Cellphone-Mate, Inc.

TEST REPORT FOR

Consumer Booster with WiFi Model: Fusion 7

Tested To The Following Standard: FCC PART 2 / 24

Report No.: 97491-20

Date of issue: November 11, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 33 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information
Test Report Information
Report Authorization
Test Facility Information
Software Versions
Site Registration & Accreditation Information
Summary of Results
Modifications During Testing
Conditions During Testing
Equipment Under Test
FCC Part(s) 2 / 24
2.1049 Occupied Bandwidth
2.1049 Occupied Bandwidth
2.1049 Occupied Bandwidth Summary of Results
2.1049 Occupied Bandwidth Summary of Results Summary of Results Summary of Results 2.1051 Spurious Emissions at Antenna Terminals 1
2.1049 Occupied Bandwidth Summary of Results Summary of Results Summary of Results 1 Summary of Results
2.1049 Occupied Bandwidth Summary of Results Summary of Results Summary of Results Summary of Results 1 Summary of Results 1 Summary of Results 1 2.1053 Field Strength of Spurious Radiation 2
2.1049 Occupied Bandwidth Summary of Results Summary of Results Summary of Results 2.1051 Spurious Emissions at Antenna Terminals 1 Summary of Results 1 2.1053 Field Strength of Spurious Radiation 2 Summary of Results 2 Summary of Results 2

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Cellphone-Mate, Inc. 48346 Milmont Drive Fremont, CA 94538 **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

REPRESENTATIVE: Dennis Findley Customer Reference Number: SC20150828

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 97491

October 15, 2015 October 15-21, 2015

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02.00
EMITest Immunity	5.02.00

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149

SUMMARY OF RESULTS

Standard / Specification: FCC Part 2 / 24

KDB 935210 D03 Wideband Consumer Signal Booster Measurement Guidance v03, June 5, 2015		nent Guidance FCC Part Section Correlation		Mods	Results
Guidance Sec #	Guidance Description	FCC Sec #	FCC Sec # FCC Rule Description		
7.1 a) - k)	Authorized Frequency Band Verification Test	20.21(e)(3)	Frequency Bands	NA	NA ¹
7.2.2 a) - k)	Maximum Power Measurement Procedure	2.1046/20.21(e)(8)(i)(D)	Power Limit	NA	NA ¹
7.3 a) - d)	Maximum Booster Gain Computation	20.21(e)(8)(i)(B)	Bidirectional Capabilities	NA	NA ¹
7.4 a) - n)	Intermodulation Product	20.21(e)(8)(i)(F)	Intermodulation Limit	NA	NA ¹
					1
7.5 a) - n)	Out of Band Emissions	20.21(e)(8)(i)(E)	Out of Band Emission	NA	NA ¹
7.6 a) - e)	Conducted Spurious Emission	2.1051/22/24/27	Spurious emission	NA	Pass
7.7.1 a) - g) 7.7.1 h) - n) 7.7.2 a) - g)	Noise Limit Procedure Variable Noise Variable Noise Timing	20.21(e)(8)(i)(A)(2)(i) 20.21(e)(8)(i)(A)(1) 20.21(e)(8)(i)(H)	Noise Limits Transmit Power Off Mode	NA	NA ¹
					1
7.8 a) - l)	Uplink inactivity	20.21(e)(8)(i)(I)	Uplink Inactivity	NA	NA ¹

Standard / Specification: FCC Part 2 / 24 continued

Signal Booste	D03 Wideband Consumer r Measurement Guidance 3, June 5, 2015	FCC Part Section Correlation		Mods	Results
Guidance Sec #	Guidance Description	FCC Sec #	FCC Sec # FCC Rule Description		
7.9.1 a) - l) 7.9.2 a) - f)	Variable Booster Gain Variable Uplink Gain Timing	20.21(e)(8)(i)(C) (1), (2)(i) 20.21(e)(8)(i)(H)	Booster Gain Transmit Power Off Mode	NA	NA ¹
7.10.a) - j)	Occupied Band Width	2.1049/22/24/27	Occupied Band Width	NA	Pass
7.11.2 a) - r) 7.11.3 a) - h) 7.11.4 a) - h) (alternate to 7.11.3)	Anti-Oscillation	20.21(e)(8)(ii)(A)	Anti-Oscillation	NA	NA ¹
7.12a) - f)	Radiated Spurious Emission	2.1053/ 22/24/27	Spurious Emission	NA	Pass
7.13 a) - c)	Spectrum Block Filter ²	NA ¹	NA ¹	NA	NA ¹

NA¹ = A different standard applies; see applicable test report.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 4			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
Consumer Booster with	Cellphone-Mate, Inc.	Fusion 7	01
WiFi			
AC/DC Adapter	Sony	PCGA-AC16V	1477749530023127
HDTV Antenna	Cellphone-Mate, Inc.	SC305H	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Sony	PCG-6C2L	CXSM507BRD01-D480
AC/DC Power Adapter	Cellphone-Mate, Inc.	GFP451DA-1238-1	1411-0000920
Signal Generator	Agilent	E4433B	US40052164
Signal Generator	Agilent	E4438C	MY42082260
Configuration 5 Equipment Tested: Device	Manufacturer	Model #	S/N
Consumer Booster with WiFi	Cellphone-Mate, Inc.	Fusion 7	01
AC/DC Power Adapter	Cellphone-Mate, Inc.	GFP451DA-1238-1	1411-0000920
HDTV Antenna	Cellphone-Mate, Inc.	SC305H	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Sony	PCG-6C2L	CXSM507BRD01-D480
AC/DC Adapter	Sony	PCGA-AC16V	1477749530023127
Signal Generator	Agilent	E4433B	US40052164
Signal Generator	Agilent	E4438C	MY42082260
Signal Generator	Marconi	2022D	1191941005
Signal Generator	Marconi	2026	112247/015

FCC PART(S) 2 / 24

2.1049 Occupied Bandwidth

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170					
Customer:	Cellphone-Mate, Inc.					
Specification:	7.10 Occupied Band Width					
Work Order #:	97491	Date:	10/15/2015			
Test Type:	Conducted Emissions	Time:	10:38:21			
Tested By:	Daniel Bertran	Sequence#:	1			
Software:	EMITest 5.02.00					

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				
Support Equipment:				
Device	Monufacturer	Model #	C/N	

Device Configuration 4

WIOUE

Test Conditions / Notes:

The equipment under test (EUT) is a Fixed CMRS Wideband Consumer Booster with a Wi-Fi Router and TV amplifier installed. The CMRS DL signal and the Wi-Fi Signal are combined at the diplexer and transmit via the indoor antenna.

The Consumer booster UL and DL power and gain parameters are initially measured with Wi-Fi transmitting at mid channel using sequentially 802.11b, g, n20 and n40 signal. Since no significant change in measured power was observed, all other parameters are obtained with Wi-Fi transmitting at Mid channel, 802.11b.

Part 24

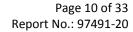
UL: 1850-1915MHz

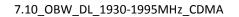
DL: 1930-1995MHz

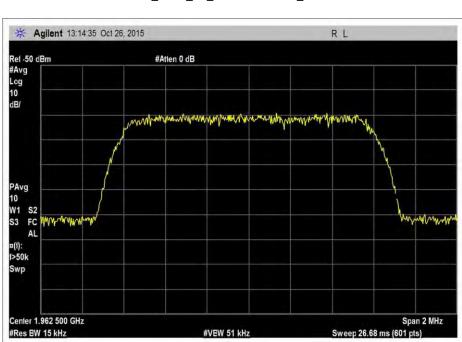
All adjustable settings on the test sample are set at max gain.

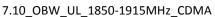
Test environment conditions: Temperature: 20.6°C, Relative Humidity: 42%, Pressure:101.5kPa

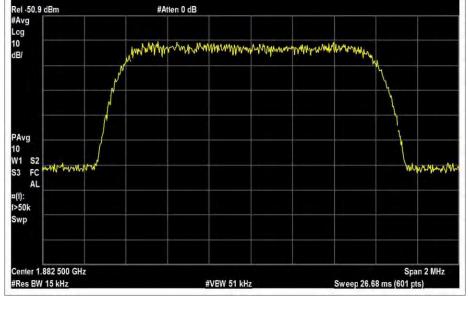
Test procedure: The test was performed in accordance with section 7.10 of the FCC document: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance v03 Dated June 5, 2015. Firmware: V2.0

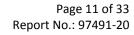


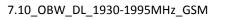

Test Equipment:

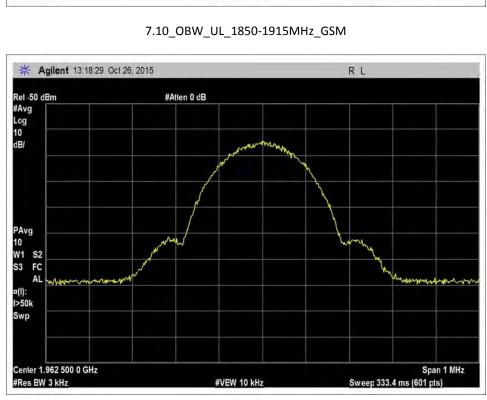

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANP06709	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	ANP06710	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	AN03470	Spectrum Analyzer	E4440A	12/2/2013	12/2/2015
	ANP06467	Attenuator	PE7014-10	5/13/2015	5/13/2017
	ANP06239	Attenuator	54A-10	7/9/2014	7/9/2016

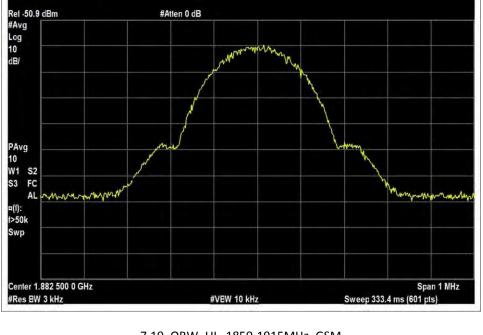

Summary of Results


Pass: As summarized in plots below, the uniformity of the output signal relative to the input signal are practically identical. Therefore, the comparison is within limits.

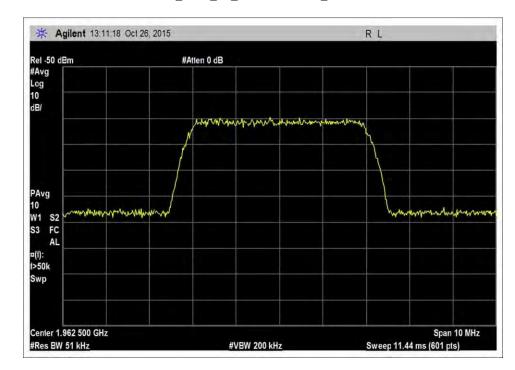



* Agilent 11:42:17 Oct 15, 2015

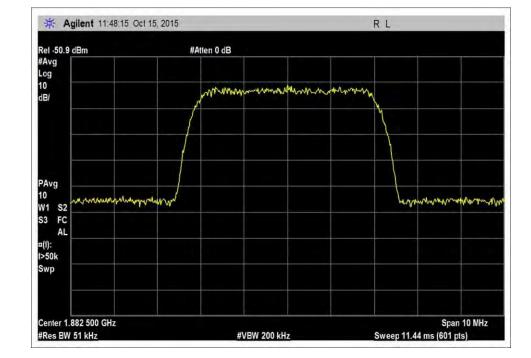

Plots


<u>Input – CDMA</u>

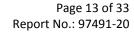
RL

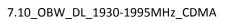


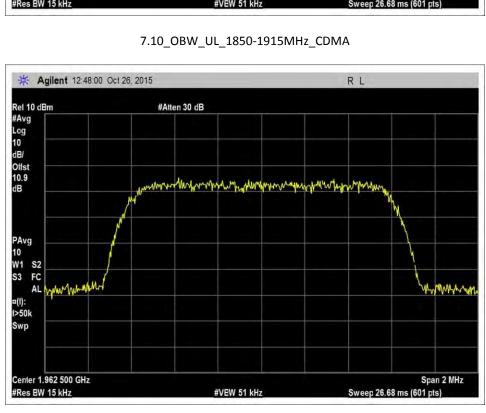
* Agilent 11:34:25 Oct 15, 2015

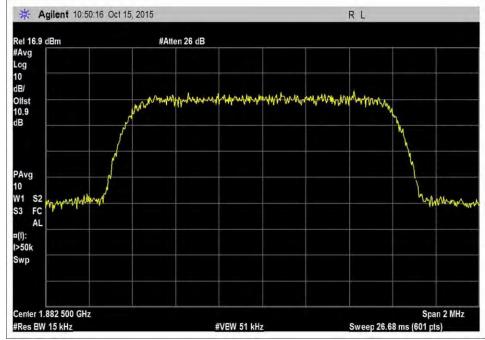

#Atten 0 dB

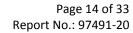
RL

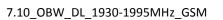

7.10_OBW_DL_1930-1995MHz_WCDMA

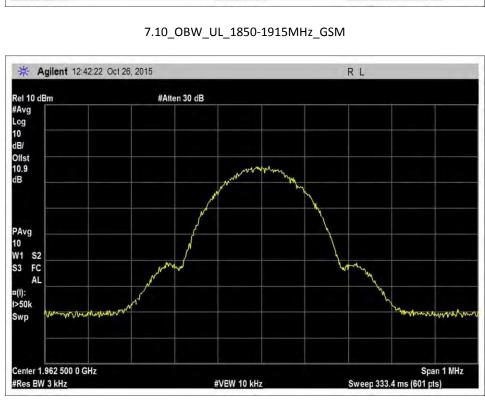

7.10_OBW_UL_1850-1915MHz_WCDMA

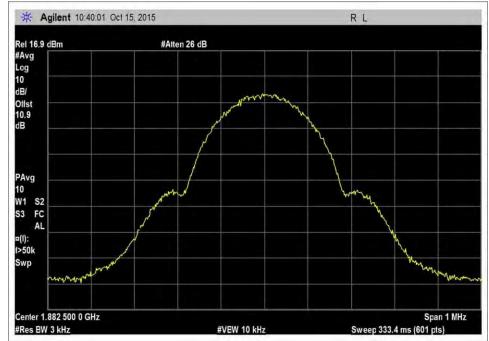


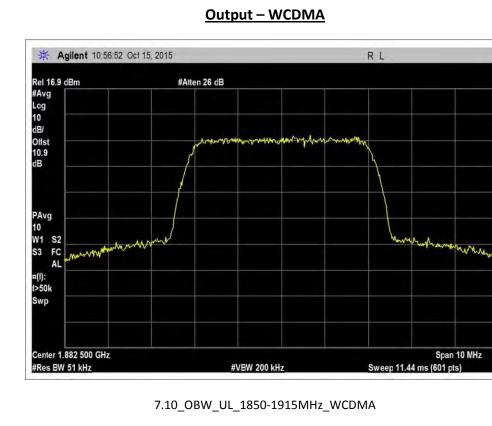

Input – WCDMA

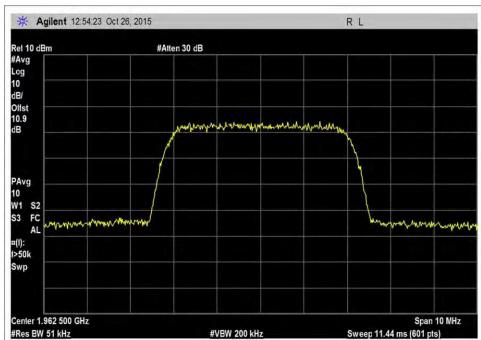







<u> Output – CDMA</u>





<u> Output – GSM</u>

7.10_OBW_DL_1930-1995MHz_WCDMA

Test Setup Photo

2.1051 Spurious Emissions at Antenna Terminals

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170								
Customer:	Cellphone-Mate, Inc.								
Specification:	7.6 Conducted Spurious Emissions / 47 CFR §2.1051 Spurious Emissions at Antenna								
	Terminals								
Work Order #:	97491	Date:	10/19/2015						
Test Type:	Conducted Emissions	Time:	09:16:19						
Tested By:	Daniel Bertran	Sequence#:	1						
Software:	EMITest 5.02.00	-							
Equipment Tested	:								
Device	Manufacturer	Model #	S/N						
Configuration 4									
Support Equipmen	nt:								
Device	Manufacturer	Model #	S/N						
Configuration 4									

Test Conditions / Notes:

The equipment under test (EUT) is a Fixed CMRS Wideband Consumer Booster with a Wi-Fi Router and TV amplifier installed. The CMRS DL signal and the Wi-Fi Signal are combined at the diplexer and transmit via the indoor antenna.

The Consumer booster UL and DL power and gain parameters are initially measured with Wi-Fi transmitting at mid channel using sequentially 802.11b, g, n20 and n40 signal. Since no significant change in measured power was observed, all other parameters are obtained with Wi-Fi transmitting at Mid channel, 802.11b.

Part 24

UL: 1850-1915MHz

DL: 1930-1995MHz

Frequency range of measurement = 9 kHz- 20 GHz.

9 kHz -150 kHz -RBW= 200Hz VBW= 200Hz

150 kHz -30 MHz -RBW= 9kHz VBW= 9kHz

30 MHz -1000MHz -RBW*= 1MHz VBW= 3MHz

1000 MHz -22000MHz -RBW= 1MHz VBW= 3MHz

*Note: As specified on 7.6 Conducted spurious emissions test procedure of 935210 D03 Signal Booster Measurements v03, for frequencies below 1 GHz, an RBW of 1 MHz may be used in a preliminary measurement. If non-compliant emissions are detected, a final measurement shall be made with a 100 kHz RBW. Additionally, a peak detector may also be used for the preliminary measurement. If non-compliant emissions are detected then a final measurement of these emissions shall be made with the power averaging (RMS) detector. All adjustable settings on the test sample are set at max gain.

Test environment conditions: Temperature: 20.6°C, Relative Humidity: 42%, Pressure101.5kPa

Test procedure: The test was performed in accordance with section 7.6 of the FCC document: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance v03 Dated June 5, 2015. Firmware: V2.0

Test Equipment:

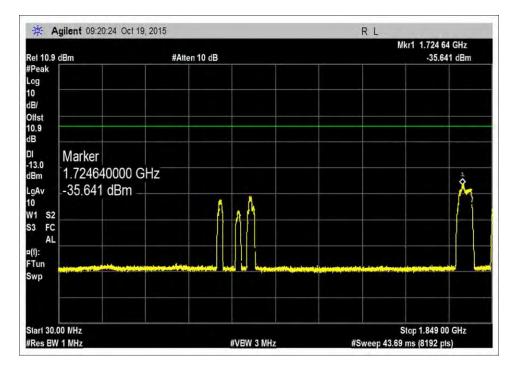
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANP06709	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	ANP06710	Cable	32026-29094K-	9/18/2014	9/18/2016
			29094K-72TC		
	AN03470	Spectrum Analyzer	E4440A	12/2/2013	12/2/2015
	ANP06467	Attenuator	PE7014-10	5/13/2015	5/13/2017
	ANP06239	Attenuator	54A-10	7/9/2014	7/9/2016

Summary of Results

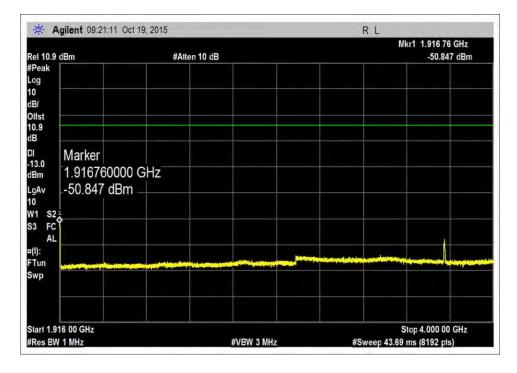
Pass: As summarized in plots below, the conducted spurious emissions are within limits.

<u>9 KHz-30 MHz</u>

No Conducted Spurious Emissions were found within 20dB of the limit.

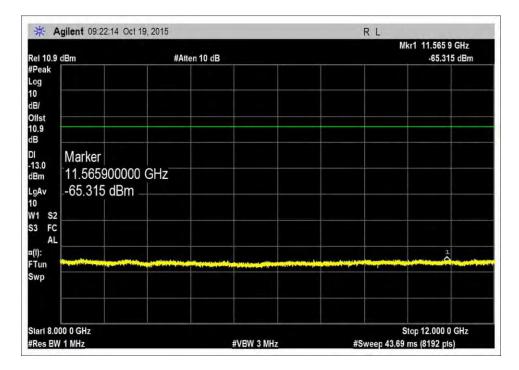


LIMIT LINE FOR SPURIOUS CONDUCTED EMISSION

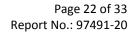

REQUIRED ATTENUATION	=	43+10 LOG P DB
Limit line (dBuV) =	V _{dBuv} -	Attenuation
V_{dBuV}	=	20 Log $\frac{V}{1 \times 10^{-6}}$
	=	$20 \left(\text{Log V} - \text{Log 1 x } 10^{-6} \right)$
	=	$20 \text{ Log V} - 20 \text{ Log1 x } 10^{-6}$
	=	$20 \log V - 20 (-6)$
	=	20 Log V +120
Attenuation	= =	$43 + 10 \text{ Log P} 43 + 10 \text{ Log } \frac{\text{V}^2}{\text{R}} 43 + 10 (\text{Log V}^2 - \text{Log R})$
	=	43 + 10(2 Log V - Log R)
	=	43 + 20 Log V - 10 Log R
Limit line =		Attenuation $20 \log 1/(+120 - (42 + 20 \log 1/(-10 \log P)))$
= 20 L	=	$\begin{array}{l} 20 \log V + 120 - (43 + 20 \log V - 10 \log R) \\ 20 \log V + 120 - 43 - 20 \log V + 10 \log R \\ -43 - 20 \log V + 10 \log R \\ 120 - 43 + 10 \log 50 \\ 120 - 43 + 16.897 \\ 94 \ \text{dBuV} \text{at any power level} \end{array}$

Plots

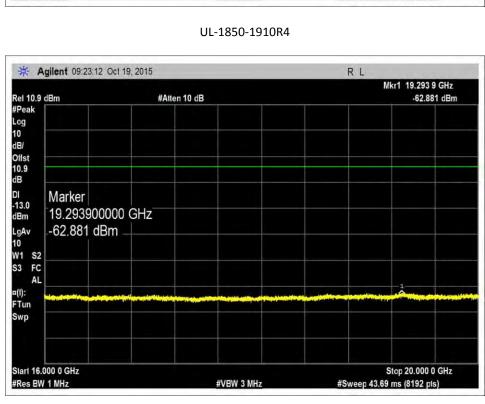
UL-1850-1910L



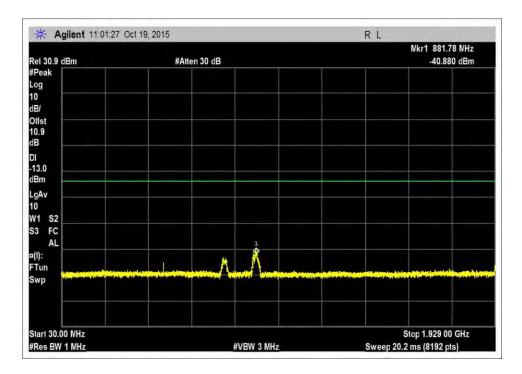
UL-1850-1910R1

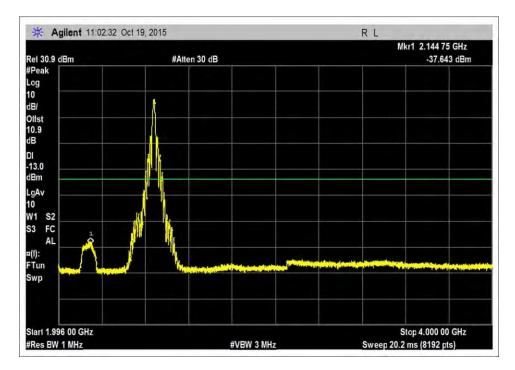


Agilent 09:21:43	00110,2010		RL	kr1 7.120 0 GHz
10.9 dBm	#Atten 10	dB		-63.753 dBm
t				
9 Marker 7.120000000 GHz -63.753 dBm				
S2 FC AL			1 	1477 P. 1997
4.000 0 GHz				51op 8.000 0 GHz

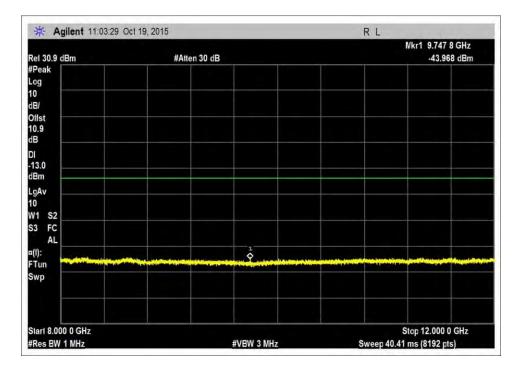

UL-1850-1910R2

UL-1850-1910R3


UL-1850-191	0R5


Agilent 09:22:43 Oct 19, 2015			RL	
				Mkr1 14.036 9 GH
	itten 10 dB			-61.694 d
k				
Marilar				
Marker				
14.036900000 GHz				
-61.694 dBm				
01.004 00111				
\$2				
FC				
AL				
			dit out the second second	
	and the same play many distances	CHARLES OF THE OWNER	a particular in the second second	the local division in the second second
12.000 0 GHz				Stop 16.000 0 GH

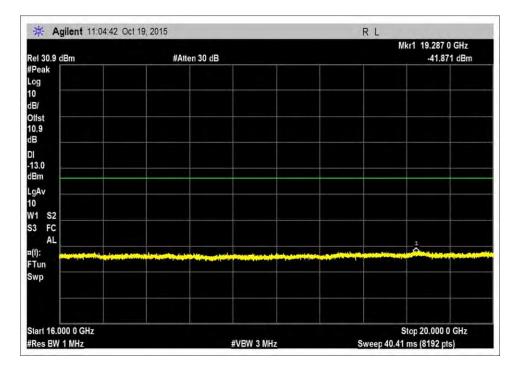
DL_1930-1995L



DL_1930-1995R1

30.9 dBm	#Atten	30 dB		N	/kr1 7.291 -43.40	9 GHz 03 dBm
^{ak} Marker 7.29190000 -43.403 dBr						
v S2 FC						
n 10,000 10,000					<u>^</u>	
1 4.000 0 GHz					Stop 8.000	0 GHz

DL_1930-1995R2



DL_1930-1995R3

el 30.9 dBm	#Atten 30 d	iB			Mk	1 15.149 3 -42.13	GHz 9 dBm
Peak							
og							
D B/							
lfst							
).9							
3							
3.0 ∃m							
gAv							
1 S2							
3 FC							
AL					1		
i): Tun	website and a find a start of the start of t		-	the second second	-		
			_				
wp							
arl 12.000 0 GHz					St	op 16.000 0	CH7


DL_1930-1995R4

DL_1930-1995R5

Test Setup Photo

2.1053 Field Strength of Spurious Radiation

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170			
Customer:	Cellphone-Mate, Inc.			
Specification:	47 CFR §24.238(a) Radiate	ed Spurious Emissions		
Work Order #:	97491	Date:	10/21/2015	
Test Type:	Radiated Emissions	Time:	11:58:15 AM	
Tested By:	Daniel Bertran	Sequence#:	1	
Software:	EMITest 5.02.00			

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

The equipment under test (EUT) is a Fixed CMRS Wideband Consumer Booster with a Wi-Fi Router and TV amplifier installed. The CMRS DL signal and the Wi-Fi Signal are combined at the diplexer and transmit via the indoor antenna.

The Consumer booster UL and DL power and gain parameters are initially measured with Wi-Fi transmitting at mid channel using sequentially 802.11b, g, n20 and n40 signal. Since no significant change in measured power was observed, all other parameters are obtained with Wi-Fi transmitting at Mid channel, 802.11b.

During testing, the (EUT) is placed on the Styrofoam table top. Four signal generators are used to inject 5 signals simultaneously to the input port of EUT using a signal combiner. Each signal generator is set to produce a CW signal with the frequency set to the center of each operational band under test and the power level is set at Pin (obtained for report 97491-18) as determined from 7.2 section of the test procedure indicated further below.

Evaluation of DL path was performed with signals fed into the Outside antenna port while Inside antenna port was terminated with 50 Ohm Weinschel load (MN:1424-4 and SN:21874).

Evaluation of UL path was performed with signal fed into the Inside antenna port while Outside antenna port was terminated with the same above 50 Ohm load.

Part 24

UL: 1850-1915MHz DL: 1930-1995MHz TX Freq = > Center frequency of above listed bands. Modulation=> CW Frequency range of measurement = 9 kHz- 20GHz. 9 kHz - 150 kHz - RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz - RBW=200 Hz VBW=200 Hz 30 MHz - 1000MHz - RBW=9 kHz VBW=9kHz 30 MHz - 1000MHz - RBW=120 kHz VBW=120 kHz 1000 MHz-22000MHz - RBW=1 MHz VBW=1 MHz All adjustable settings on the test sample are set at max gain.

Test environment conditions: Temperature: 22.3°C, Relative Humidity: 45%, Pressure: 101.2kPa Test procedure: The test was performed in accordance with section 7.12 of the FCC document: 935210 D03 Wideband Consumer Signal Booster Measurement Guidance v03 Dated June 5, 2015. Firmware: V2.0 **No emissions were found within 20dB of the limit line.**

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
Т2	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
Т3	AN03114	Preamp	AMF-7D- 00101800-30-10P	4/22/2015	4/22/2017
T4	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T5	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	ANP01187	Cable	CNT-195	12/30/2014	12/30/2016
	AN00567	Preamp	8447D	1/2/2015	1/2/2017
	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
	AN02694	Active Horn Antenna	AMFW-5F- 18002650-20-10P	5/7/2015	5/7/2017
	ANP05389	Attenuator	766-10	2/27/2014	2/27/2016
	ANC00087	Combiner	44000	01/09/2014	01/9/2016
	ANP06709	Cable	32026-29094K- 29094K-72TC	9/18/2014	9/18/2016
	ANP06710	Cable	32026-29094K- 29094K-72TC	9/18/2014	9/18/2016
	ANP06711	Cable	32022-29094K- 29094K-132TC	11/21/2014	11/21/2016
	ANP01183	Cable	CNT-195	9/1/2015	9/1/2017
	ANP01184	Cable	CNT-195	12/30/2014	12/30/2016

Summary of Results

Pass: No data provided since all emissions were found more than 20dB below the limit.

LIMIT LINE FOR SPURIOUS RADIATED EMISSION

REQUIRED ATTENUATION =

43+10 LOG P (DB)

For radiated spurious emission measured at 3 meter test distanceRequired attenuation= $43+10 \log P_{t at 3 meter} dB$ Limit line (dBuV)= E_{dBuv} - Attenuation

 E_{dBuv} = Measured field strength at 3 meter in dBuV/m

Power Density (Isotropic)

$$P_{\rm D} = \frac{P_{\rm t}}{4\pi r^2}$$

P_D = Power Density in Watts /m² Pt = Average Transmit Power r = Test distance

Field Intensity E (V/m)

 $E = \sqrt{P_D \times 377}$

$$E = \frac{\sqrt{P_t \times 377}}{4\pi r^2}$$

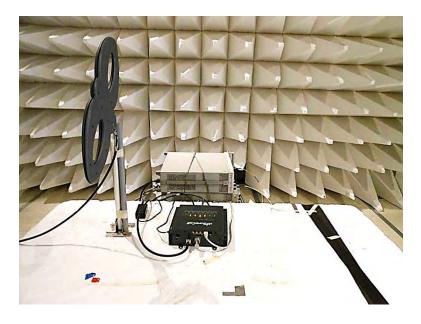
$$E = \sqrt{\frac{P_t \ x \ 30}{r^2}}$$

$$P_t = \left(\frac{E^2 x r^2}{30}\right)$$

10 Log P_t = 10 Log E 2 (V/m)+ 10 Log r 2 - 10 Log 30 10 Log P_t = 20 Log E (V/m) + 20 Log r - 10 Log 30

At 3 meter, r = 3 m

 $\label{eq:pt} \begin{array}{l} 10 \mbox{ Log } P_t = 20 \mbox{ Log } E \ (V/m) + 20 \mbox{ Log } 3 - 10 \mbox{ Log } 30 \\ 10 \mbox{ Log } P_t = 20 \mbox{ Log } E \ (V/m) + 9.54 \ - 14.77 \\ 10 \mbox{ Log } P_t = 20 \mbox{ Log } E \ (V/m) - 5.23 \end{array}$


Since 20 Log E (V/m) = 20 Log E (uV/m) –120

10 Log P_t = 20 Log E (uV/m) - 120 - 5.23 10 Log P_t = 20 Log E (uV/m) -125.23

Limit line (dBuV) at 3 meter =		E _{dBuv} -	- Attenuation
		=	E_{dBuv} - (43+10 Log $P_{tat3meter}$)
		=	E_{dBuv} - 43 - 10 Log $P_{t at 3 meter}$
		=	E _{dBuv} - 43 – (20 Log E (uV/m) –125.23)
		=	E _{dBuv -} 43 - 20 Log E (uV/m) + 125.23
Since 20 Log E (uV/m) = E in dBuV/m		=	E _{dBuv} - 20 Log E (uV/m) + 82.23
		=	E-dBux - E-dBux + 82.23
Radiated Emission limit 3 meter	=		82.23 dBuV at any power level measured in dBuV

Test Setup Photos

Page 31 of 33 Report No.: 97491-20

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement exceeding the limit while a positive margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.