Cellphone-Mate, Inc.

TEST REPORT FOR

Consumer Booster Model: Fusion4Home

Tested To The Following Standard:

FCC Part 2 / 27

Report No.: 97835-15

Date of issue: December 21, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 52 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	7
Conditions During Testing	7
Equipment Under Test	7
FCC Part(s) 2 / 27	8
FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth	8
FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results	8
 FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results 2.1051 Spurious Emissions at Antenna Terminals 	
 FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results 2.1051 Spurious Emissions at Antenna Terminals Summary of Results 	
 FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results 2.1051 Spurious Emissions at Antenna Terminals Summary of Results 2.1053 Field Strength of Spurious Radiation 	
 FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results 2.1051 Spurious Emissions at Antenna Terminals Summary of Results 2.1053 Field Strength of Spurious Radiation Summary of Results 	
 FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results 2.1051 Spurious Emissions at Antenna Terminals Summary of Results 2.1053 Field Strength of Spurious Radiation Summary of Results 	
 FCC Part(s) 2 / 27 2.1049 Occupied Bandwidth Summary of Results 2.1051 Spurious Emissions at Antenna Terminals Summary of Results 2.1053 Field Strength of Spurious Radiation	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Cellphone-Mate, Inc. 48346 Milmont Drive Fremont, CA 94538 **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

REPRESENTATIVE: Dennis Findley Customer Reference Number: CKC20151106

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 97835

December 14, 2015 December 14-17, 2015

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02.00
EMITest Immunity	5.02.00

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149

SUMMARY OF RESULTS

Standard / Specification: FCC Part 2/27

KDB 935210 I Signal Booste v0	D03 Wideband Consumer r Measurement Guidance 3, June 5, 2015	FCC Part Section Correlation		Mods	Results
Guidance Sec #	Guidance Description	FCC Sec #	FCC Rule Description		
7.1 a) - k)	Authorized Frequency Band Verification Test	20.21(e)(3)	Frequency Bands	NA	NA ¹
7.2.2 a) - k)	Maximum Power Measurement Procedure	2.1046/20.21(e)(8)(i)(D)	Power Limit	NA	NA ¹
7.3 a) - d)	Maximum Booster Gain Computation	20.21(e)(8)(i)(B)	Bidirectional Capabilities	NA	NA ¹
7.4 a) - n)	Intermodulation Product	20.21(e)(8)(i)(F)	Intermodulation Limit	NA	NA ¹
7.5 a) - n)	Out of Band Emissions	20.21(e)(8)(i)(E)	Out of Band Emission	NA	NA ¹
7.6 a) - e)	Conducted Spurious Emission	2.1051/22/24/27	Spurious emission	NA	Pass
7.7.1 a) - g) 7.7.1 h) - n) 7.7.2 a) - g)	Noise Limit Procedure Variable Noise Variable Noise Timing	20.21(e)(8)(i)(A)(2)(i) 20.21(e)(8)(i)(A)(1) 20.21(e)(8)(i)(H)	Noise Limits Transmit Power Off Mode	NA	NA ¹
7.8 a) - l)	Uplink inactivity	20.21(e)(8)(i)(l)	Uplink Inactivity	NA	NA ¹

NA = Not Applicable

 $NA^{1} = A$ different standard applies; see applicable test report.

Standard / Specification: FCC Part 2/27 - continued

KDB 935210 I Signal Booste v0	935210 D03 Wideband Consumer Il Booster Measurement Guidance FCC Part Section Correlation v03, June 5, 2015		Mods	Results	
Guidance Sec #	Guidance Description	FCC Sec #	FCC Rule Description		
7.9.1 a) - l) 7.9.2 a) - f)	Variable Booster Gain Variable Uplink Gain Timing	20.21(e)(8)(i)(C) (1), (2)(i) 20.21(e)(8)(i)(H)	Booster Gain Transmit Power Off Mode	NA	NA ¹
7.10.a) - j)	Occupied Band Width	2.1049/22/24/27	Occupied Band Width	NA	Pass
7.11.2 a) - r) 7.11.3 a) - h) 7.11.4 a) - h) (alternate to 7.11.3)	Anti-Oscillation	20.21(e)(8)(ii)(A)	Anti-Oscillation	NA	NA ¹
7.12a) - f)	Radiated Spurious Emission	2.1053/ 22/24/27	Spurious Emission	NA	Pass
7.13 a) - c)	Spectrum Block Filter ²	NA ¹	NA ¹	NA	NA ¹

NA = Not Applicable

NA¹ = A different standard applies; see applicable test report.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

On the Outside (Donor) antenna port, which is a 75 ohm impedance port, an impedance matching pad is used. Readings are compensated by adding the additional loss on the Spectrum Analyzer.

On the Inside (Server) antenna port, which is a 50 ohm impedance port, readings are taken using injection signals compensated. The level of these signals is corrected by adding the additional loss due to the usage of the impedance matching pad to create equivalent power/RSSI at the Donor antenna port.

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Equipment Tested:			
Device	Manufacturer	Model #	S/N
Consumer Booster	Cellphone-Mate, Inc.	Fusion4Home	01
AC/DC Power Adapter	SureCall	GFP181U-0628B-1	1409-0000765
Support Equipment:			
Device	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4433B	US40052164
Signal Generator	Agilent	E4438C	MY42082260
Configuration 2			
Equipment Testea:			- /
Device	Manufacturer	Model #	S/N
Consumer Booster	Cellphone-Mate, Inc.	Fusion4Home	01
AC/DC Power Adapter	SureCall	GFP181U-0628B-1	1409-0000765
Support Equipment:			
Device	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4433B	US40052164
Signal Generator	Agilent	E4438C	MY42082260
Signal Generator	Marconi	2022D	1191941005
Signal Generator	Marconi	2026	112247/015

Configuration 1

FCC PART(S) 2 / 27

2.1049 Occupied Bandwidth

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170					
Customer:	Cellphone-Mate, Inc.					
Specification:	7.10 Occupied Band Width					
Work Order #:	97835	Date:	12/14/2015			
Test Type:	Conducted Emissions	Time:	10:04:44			
Tested By:	Daniel Bertran	Sequence#:	1			
Software:	EMITest 5.02.00					

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
C				

Support Equipment:

Support Equipment			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The equipment under test (EUT) is a Fixed Wideband Consumer Booster. The EUT is placed on the test bench. Evaluation performed at the Outside (Donor) and Inside (Server) antenna port.

Part 27

UL: 1710-1755MHz, 698-716MHz, 776-787MHz DL: 2110-2155MHz, 728-746MHz, 746-757MHz

Test environment conditions: Temperature: 20°C, Relative Humidity: 40%, Pressure: 102kPa

Test procedure:

The test was performed in accordance with section 7.10 of the FCC document: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance v03 Dated June 5, 2015 Firmware: V2.0

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANP06709	Cable	32026-29094K- 29094K-72TC	9/18/2014	9/18/2016
	ANP06710	Cable	32026-29094K- 29094K-72TC	9/18/2014	9/18/2016
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017
	ANP06467	Attenuator	PE7014-10	5/13/2015	5/13/2017
	ANP06239	Attenuator	54A-10	7/9/2014	7/9/2016

Summary of Results

Pass: As summarized in plots below, the uniformity of the output signal relative to the input signal are practically identical. Therefore, the comparison is within limits.

Plots Input – CDMA

CCC LABORATORIES, INC.

7.10_OBW_DL_2110-2155MHz_CDMA

7.10_OBW_DL_746-757MHz_CDMA

7.10_OBW_UL_776-787MHz_GSM

7.10_OBW_UL_698-716MHz_GSM

RL

<u>Input - GSM</u>

CCC LABORATORIES, INC.

* Agilent 10:54:02 Dec 14, 2015

7.10_OBW_UL_1710-1755MHz_GSM

7.10_OBW_DL_728-746MHz_GSM

Testing the Future

ABORATORIES, INC.

C

7.10_OBW_DL_746-757MHz_GSM

Input – WCDMA

RL

* Agilent 11:11:00 Dec 14, 2015

Testing the Future

ABORATORIES, INC.

C

Output-CDMA

7.10_OBW_UL_698-716MHz_CDMA

7.10_OBW_DL_2110-2155MHz_CDMA

7.10_OBW_DL_746-757MHz_CDMA

Output-GSM

Testing the Future

ABORATORIES, INC.

7.10_OBW_UL_776-787MHz_GSM

#VEW 10 kHz

7.10_OBW_UL_1710-1755MHz_GSM

7.10_OBW_DL_728-746MHz_GSM

Testing the Future

ABORATORIES, INC.

CKC

7.10_OBW_DL_746-757MHz_GSM

Output-WCDMA

Testing the Future

ABORATORIES, INC.

C

—

Test Setup Photo

2.1051 Spurious Emissions at Antenna Terminals

Test Conditions / Setup

Test Location:	n: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170 Cellphone-Mate, Inc.					
Specification:	7.6 Conducted Spurious Emis	ssions / 47 CFR §2.1051 Sp	urious Emissions at Antenna			
-F	Terminals	5010157 17 01 11 3 - 01001 5P				
Work Order #:	97835	Date:	12/14/2015			
Test Type:	Conducted Emissions	Time:	08:16:35			
Tested By:	Daniel Bertran	Sequence#:	1			
Software:	EMITest 5.02.00	_				
Equipment Tested	1:					
Device	Manufacturer	Model #	S/N			
Configuration 1						
Support Equipme	nt:					
Device	Manufacturer	Model #	S/N			
Configuration 1						
<i>Test Conditions /</i> The equipment ur	<i>Notes:</i> nder test (EUT) is a Fixed Wideb	and Consumer Booster.]			

The EUT is placed on the test bench. Evaluation performed at the Outside (Donor) and Inside (Server) antenna port.

Part 27

UL: 1710-1755MHz, 698-716MHz, 776-787MHz

DL: 2110-2155MHz, 728-746MHz, 746-757MHz

Frequency range of measurement = 9 kHz- 22 GHz.

9 kHz -150 kHz -RBW= 200Hz VBW= 200Hz

150 kHz -30 MHz -RBW = 9kHz VBW = 9kHz

30 MHz -1000MHz -RBW*= 1MHz VBW= 3MHz

1000 MHz -22000MHz -RBW= 1MHz VBW= 3MHz

*Note: As specified on 7.6 Conducted spurious emissions test procedure of 935210 D03 Signal Booster Measurements v03, for frequencies below 1 GHz, an RBW of 1 MHz may be used in a preliminary measurement. If non-compliant emissions are detected, a final measurement shall be made with a 100 kHz RBW. Additionally, a peak detector may also be used for the preliminary measurement. If non-compliant emissions are detected then a final measurement of these emissions shall be made with the power averaging (RMS) detector.

Test environment conditions: Temperature: 20°C, Relative Humidity: 40%, Pressure: 102kPa

Test procedure:

The test was performed in accordance with section 7.6 of the FCC document: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance v03 Dated June 5, 2015

Firmware: V2.0

Note: 27.53 (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANP06709	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	ANP06710	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017
	ANP06467	Attenuator	PE7014-10	5/13/2015	5/13/2017
	ANP06239	Attenuator	54A-10	7/9/2014	7/9/2016

Summary of Results

Pass: As summarized in plots below, the conducted spurious emissions are within limits.

<u>9 KHz-30 MHz</u>

No Conducted Spurious Emissions were found within 20dB of the limit.

Per section 27.53 (f), the 1559-1610 band was also investigated and found emission within limits using applied correction (see calculation below).

🔆 Agi	lent 08:3	6:53 Dec 1	4, 2015					RL		
Rei 16.7 dE	m		#Att	en 20 dB				Mkr	1 1.564 037 -54.66	GHz 2 dBm
#Avg Log 10										
Olfst 16.7 dB										
DI -43.7 dBm										
PAvg 10 W1 S2										
S3 FC AL	A John For	1 1 1		the second		N. F. M. et	-1-1-1-1-1			
¤(i): FTun Swp	ALC: LUI		adainata a da			(Activity) (Activity)				
Start 1.559	000 GHz							Sic	op 1.610 000	GHz
#Res BW 1	MHz				#VBW 3 MH;	z	S	weep 1.092	ms (8192 pt	s)

Calculation:

UL776-787MHz=>

Limit line EIRP on this band 1559-1610MHz => Limit line EIRP corrected => Antenna Gain (7dB) / Cable Loss (3.32dB) -70 dBW/MHz =>-40dBm -40dBm-7dBi+3.32dB=> -43.68dBm

LIMIT LINE FOR SPURIOUS CONDUCTED EMISSION

REQUIRED ATTENUATION	J	=	43+10 LOG P DB
Limit line (dBuV)	=	V _{dBuv} -	Attenuation
V_{dBuV}		=	$20 \log \frac{V}{1 \times 10^{-6}}$
		=	$20(\text{Log V} - \text{Log 1 x } 10^{-6})$
		=	$20 \text{ Log V} - 20 \text{ Log 1 x } 10^{-6}$
		=	20 Log V - 20(-6)
		=	20 Log V +120
Attenuation		=	43 + 10 Log P
		=	$43+10 \operatorname{Log} \frac{\operatorname{V}^2}{\operatorname{R}}$
		=	$43 + 10 (Log V^2 - Log R)$
		=	43 + 10(2 Log V - Log R)
		=	43 + 20 Log V - 10 Log R
Limit line	=	V _{dBuv} -	Attenuation
		=	20 Log V + 120 – (43 + 20 Log V – 10Log R)
		=	20 Log V + 120 – 43 – 20 Log V + 10Log R
=	20 Log '	V + 120 –	43 – 20 Log V + 10Log R
		=	$120 - 43 + 10 \log 50$ Note : K = 50 Ω
		=	120-43 + 10.897 94 dBuV - at any nower level
		-	54 ubuv at dily powel level

Testing the Future LABORATORIES, INC.

🔆 Agilent 08:28:09 Dec 14, 2015

Plots

RL

Agilent 08:28:54 1	Dec 14, 2015		RL	
6.7 dBm	#Atten 20 d	В		Nkr1 7.102 4 GHz -48.032 dBm
k				
\$2				
FC				
AL				
			A destand	-
	Manual Providence State			State Block Lines and Block
4.000 0 GHz		and the second second		Stop 8.000 0 GHz
BW 1 MHz		#VBW 3 MHz	Sweep 7	.099 ms (8192 pts)

UL_698-716R2

UL_776-787L

UL_776-787R1

UL_776-787R2

UL_1710-1755L

UL_1710-1755R1

* Agilent 08:17:51 [Dec 14, 2015			RL		
el 26.7 dBm	#Atten 20 dB			M	48.79	7 GHz 7 dBm
eak a						
9						
et						
7						
.0			_			
m						
Av						
S2						
FC						
:				1		
un antikalisasida hatatat	alling a large states and a state of the	the all desires on the stated	and the state of the state of the	T		
P						
art 4 000 0 GHz					Ion 8 000 (
es RW 1 MHz		#VRW 3 MHz	s	ween 7 099 m	s /8192 nt	sl

UL_1710-1755R2

UL_1710-1755R3

🔆 Agilent 08:19:1	9 Dec 14, 2015		RL	
tel 26.7 dBm	#Atten 20	dB	Mk	1 13.843 0 GHz -44.967 dBm
Peak				
og				
ifst				
6.7				
В				
3.0				
gAV				
1 \$2				
3 FC				
AL		1		
(1):	All and the second s	deserve the state of the second		and the state of the
Tun Tun			and a second sec	Contraction of the second seco
wp				
art 12.000 0 GHz			St	op 16.000 0 GHz
Res RW 1 MHz		#VRW 3 MHz	Sween 13 65 r	ne (8192 nte)

UL_1710-1755R4

UL_1710-1755R5

Agilent 09:13:47	Dec 14, 2015		RL	
el 20.9 dBm	#Atten 20 dB			-62.097 dBm
Peak				
y		_		
1				
st				
.9				
.0		_		
m				
AV				
S2				
FC				
AL		-		
un				
p balanter and the second state	a see, this trail bank of ladies, all demons have	a the state of the second blacker	a serie distance de la dista di fit i de se	was de de la milita Pier a martera
a to file spike a star a star se	Provide a second second second	the local provide the second	School of the part of the staff La	man and a supervision of the last
art 30.00 NHz				Stop 727.90 MHz
es BW 1 MHz		#VBW 3 MHz	Sweep	.638 ms (8192 pts)

DL_728-746L

DL_728-746R1

Agilent 09:14:40 D	ec 14, 2015	RL
1 20.9 dBm	#Atten 20 dB	Nkr1 6.982 3 GHz -53.407 dBm
eak		
9		
0		
n		
λv		
S2		
FC		
. AL		11
un ala de la comunication de	and the state of the	
P P		
rt 4.000 0 GHz		Stop 8.000 0 GHz

DL_728-746R2

DL_746-757L

DL_746-757R1

DL_746-757R2

Agilent 09:06:13	Dec 14, 2015		RL	
1 20.9 dBm	#Atten 20 dB			Mkr1 1.949 86 GHz -50.742 dBm
eak				
9				
0				
st				
9				
0				
n Y				
S2				
FC				
				<u>\$</u> .
in				MA NOT
	na star franciska star star star fra star fra star fra star star star star star star star st	der Greeke seinen stere		
rt 30.00 NHz				Stop 2.109 00 GHz
s BW 1 MHz		#VBW 3 MHz	Sween	3 822 ms (8192 nts)

DL_2110-2155L

* Agilent 09:07:04	Dec 14, 2015		RL	
el 20.9 dBm	#Atten 20 d	В		Nkr1 7.023 3 GHz -54.237 dBm
Peak				
g				
et				
.9				
3.0				_
m				
Av				
62				
52				
AL				
):			1	
un indiana in the	The Walson Description, Mark and Long and the		No. be die bester be	
p	A SA MARTIN AND AND AND AND AND AND AND AND AND AN	the state of the state of the state	and the state	
art 4.000 0 GHz				Stop 8.000 0 GHz
es BW 1 MHz		#VBW 3 MHz	Sween 7.0	199 ms (8192 nts)

DL_2110-2155R2

* Agilent 09:07:47	Dec 14, 2015		RL	
tel 20.9 dBm	#Atten 20 dE	3		Mkr1 15.503 8 GHz -50.102 dBm
Peak				
og				
U BI				
difst				
0.9				
В				
13.0				
αΔir				
0				
V1 S2				
3 FC				
AL				
	the state of the s			And the second se
Tun				_
Mari 12.000 0 GHz		Maxin carry rated		Stop 16.000 0 GHz
Res BW 1 MHz		#VBW 3 MHz	Sweep 13.	65 ms (8192 pts)

🔆 Agilent 09:	08:23 Dec 14,	2015					RL		
el 20.9 dBm		#Atter	n 20 dB			_	Mkr	1 21.989 99 -51.26	GHz 4 dBm
Peak									
g									-
Í.									
st	+ +								
.9									
.0									
m									
Av									
62									
52 FC									
AL									
: destadant and	and and a state of the state			and order the main of	-	North States	a sadal ali burrah m.	and the second sec	
un									
/p									
									-
ari 20.000 00 GHz							Sto	p 22.000 00	GHz
es BW 1 MHz				#VBW 3 MHz		5	weep 10.38	ms (8192 pt	s)

Test Setup Photo

2.1053 Field Strength of Spurious Radiation

Test Conditions / Setup

Test Location: Customer: Specification: Work Order #: Test Type: Tested By:	CKC Laboratories, Inc. • 1120 Fultor Cellphone-Mate, Inc. 47 CFR §27.53(c), (f), (g) and (h) S 97835 Radiated Emissions Daniel Bertran	n Place • Fremon purious Emissi Seque	nt, CA 94539 • (510) 249-1170 ions Date: 12/17/2015 Time: 9:40:24 AM ence#: 1
Software:	EMITest 5.02.00	1	
Equipment Tested	:		
Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipme	nt:		
Device	Manufacturer	Model #	S/N
Configuration 2			
Test Conditions /	Notes:		
The equipment un	der test (EUT) is a Fixed CMRS Wide	eband Consume	r Booster.
During testing, the	e (EUT) is placed on the Styrofoam tal	ble top.	
Four signal genera	ators are used to inject 5 signals simult	taneously to the	input port of EUT using a signal combiner
Each signal gener	ator is set to produce a CW signal w	ith the frequenc	cy set to the center of each operational bar
under test and the	e power level is set at Pin as determin	ned from 7.2 see	ction of the test procedure indicated furthe
below.			
Evaluation of DL	path was performed with signals fed	into the Outside	e antenna port while Inside antenna port wa
terminated with 5	0 Ohm Pasternack load (MN: PE6187	/ SN: 1443).	
Evaluation of UL	path was performed with signal fed i	nto the Inside a	intenna port while Outside antenna port wa
terminated using a Part 27	an impedance matching pad with the sa	ame above 50 O	Dhm load.
UL: 1710-1755M	Hz, 698-716MHz, 776-787MHz		
DL: 2110-2155M	Hz, 728-746MHz, 746-757MHz		
TX Freq $=$ > Cent	er frequency of above listed bands.		
Modulation=> CV	V		
Frequency range of	of measurement = 9 kHz - 22GHz .		
9 kHz - 150 kHz	- RBW=200 Hz VBW=200Hz		
150 kHz - 30 MH	z - RBW=9 kHz VBW=9kHz		
30 MHz - 1000M	Hz - RBW=120 kHz VBW=120 kHz		
1000 MHz-22000	MHz - RBW=1 MHz VBW=1 MHz		
Test environment	conditions: Temperature: 19°C, Relat	ive Humidity: 3	5%, Pressure: 102.3kPa
Test procedure:			
The test was perfe	ormed in accordance with section 7.1	2 of the FCC do	ocument: 935210 D03 Wideband Consum
Signal Booster Me	easurement Guidance v03 Dated June	5, 2015	
Firmware: V2.0			
Note: No spuriou	s emissions were found within 20dB	of the limit lin	le.
Emissions in the b	and 1559-1610 MHz were investigate	ed and these wer	re not found within 20dB of the limit line.
27.53(f) For opera	ations in the 746-758 MHz, 775-788 M	MHz, and 805-8	306 MHz bands, emissions in the band 155
1610 MHz shall b	e limited to -70 dBW/MHz equivaler	nt isotropically r	radiated power (EIRP) for wideband signal
and -80 dBW EIF	RP for discrete emissions of less than 7	700 Hz bandwid	lth.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
	AN03143	Cable	32022-29094K-	3/18/2015	3/18/2017
			144TC		
	AN03114	Preamp	AMF-7D-	4/22/2015	4/22/2017
			00101800-30-		
			10P		
	ANP06126	Cable	32022-29094K-	3/18/2015	3/18/2017
			29094K-168TC		
	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			
	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	ANP01187	Cable	CNT-195	12/30/2014	12/30/2016
	AN00567	Preamp	8447D	1/2/2015	1/2/2017
	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
	AN02694	Active Horn	AMFW-5F-	5/7/2015	5/7/2017
		Antenna	18002650-20-		
			10P		
	ANP05389	Attenuator	766-10	2/27/2014	2/27/2016
	ANC00087	Combiner	44000	01/09/2014	01/9/2016
	ANP06709	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	ANP06710	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	ANP06711	Cable	32022-29094K-	11/21/2014	11/21/2016
			29094K-132TC		
	ANP01183	Cable	CNT-195	9/1/2015	9/1/2017
	ANP01184	Cable	CNT-195	12/30/2014	12/30/2016

Summary of Results

Pass: No data provided since all emissions were found more than 20dB below the limit.

LIMIT LINE FOR SPURIOUS RADIATED EMISSION

REQUIRED ATTENUATION = 43+10 LOG P (DB) FOR RADIATED SPURIOUS EMISSION MEASURED AT 3 METER TEST DISTANCE,

Required attenuation	=	43+10 Log P _{t at 3 meter} dB
Limit line (dBuV)	=	E dBuv - Attenuation

 E_{dBuv} = Measured field strength at 3 meter in dBuV/m

Power Density (Isotropic)

$$P_{\rm D} = \frac{P_{\rm t}}{4\pi r^2}$$

P_D = Power Density in Watts /m² Pt = Average Transmit Power r = Test distance

Field Intensity E (V/m)

$$E = \sqrt{P_D \times 377}$$

$$E = \frac{\sqrt{P_t \times 377}}{4\pi r^2}$$

$$E = \sqrt{\frac{P_t \ x \ 30}{r^2}}$$

$$P_t = \left(\frac{E^2 x r^2}{30}\right)$$

10 Log P_t = 10 Log E 2 (V/m)+ 10 Log r 2 - 10 Log 30 10 Log P_t = 20 Log E (V/m) + 20 Log r - 10 Log 30

At 3 meter, r = 3 m 10 Log P_t = 20 Log E (V/m) + 20 Log 3 - 10 Log 30 10 Log P_t = 20 Log E (V/m) + 9.54 - 14.77 10 Log P_t = 20 Log E (V/m) - 5.23

<u>Since 20 Log E (V/m) = 20 Log E (uV/m) –120</u>

10 Log P_t = 20 Log E (uV/m) - 120 - 5.2 10 Log P_t = 20 Log E (uV/m) -125.23	3			
Limit line (dBuV) at 3 meter =	E _{dBuv}	E _{dBuv} – Attenuation		
	=	E_{dBuv} - (43+10 Log $P_{tat3meter}$)		
	=	E_{dBuv} - 43 - 10 Log $P_{t at 3 meter}$		
	=	E _{dBuv} - 43 – (20 Log E (uV/m) –125.23)		
	=	E _{dBuv -} 43 - 20 Log E (uV/m) + 125.23		
	=	E _{dBuv} - 20 Log E (uV/m) + 82.23		
Since 20 Log E (uV/m) = E in dBuV/m				
	=	E- _{dBuv} - E- _{dBuv} + 82.23		
Radiated Emission limit 3 meter	=	82.23 dBuV at any power level measured in dBuV		

Test Setup Photos

Page 50 of 52 Report No.: 97835-15

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement exceeding the limit while a positive margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.