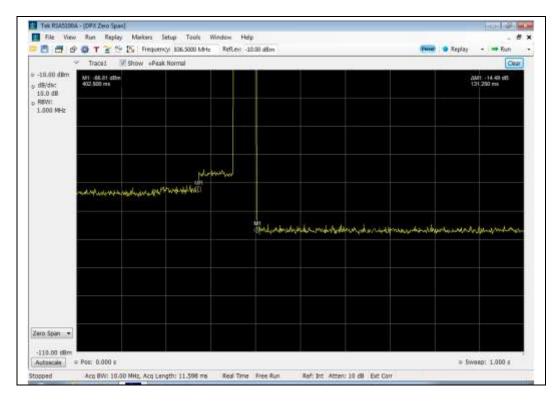
Frequency Band (MHz)	Measured Time (S)	Limit (S)	Result
746 - 757	68.25	≥60	Pass
869 - 894	68.375	≥60	Pass
1930 - 1990	68.9	≥60	Pass

Uplink Restart Count Test Results

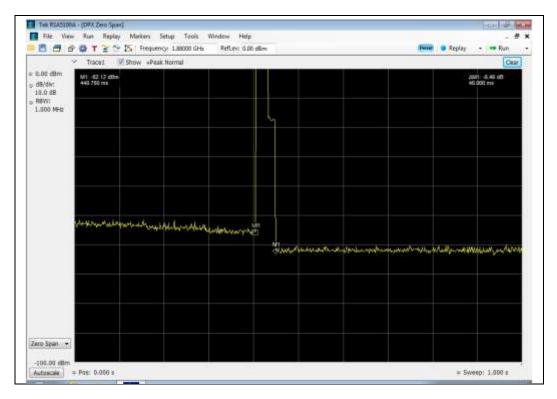
Frequency Band (MHz)	Restarts	Limit	Result
776 - 787	5	≤5	Pass
824 - 849	5	≤5	Pass
1850 - 1910	5	≤5	Pass


Downlink Restart Count Test Results

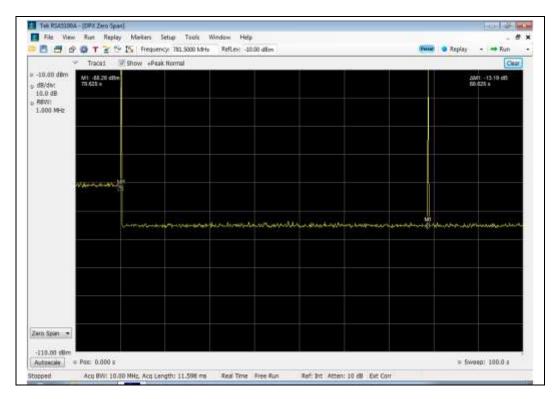
Frequency Band (MHz)	Restarts	Limit	Result
746 - 757	5	≤5	Pass
869 - 894	5	≤5	Pass
1930 - 1990	5	≤5	Pass



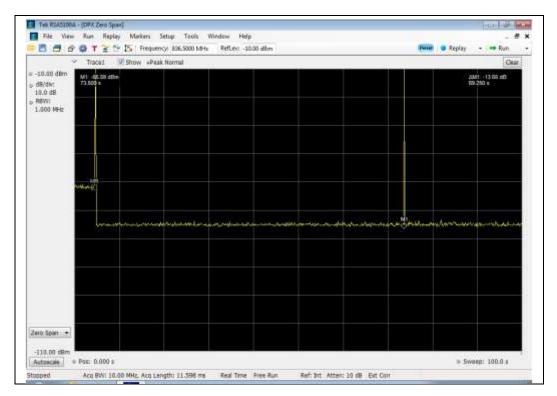
Uplink Detection Time Test Results



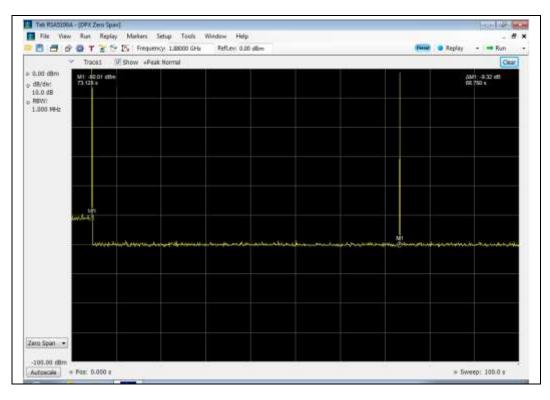
824 - 849 MHz Band

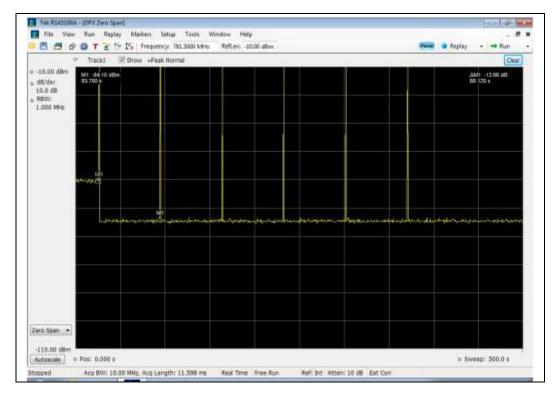


1850 - 1910 MHz Band

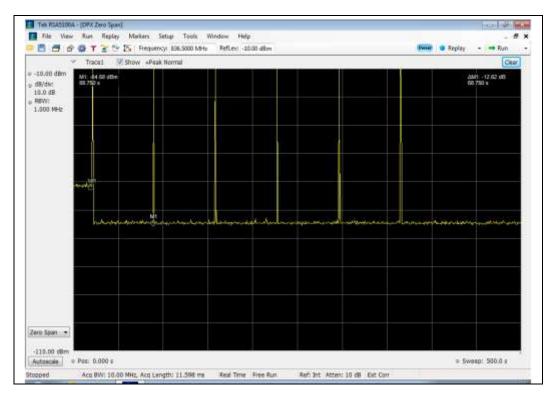


776 - 787 MHz Ba

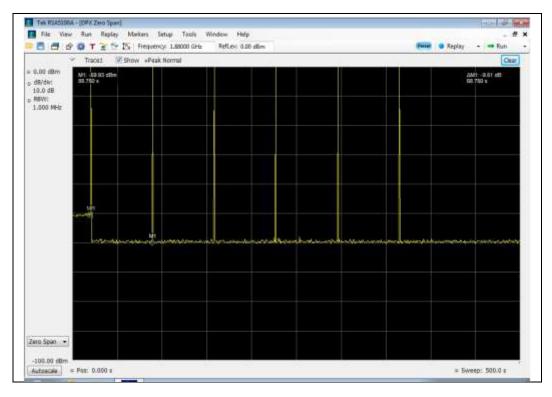




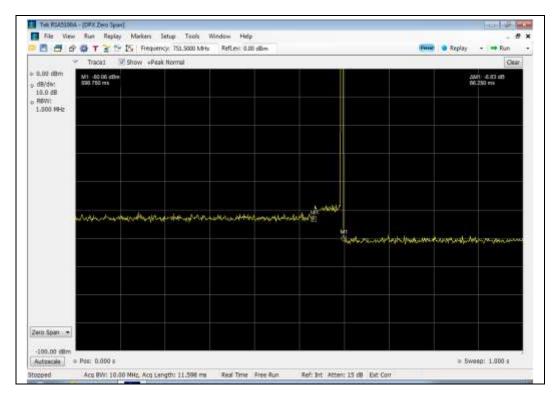
1850 - 1910 MHz Band



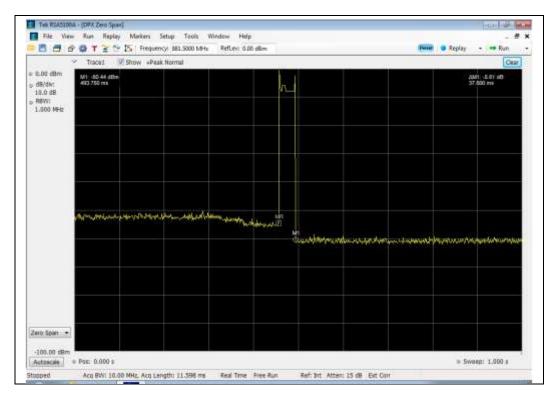
Uplink Restart Count Test Results


776 - 787 MHz Band

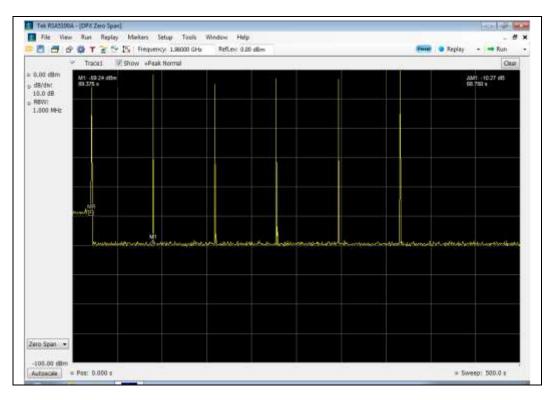
824 - 849 MHz Band

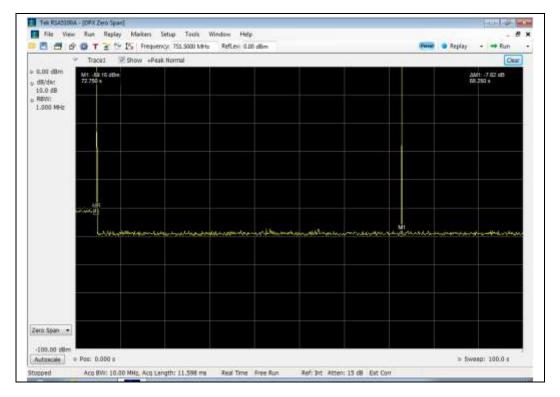


1850 - 1910 MHz Band

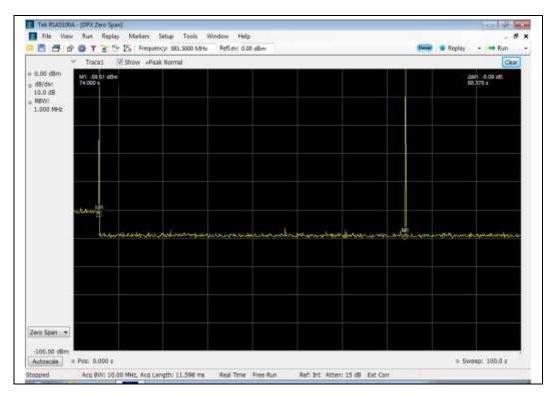

Downlink Detection Time Test Results

746 - 757 MHz Band

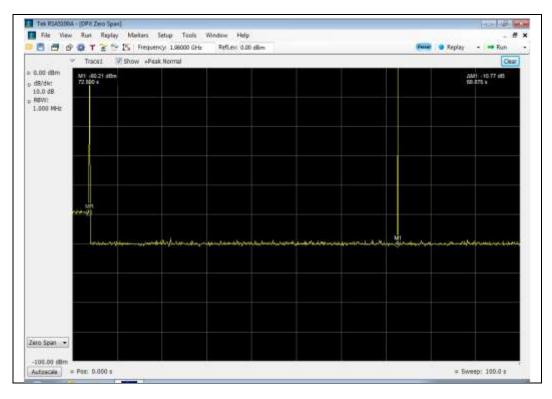




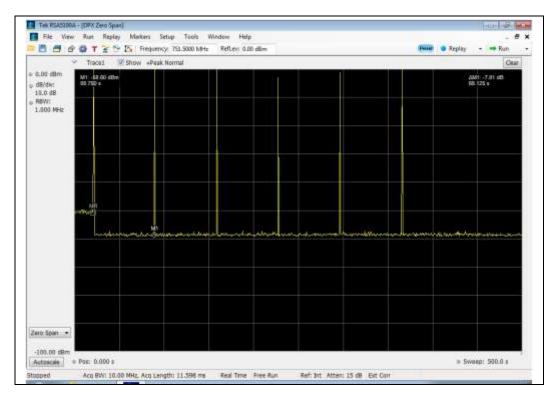
1930 - 1995 MHz Band

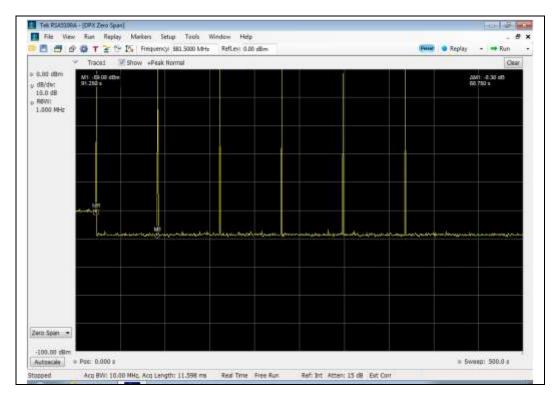


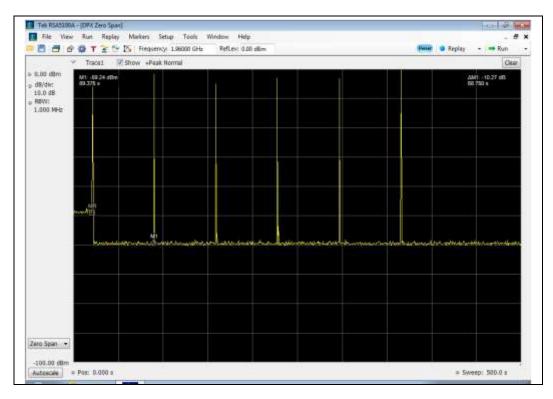
Downlink Restart Time Test Results


746 - 757 MHz Band

869 - 894 MHz Band




Downlink Restart Count Test Results


746 - 757 MHz Band

1930 – 1990 MHz Band

Radiated Spurious

Name of Test: Test Equipment Utilized:

Radiated Spurious i00103,i00348, i00379,

Engineer: Greg Corbin Test Date: 1/21/2014

Test Procedure

The EUT was tested in an semi-anechoic chamber with the turntable set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360 degrees with the antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure that the signal levels were maximized. All cable and antenna correction factors were input into the spectrum analyzer ensuring an accurate measurement in ERP/EIRP with the resultant power in dBm. A signal generator was used to provide a CW signal centered in each operational uplink and downlink band. The EUT output was terminated into a 50 Ohm non-radiating load.

The following formula was used for calculating the limits:

Radiated Spurious Emissions Limit = P1 - (43 + 10Log(P2)) = -13dBmP1 = power in dBm

P2 = power in Watts

Signal Generator EUT Antenna Spectrum Analyzer 50-Ohm nonradiating load

Uplink Test Results

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1563	-44.1	-13	Pass
2344.5	-39.4	-13	Pass
3126	-35.6	-13	Pass

776 - 787 MHz Band_781.5 MHz Tuned Frequency

824 - 849 MHz Band_836.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1673	-43.4	-13	Pass
2509.5	-38.7	-13	Pass
3346	-34.6	-13	Pass

1850 - 1910 MHz Band_1880 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
3760	-36.3	-13	Pass
5640	-33.2	-13	Pass
7520	-26.8	-13	Pass

Downlink Test Results

746 - 757 MHz Band_751.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1503	-45.6	-13	Pass
2254.5	-39.8	-13	Pass
3006	-33.6	-13	Pass

869 - 894 MHz Band_881.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1763	-43.2	-13	Pass
2644.5	-37.3	-13	Pass
3526	-35.0	-13	Pass

1930 - 1990 MHz Band_1960 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
3920	-37.5	-13	Pass
5880	-34.1	-13	Pass
7840	-26.7	-13	Pass

No other emissions were detected. All emissions were lower than -13 dBm. All emissions were system noise floor.

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	EMCO	3115	i00103	12/11/12	12/11/14
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	12/4/12	12/4/13**
Voltmeter	Fluke	75111	i00320	2/1/13	2/1/14
Vector Signal Generator	Agilent	E4438C	i00348	1/13/14	1/13/16
EMI Analyzer	Agilent	E7405A	i00379	1/14/14	1/14/15
Tunable Band Pass Filter	Wilson Electronics	Variable Attenuator / Bandpass Filter Switch Assembly	i00411	Verified on: 1/20/14	
RF Directional Coupler	Меса	CS06-1.500V	i00413	Verified on: 1/17/14	
Signal Generator	Rohde & Schwarz	SMU200A	S/N:101369	6/24/13	6/24/16
Spectrum Analyzer	Textronix	RSA5126A	i00424	9/22/13	9/22/14

"**60-day cal extension by lab manager

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT