Cellphone-Mate, Inc.

ADDENDUM TO TEST REPORT 95252-8

Mobile Wideband Consumer Signal Booster Model: TriFlex-2Go-A

Tested To The Following Standards:

FCC Part 27C

Report No.: 95252-8A

Date of issue: April 4, 2014

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 28 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 27	7
2.1049(I) Occupied Bandwidth	7
2.1051 / 27.53(c) / 27.53(f) / 27.53(g) Spurious Emissions at Antenna Terminals	15
2.1053 / 27.53(c) / 27.53(f) / 27.53(g) Field Strength of Spurious Radiation	20
2.1055 Frequency Stability	26
Supplemental Information	27
Measurement Uncertainty	27
Emissions Test Details	27

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Cellphone-Mate, Inc. 48346 Milmont Drive Fremont, CA 94538 **REPORT PREPARED BY:**

Dianne Dudley CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Hongtao Zhan Customer Reference Number: CKC20140123

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 95252

January 23, 2014 January 30-February 10, 2014

Revision History

Original: Testing of Mobile Wideband Consumer Signal Booster, TriFlex-2Go-A to FCC Part 20, Section 20.21. **Addendum A:** Replace readings data and plot in section 2.1053 / 27.53(c) / 27.53(f) / 27.53(g) Field Strength of Spurious Radiation.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Belon

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Brea D	US0060	SL2-IN-E-1146R	3082D-2	100638	A-0147

SUMMARY OF RESULTS

Standard / Specification: FCC Part(s) 2 / 27C

Test Procedure/Method	Description	Results
2.1046	RF Power Output	NA ¹
2.1047	Modulation Characteristics	NA ¹
2.1049(I)	Occupied Bandwidth	Pass
2.1051 / 27.53(c) / 27.53(f) / 27.53(g)	Spurious Emissions at Antenna Terminals	Pass
2.1053 / 27.53(c) / 27.53(f) / 27.53(g)	Field Strength of Spurious Radiation	Pass
2.1055	Frequency Stability	NA ²

 $NA^{1} = A$ different standard applies, see applicable test report.

NA² = Not applicable. See the section in the report for the reason.

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Mobile Wideband Consumer Signal Booster

Manuf: Cellphone-Mate, Inc. Model: TriFlex-2Go-A Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal Generator

Manuf: Agilent Model: E4433B Serial: US40052164

Power Divider

Manuf: Anaren Model: 44000 Serial: 0583

Power Supply

Manuf: SureCall Model: GFP451DA-0945-1 Serial: 1211-0000323

Programmer

Manuf: Cellphone-Mate, Inc. Model: SureCall Serial: None

Signal Generator

Manuf: Agilent Model: E4433B Serial: US40053279

50 ohm Load

Manuf: Generic Model: Generic Serial: None

Signal Generator

Manuf: Agilent Model: E4438C Serial: MY42081492

Signal Generator

Manuf: Agilent Model: E4438C Serial: MY42081492

FCC PART 27

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) requirements for licensed devices. 47 CFR Part 27: Miscellaneous Wireless Communication Services

2.1049(I) Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Specification:	Cellphone-Mate, Inc. 47 CFR §2.1049(i) Occupied Bandwidth		
Work Order #:	95252	Date:	1/30/2014
Test Type:	Conducted Emissions	Time:	16:01:09
Equipment:	Mobile Wideband Consumer Signal	Sequence#:	9
	Booster		
Manufacturer:	Cellphone-Mate, Inc.	Tested By:	Don Nguyen
Model:	TriFlex-2Go-A		120V 60Hz
S/N:	NA		

Test Equipment:

T1 AN03431 Attenuator 89-20-21 9/5/2013 9/5/2015 T2 AN02945 Cable 32022-2-2909K- 10/30/2013 10/30/2015	
T2 AN02945 Cable 32022-2-2909K- 10/30/2013 10/30/2015	
12 m(02) 15 Cubic 52022 2 2) 0) 10/50/2015 10/50/2015	
36TC	
T3 AN02672 Spectrum Analyzer E4446A 9/4/2012 9/4/2014	

Equipment Under Test (*	= EUT):		
Function	Manufacturer	Model #	S/N
Mobile Wideband	Cellphone-Mate, Inc.	TriFlex-2Go-A	NA
Consumer Signal Booster*	-		

Support Devices:

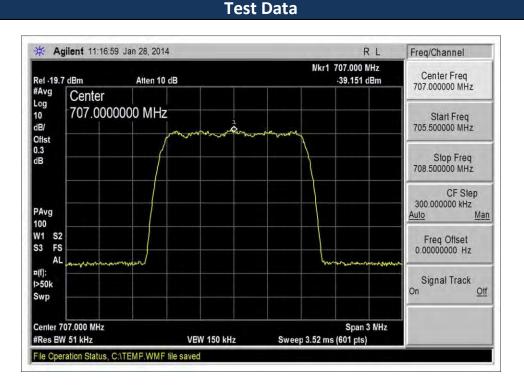
Support Derices.			
Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4433B	US40052164
Signal Generator	Agilent	E4438C	MY42081492
Power Supply	SureCall	GFP451DA-0945-1	1211-0000323

Test Conditions / Notes:

The equipment under test (EUT) is placed on the table top. EUT set at maximum gain. Signal generator is connected to input port of EUT. Output port of EUT is connected to spectrum analyzer via 20db attenuator and RF cable.

Evaluation performed at the Outside (Donor) and Inside (Server) antenna port.

Input and output screen captures where made at the center frequency of each of the following two bands:

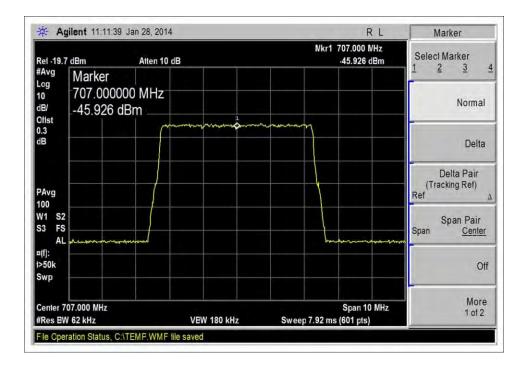

UL 698-716 DL 728-746

Carrier was modulated with GSM, CDMA, and LTE.

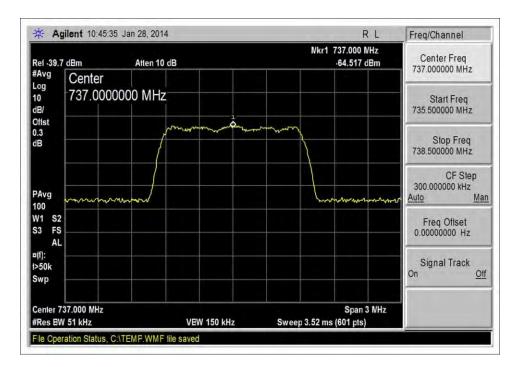
Test procedure: The test was performed in accordance with section 7.10 of the FCC Publication: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance DR04-41516 January 21, 2014 Test environment conditions: 22°C, 31%, 100kPa


Temperature: 21°C, Humidity: 39%, Pressure: 100kPa

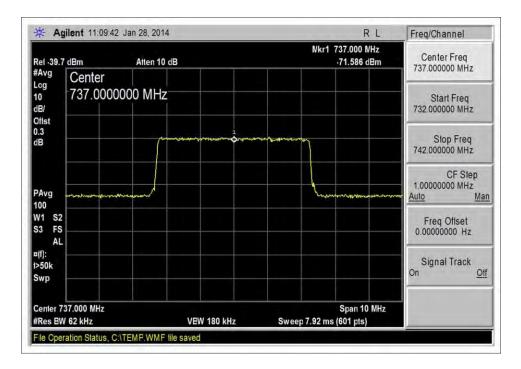
Site D



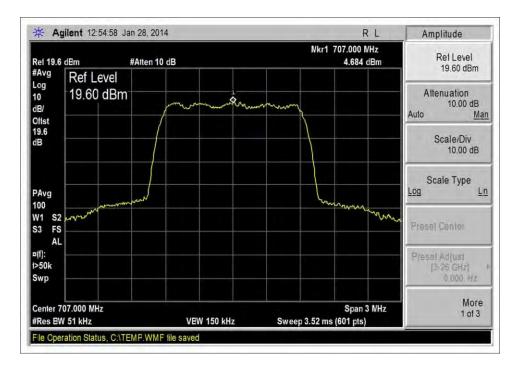
CDMA_UL 698-716_Input



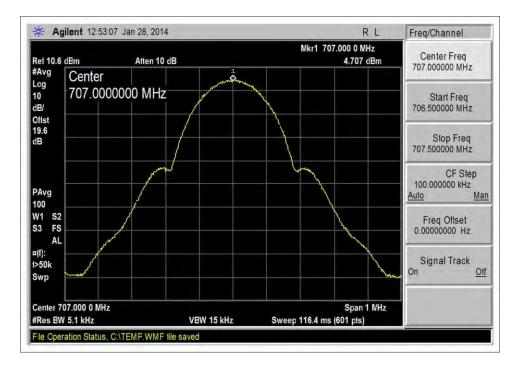
GSM_UL 698-716_Input



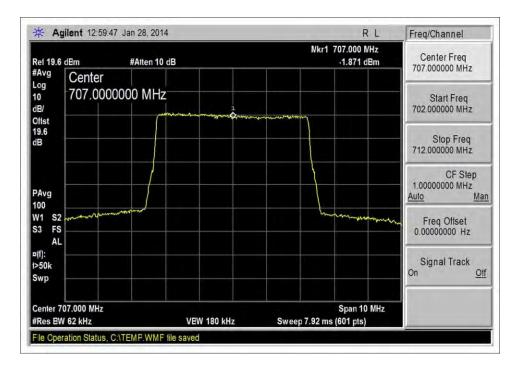
LTE_UL 698-716_Input



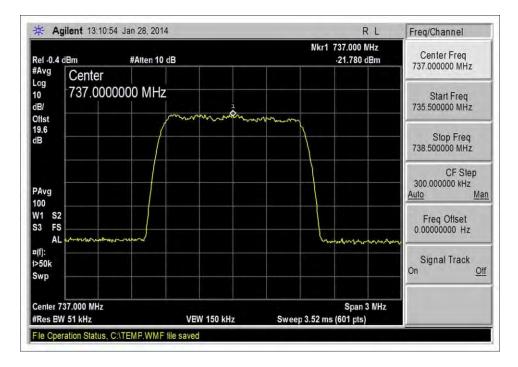
CDMA_DL 728-746_Input

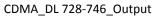


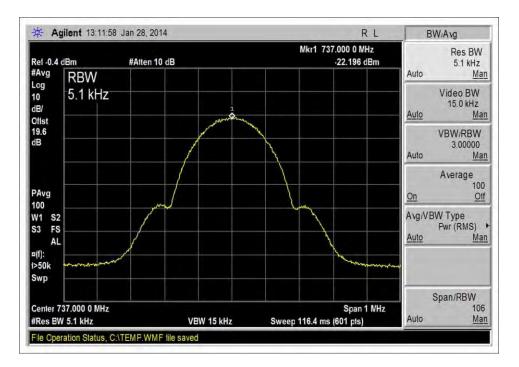
LTE_DL 728-746_Input



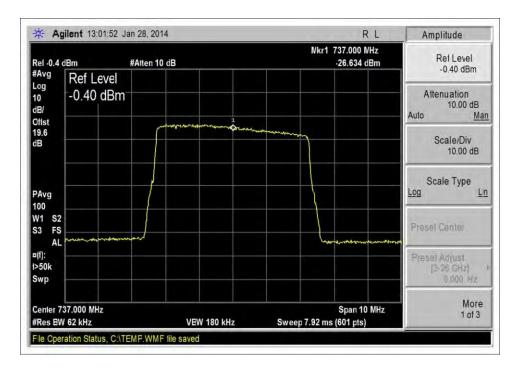
CDMA_UL 698-716_Output




GSM_UL 698-716_Output



LTE_UL 698-716_Output



GSM_DL 728-746_Output

LTE_DL 728-746_Output

Test Setup Photo(s)

2.1051 / 27.53(c) / 27.53(f) / 27.53(g) Spurious Emissions at Antenna Terminals

Test Data

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Specification: Work Order #:	Cellphone-Mate, Inc. 47 CFR §27.53(f) Spurious Emissions 95252	Date:	1/30/2014
Test Type:	Conducted Emissions	Time:	16:01:09
Equipment:	Mobile Wideband Consumer Signal	Sequence#:	9
	Booster		
Manufacturer:	Cellphone-Mate, Inc.	Tested By:	Don Nguyen
Model:	TriFlex-2Go-A		120V 60Hz
S/N:	NA		

Test Equipment:

	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN03431	Attenuator	89-20-21	9/5/2013	9/5/2015
Ī	T2	AN02945	Cable	32022-2-2909K-	10/30/2013	10/30/2015
				36TC		
	Т3	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014

Equipment Under Test (* = EUT):

Equipment entite rest (201).		
Function	Manufacturer	Model #	S/N
Mobile Wideband	Cellphone-Mate, Inc.	TriFlex-2Go-A	NA
Consumer Signal Booster*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	Agilent	E4433B	US40052164	
Power Supply	SureCall	GFP451DA-0945-1	1211-0000323	

Test Conditions / Notes:

The equipment under test (EUT) is placed on the table top. EUT set at maximum gain. Signal generator is connected to input port of EUT. Output port of EUT is connected to spectrum analyzer via 20db attenuator and RF cable. Evaluation performed at the Outside (Donor) and Inside (Server) antenna port. UL 698-716 DL 728 746

DL 728-746

TXFreq = Center frequency of above listed bands.

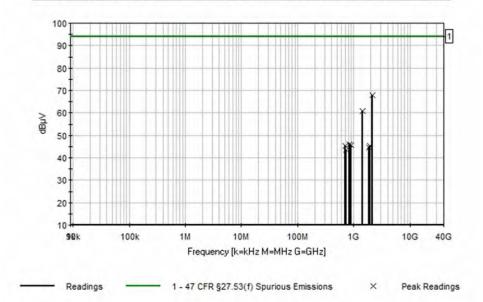
Modulation: CW

Frequency range of measurement = 9kHz to 8 GHz.

9kHz-150 kHz, RBW=200 Hz, VBW=200Hz;150kHz-30MHz, RBW=9kHz,VBW=9kHz;30MHz-1000MHz, RBW=120kHz,VBW=120kHz;1000MHz-8000MHz, RBW=1MHz,VBW=1MHz

Test procedure: The test was performed in accordance with section 7.6 of the FCC Publication: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance DR04-41516 January 21, 2014 Temperature: 21°C, Humidity: 39%, Pressure: 100kPa Site D

No emission found when measuring downlink output port.



Ext Attn: 0 dB

Measu	rement Data:						Test Lead: Antenna port				
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1413.370M	40.8	+19.3	+0.6	+0.0		+0.0	60.7	94.0	-33.3	Anten
									UL 698-7	16MHz	
2	2119.670M	47.5	+19.4	+0.8	+0.0		+0.0	67.7	94.0	-26.3	Anten
									UL 698-7	16MHz	
3	703.360M	25.6	+19.3	+0.3	+0.0		+0.0	45.2	94.0	-48.8	Anten
									Max Nois		
									698-716, 1	no input	
									signal		
4	845.330M	26.4	+19.2	+0.3	+0.0		+0.0	45.9	94.0	-48.1	Anten
									Max Nois		
									824-849, 1	no input	
									signal		
5	1869.400M	24.7	+19.3	+0.7	+0.0		+0.0	44.7	94.0	-49.3	Anten
									Max Nois		
), no input	
	535 0000 (24.1	. 10.0					10 (signal	50.4	. .
6	735.920M	24.1	+19.2	+0.3	+0.0		+0.0	43.6	94.0	-50.4	Anten
									Max Nois		
									728-746, 1	no input	
7	002 00014	25.0	+ 10.2	+0.2				15 5	signal	40.5	A 4
7	882.080M	25.9	+19.3	+0.3	+0.0		+0.0	45.5	94.0	-48.5	Anten
									Max Nois		
									869-894, 1	no input	
8	1952.600M	25.2	+10.4	+0.7			+0.0	45.3	signal	-48.7	A
8	1932.000M	23.2	+19.4	+0.7	+0.0		+0.0	43.3	94.0 Max Nois		Anten
									Max Nois		
									signal), no input	
L									Signai		

CKC Laboratories Inc. Date: 1/30/2014 Time: 16:01:09 Cellphone-Mate, Inc. WO#: 95252 47 CFR §27.53(f) Spurious Emissions Test Lead: Antenna port 120V 60Hz Sequence#: 9 Ext ATTN: 0 dB

LIMIT LINE FOR SPURIOUS CONDUCTED EMISSION

	REQUIRE	D ATT	ENUATION	=	43+10 LOG P DB
Limit line (dBuV)	=	V _{dBuv}	- Attenuation		
\mathbf{V}_{dBuV}		=	$20 \text{ Log } \frac{\text{V}}{1 \text{ x } 10^{-3}}$	-6	
		=	20(Log V - Log)	$g1x10^{-}$	6)
		=	20 Log V - 20	Log1 x 1	0^{-6}
		=	20 Log V - 20	•	
		=	20 Log V + 120		
			C		
Attenuation		=	43 + 10 Log P		
		=	$43+10 \operatorname{Log} \frac{V}{1}$	$\frac{r^2}{R}$	
		=	43 + 10 (Log V)	r^2 - Log]	R)
		=	43 + 10(2 Log)	g V - Log	(R)
		=	43 + 20 Log V	-10 Log	R
Limit line	=	V _{dBuv}	- Attenuation		
		=	20 Log V + 120 -	•	
	201	=	20 Log V + 120 - 40		g V + 10Log R
=	20 Log V		- 43 - 20 Log V + 10	-	Note $\mathbf{P} = \mathbf{F} \mathbf{Q} \mathbf{Q}$
		=	120 – 43 + 10 Log		Note : R = 50 Ω

= 120-43 + 16.897 = 94 dBuV at any power level

Test Setup Photo(s)

2.1053 / 27.53(c) / 27.53(f) / 27.53(g) Field Strength of Spurious Radiation

Test Conditions / Setup

Test Location: CKC Laboratories Inc. • 110 N Olinda Pl • Brea CA 92823 • 7149936112

Customer:	Cellphone-Mate, Inc.		
Specification:	47 CFR §27.53(f) Spurious Emissions		
Work Order #:	95252	Date:	1/30/2014
Test Type:	Maximized Emissions	Time:	12:47:59
Equipment:	Mobile Wideband Consumer Signal	Sequence#:	8
	Booster		
Manufacturer:	Cellphone-Mate, Inc.	Tested By:	Don Nguyen
Model:	TriFlex-2Go-A		
S/N:	NA		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00010	Preamp	8447D	3/29/2012	3/29/2014
T2	AN00851	Biconilog Antenna	CBL6111C	5/16/2012	5/16/2014
Т3	ANP05555	Cable	RG223/U	6/19/2012	6/19/2014
T4	ANP06360	Cable	L1-PNMNM-48	8/29/2012	8/29/2014
T5	ANP04382	Cable	LDF-50	8/30/2012	8/30/2014
Т6	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
	AN00787	Preamp	83017A	5/31/2013	5/31/2015
	AN01646	Horn Antenna	3115	4/13/2012	4/13/2014
	AN02945	Cable	32022-2-2909K-	10/30/2013	10/30/2015
			36TC		
	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014
	AN01413	Horn Antenna-ANSI	84125-80008	11/9/2012	11/9/2014
		C63.5 (dB/m)			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Wideband	Cellphone-Mate, Inc.	TriFlex-2Go-A	NA
Consumer Signal Booster*	-		

Support Devices: Function Manufacturer Model # S/N Signal Generator Agilent E4433B US40052164 Signal Generator Agilent E4433B US40053279 Power Divider Anaren 44000 0583 50 ohm Load Generic Generic NA Power Supply SureCall GFP451DA-0945-1 1211-0000323 Signal Generator Agilent E4438C MY42081492 Programmer Cellphone-Mate, Inc. SureCall NA

Test Conditions / Notes:

The equipment under test (EUT) is placed on the Styrofoam table top. EUT set at maximum gain. Three remotely located signal generators are connected to power divider. The output of power divider is connected to input of EUT. Port GUI is terminated with supported programmer.

Evaluation of DL path was performed with signal fed into the Outside (Donor) antenna port while Inside (Server) antenna port terminated with 50 Ohm load.

Evaluation of UL path was performed with signal fed into the Inside (Server) antenna port while Outside (Donor) antenna port terminated with 50 Ohm load.

UL 698-716 DL 728-746

TXFreq = Center frequency of above listed bands.

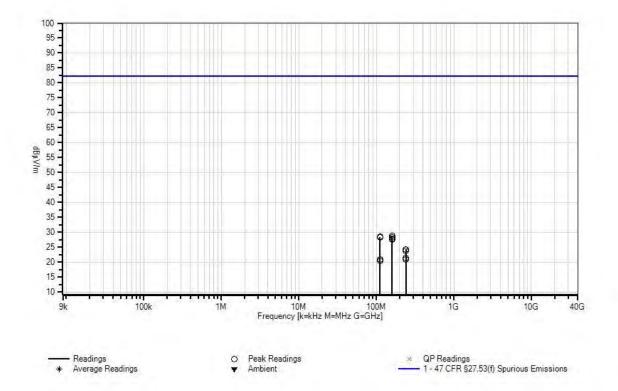
Modulation: CW

Frequency range of measurement = 9 kHz to 8 GHz.

9kHz-150kHz, RBW=200Hz, VBW=200Hz;150kHz-30MHz, RBW=9kHz,VBW=9kHz;30MHz-1000MHz, RBW=120kHz,VBW=120kHz;1000MHz-20000MHz, RBW=1MHz,VBW=1MHz

Temperature: 19°C, Humidity: 39%, Pressure: 100kPa

Site D


No emission above 1GHz was found.

ttn: 0 dB										
Measurement Data:		eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6							
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
160.170M	42.6	-26.8	+10.4	+0.2	+0.8	+0.0	28.7	82.2	-53.5	Horiz
		+1.5	+0.0					DL 728-74	6, 869-	
								894, 1930-	1990	
111.670M	42.3	-26.9	+11.0	+0.2	+0.7	+0.0	28.5	82.2	-53.7	Vert
		+1.2	+0.0					UL 698-71	6, 824-	
								849, 1850-	1910	
160.170M	42.2	-26.8	+10.4	+0.2	+0.8	+0.0	28.3	82.2	-53.9	Horiz
		+1.5	+0.0					UL 698-71	6, 824-	
								849, 1850-	1910	
111.670M	42.1	-26.9	+11.0	+0.2	+0.7	+0.0	28.3	82.2	-53.9	Vert
		+1.2	+0.0					DL 728-74	6, 869-	
								894, 1930-	1990	
160.170M	41.8	-26.8	+10.4	+0.2	+0.8	+0.0	27.9	82.2	-54.3	Vert
		+1.5	+0.0					DL 728-74	6, 869-	
								894, 1930-	1990	
160.170M	41.5	-26.8	+10.4	+0.2	+0.8	+0.0	27.6	82.2	-54.6	Vert
		+1.5	+0.0					UL 698-71	6, 824-	
								849, 1850-	1910	
241.170M	35.7	-26.5	+12.0	+0.3	+1.0	+0.0	24.3	82.2	-57.9	Vert
		+1.8	+0.0					DL 728-74	6, 869-	
								894, 1930-	1990	
	rement Data: Freq MHz 160.170M 111.670M 160.170M 160.170M 160.170M	rement Data: Ref Freq Rdng MHz dBµV 160.170M 42.6 111.670M 42.3 160.170M 42.2 111.670M 42.1 160.170M 41.8 160.170M 41.5	rement Data: Reading lis Freq Rdng T1 T5 MHz dBµV dB 160.170M 42.6 -26.8 111.670M 42.3 -26.9 +1.2 - - 160.170M 42.2 -26.8 111.670M 42.2 -26.8 +1.5 - - 160.170M 42.1 -26.9 +1.2 - - 160.170M 41.8 -26.8 +1.5 - - 160.170M 41.5 - 160.170M 41.5 - 241.170M 35.7 -26.5	rement Data:Reading listed by maFreqRdngT1T2T5T6MHzdB μ VdBdB160.170M42.6-26.8+10.4+1.5+0.0+1.5+0.0111.670M42.3-26.9+11.0160.170M42.2-26.8+10.4+1.5+0.0	rement Data:Reading listed by margin.FreqRdngT1T2T3T5T6T6MHzdB μ VdBdBdB160.170M42.6-26.8+10.4+0.2111.670M42.3-26.9+11.0+0.2160.170M42.2-26.8+10.4+0.2160.170M42.1-26.9+11.0+0.2111.670M42.1-26.9+11.0+0.2160.170M41.8-26.8+10.4+0.2160.170M41.5-26.8+10.4+0.2+1.5+0.0160.170M41.5-26.8+10.4+0.2+1.5+0.0160.170M41.5-26.8+10.4+0.2+1.5+0.0141.170M35.7-26.5+12.0+0.3	rement Data:Reading listed by margin.FreqRdngT1T2T3T4T5T6T6T6MHzdB μ VdBdBdBdBdB160.170M42.6-26.8+10.4+0.2+0.8111.670M42.3-26.9+11.0+0.2+0.7160.170M42.2-26.8+10.4+0.2+0.8160.170M42.1-26.9+11.0+0.2+0.7111.670M42.1-26.9+11.0+0.2+0.7160.170M41.8-26.8+10.4+0.2+0.8160.170M41.5-26.8+10.4+0.2+0.8160.170M41.5-26.8+10.4+0.2+0.81241.170M35.7-26.5+12.0+0.3+1.0	rement Data:Reading listed by margin.TeFreqRdngT1T2T3T4DistT5T6T6T6TableMHzdB μ VdBdBdBdBTable160.170M42.6-26.8+10.4+0.2+0.8+0.0111.670M42.3-26.9+11.0+0.2+0.7+0.0160.170M42.2-26.8+10.4+0.2+0.8+0.0111.670M42.1-26.9+11.0+0.2+0.7+0.0160.170M41.8-26.8+10.4+0.2+0.8+0.0160.170M41.5-26.8+10.4+0.2+0.8+0.0160.170M41.5-26.8+10.4+0.2+0.8+0.0241.170M35.7-26.5+12.0+0.3+1.0+0.0	rement Data:Test DistanceFreqRdngT1T2T3T4DistCorrMHzdB μV dBdBdBdBdBTabledB $\mu V/m$ 160.170M42.6-26.8+10.4+0.2+0.8+0.028.7111.670M42.3-26.9+11.0+0.2+0.7+0.028.5160.170M42.2-26.8+10.4+0.2+0.8+0.028.3111.670M42.1-26.9+11.0+0.2+0.7+0.028.3111.670M42.1-26.9+11.0+0.2+0.7+0.028.3160.170M41.8-26.8+10.4+0.2+0.8+0.027.9160.170M41.5-26.8+10.4+0.2+0.8+0.027.9160.170M41.5-26.8+10.4+0.2+0.8+0.027.9160.170M41.5-26.8+10.4+0.2+0.8+0.027.6140.170M41.5-26.8+10.4+0.2+0.8+0.027.6160.170M41.5-26.5+10.4+0.2+0.8+0.027.6160.170M41.5-26.5+10.4+0.2+0.8+0.027.6241.170M35.7-26.5+12.0+0.3+1.0+0.024.3	rement Data: Test Distance: 3 Meters Freq Rdng T1 T2 T3 T4 Dist Corr Spec MHz dBµV dB dB dB dB dB Table dBµV/m dBµV/m 160.170M 42.6 -26.8 +10.4 +0.2 +0.8 +0.0 28.7 82.2 +1.5 +0.0 DL 728-74 894, 1930- 111.670M 42.3 -26.9 +11.0 +0.2 +0.7 +0.0 28.5 82.2 +1.2 +0.0 UL 698-71 849, 1850- 104.698-71 849, 1850- 160.170M 42.2 -26.8 +10.4 +0.2 +0.8 +0.0 28.3 82.2 +1.5 +0.0 UL 698-71 849, 1850- 104.698-71 849, 1850- 111.670M 42.1 -26.9 +11.0 +0.2 +0.7 +0.0 28.3 82.2 +1.5 +0.0	rement Data: Reading listed by margin. Test Distance: 3 Meters Freq Rdng T1 T2 T3 T4 Dist Corr Spec Margin MHz dBµV dB dB dB dB dB Table dBµV/m dBµV/m dB 160.170M 42.6 -26.8 +10.4 +0.2 +0.8 +0.0 28.7 82.2 -53.5 111.670M 42.3 -26.9 +11.0 +0.2 +0.7 +0.0 28.5 82.2 -53.7 111.670M 42.2 -26.8 +10.4 +0.2 +0.7 +0.0 28.3 82.2 -53.9 111.670M 42.2 -26.8 +10.4 +0.2 +0.8 +0.0 28.3 82.2 -53.9 111.670M 42.1 -26.9 +11.0 +0.2 +0.7 +0.0 28.3 82.2 -53.9 111.670M 42.1 -26.9 +11.0 +0.2 +0.7 <td< td=""></td<>

-											
8	241.170M	35.1	-26.5	+12.0	+0.3	+1.0	+0.0	23.7	82.2	-58.5	Vert
			+1.8	+0.0					UL 698-71	6, 824-	
									849, 1850-	1910	
9	241.170M	32.7	-26.5	+12.0	+0.3	+1.0	+0.0	21.3	82.2	-60.9	Horiz
			+1.8	+0.0					UL 698-71	6, 824-	
									849, 1850-	1910	
10	241.170M	32.4	-26.5	+12.0	+0.3	+1.0	+0.0	21.0	82.2	-61.2	Horiz
			+1.8	+0.0					DL 728-74	6, 869-	
									894, 1930-	·	
11	111.670M	34.6	-26.9	+11.0	+0.2	+0.7	+0.0	20.8	82.2	-61.4	Horiz
			+1.2	+0.0					UL 698-71	6, 824-	
									849, 1850-	,	
12	111.670M	34.3	-26.9	+11.0	+0.2	+0.7	+0.0	20.5	82.2	-61.7	Horiz
			+1.2	+0.0					DL 728-74	6, 869-	
									894, 1930-	,	
									., 1900	- / / •	

CKC Laboratories Inc. Date: 1/30/2014 Time: 12:47:59 Cellphone-Mate, Inc. WO#: 95252 47 CFR §27.53(f) Spurious Emissions Test Distance: 3 Meters Sequence#: 8 Ext ATTN: 0 dB

Test Data

LIMIT LINE FOR SPURIOUS RADIATED EMISSION

REQUIRED ATTENUATION = 43+10 LOG P (DB)

For radiated spurious emission measured at 3 meter test distance,

Required attenuation	=	43+10 Log P _{t at 3 meter} dB
Limit line (dBuV)	=	E _{dBuv} - Attenuation

 E_{dBuv} = Measured field strength at 3 meter in dBuV/m

Power Density (Isotropic)

$$P_{\rm D} = \frac{P_{\rm t}}{4\pi r^2}$$

P_D = Power Density in Watts /m² Pt = Average Transmit Power r = Test distance

Field Intensity E (V/m)

$$E = \sqrt{P_D \times 377}$$

$$E = \frac{\sqrt{P_t \times 377}}{4\pi r^2}$$

$$E = \sqrt{\frac{P_t \ x \ 30}{r^2}}$$

$$P_t = \left(\frac{E^2 x r^2}{30}\right)$$

10 Log P_t = 10 Log E 2 (V/m)+ 10 Log r 2 – 10 Log 30

 $10 \text{ Log P}_t = 20 \text{ Log E} (V/m) + 20 \text{ Log } r - 10 \text{ Log } 30$

At 3 meter, r = 3 m

 $10 \text{ Log P}_t = 20 \text{ Log E} (V/m) + 20 \text{ Log } 3 - 10 \text{ Log } 30$

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (V/m) + 9.54 - 14.77$

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (V/m) - 5.23$

Since 20 Log E (V/m) = 20 Log E (uV/m) -120

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (uV/m) - 120 - 5.23$

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (uV/m) - 125.23$

```
E<sub>dBuv</sub> – Attenuation
Limit line (dBuV) at 3 meter
                                        =
                                                             E dBuv - (43+10 Log Pt at 3 meter )
                                                  =
                                                             E_{dBuv} - 43 - 10 Log P_{t at 3 meter}
                                                  =
                                                             E dBuv - 43 - (20 Log E (uV/m) -125.23)
                                                  =
                                                             E <sub>dBuv -</sub> 43 - 20 Log E (uV/m) + 125.23
                                                  =
                                                             E <sub>dBuv</sub> - 20 Log E (uV/m) + 82.23
                                                  =
Since 20 Log E (uV/m) = E in dBuV/m
                                                            E<sub>dBuv</sub> - E<sub>dBuv</sub> + 82.23
                                                  =
  Radiated Emission limit 3 meter =
                                                             82.23 dBuV at any power level measured in dBuV
```


Test Setup Photo(s)

Page 25 of 28 Report No.: 95252-8A

2.1055 Frequency Stability

Note: Not applicable because the EUT is an amplified device.

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS										
	Meter reading (dBµV)									
+	Antenna Factor	(dB)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	Preamplifier Gain	(dB)								
=	Corrected Reading	(dBµV/m)								

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan