Cellphone-Mate, Inc.

TEST REPORT FOR

Wideband Consumer Booster Model: EZ 4GV V1.0

Tested to The Following Standard:

sting the Future

FCC Part 20.21 / 27

Report No.: 102393-8

Date of issue: April 29, 2019

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 75 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	4
Test Report Information	4
Report Authorization	4
Test Facility Information	5
Software Versions	5
Site Registration & Accreditation Information	5
Summary of Results	6
Modifications During Testing	8
Conditions During Testing	8
Equipment Under Test	9
General Product Information	9
FCC Part 20.21/27	
General Test Setup	
7.1 Authorized Frequency Band Verification	
Summary of Results	
7.2 Maximum Power / 7.3 Maximum Gain	
Summary of Results	14
7.4 Intermodulation Product	
Summary of Results	
7.5 Out of Band Emissions	
Summary of Results	
7.6 Conducted Spurious Emissions	
Summary of Results	
7.7 Noise limit	
Summary of Results	
7.7.1 Maximum Transmitter Noise Power Level	
7.7.2 Variable UL Noise Timing	
7.8 Uplink Inactivity	40
Summary of Results	40
7.9 Booster Gain Limit	
Summary of Results	43
7.9.1 Maximum Gain	
7.9.2 Variable uplink Gain Timing	44

7.10 Occupied Band Width	45
Summary of Results	45
7.11 Oscillation Detection	56
Summary of Results	57
7.11.2 Oscillation Restart Tests	59
7.12 Radiated Spurious Emissions	62
Summary of Results	63
Exhibit A: Test Setup Photos	66
Supplemental Information	74
Measurement Uncertainty	74
Emissions Test Details	74

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:	REPORT PREPARED BY:
Cellphone-Mate, Inc. 48346 Milmont Drive Fremont, CA 94538	Morgan Tramontin CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338
Representative: Dennis Findley Customer Reference Number: CKC03272019	Project Number: 102393
DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:	April 1, 2019 April 1 – 3, 2019

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.12
EMITest Immunity	5.03.10

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	JAPAN
Fremont, CA	US0082	US1023	A-0149

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 20.21/27

Wideband Consumer Signal Booster Measurement Guidance: DO3 v04r02, June 19, 2018

Correlation Matrix & Results					
Guidance SectionGuidance DescriptionFCC Section		Guidance Description FCC Section FCC Rule Description Me			
7.1 a) - k)	Authorized Frequency Band Verification Test	20.21(e)(3)	Frequency Bands	NA	Pass
7.2.2 a) - k)	Maximum Power Measurement Procedure	2.1046/20.21(e)(8)(i)(D)	Power Limit	NA	Pass
7.3 a) - d)	Maximum Booster Gain Computation	20.21(e)(8)(i)(B)	Bidirectional Capabilities	NA	Pass
7.4 a) - n)	Intermodulation Product	20.21(e)(8)(i)(F)	Intermodulation Limit	NA	Pass
7.5 a) - n)	Out of Band Emissions	20.21(e)(8)(i)(E)	Out of Band Emission	NA	Pass
7.6 a) - e)	Conducted Spurious Emission	2.1051/22H/24E/27	Spurious emission	NA	Pass
7.7.1 a) - g) 7.7.1 h) - n) 7.7.2 a) - g)	Noise Limit Procedure Variable Noise Variable Noise Timing	20.21(e)(8)(i)(A)(2)(i) 20.21(e)(8)(i)(A)(1) 20.21(e)(8)(i)(H)	Noise Limits Transmit Power Off Mode	NA	Pass
7.8 a) - l)	Uplink inactivity	20.21(e)(8)(i)(l)	Uplink Inactivity	NA	Pass

NA = Not Applicable

Standard / Specification: FCC Part 20.21/27 - continued

	Correlation Matrix & Results				
Guidance Guidance Description		Guidance Description FCC Section FCC		Mods	Results
7.9.1 a) - l) 7.9.2 a) - f)	Variable Booster Gain Variable Uplink Gain	20.21(e)(8)(i)(C) (1), (2)(i) 20.21(e)(8)(i)(H)	Booster Gain Transmit Power Off	NA	Pass
	Timing		Mode		
7.10.a) - j)	Occupied Band Width	2.1049/22H/24E/27	Occupied Band Width	NA	Pass
7.11.2 a) - r) 7.11.3 a) - h) 7.11.4 a) - h)	Anti-Oscillation	20.21(e)(8)(ii)(A)	Anti-Oscillation	NA	Pass
(alternate to 7.11.3)					
7.12a) - f)	Radiated Spurious Emission	2.1053/ 22H/24E/27	Spurious Emission	NA	Pass
7.13 a) - c)	Spectrum Block Filter			NA	NA1
7.14.2 7.14.3	Verification of self- monitoring			NA	NA 2
	Verification of two- enclosure booster system operation				

NA = Not applicable

NA1 = Not applicable because the EUT does not have spectrum blocking.

NA2 = Not applicable because this device does not employ dual enclosure operation.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Power Supply	Surecall	GME18A-050300FUR	NA	
Wideband Consumer	Cellphone-Mate, Inc.	EZ 4GV V1.0	4	
Booster				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
NA				

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Equipment	Wideband Consumer booster/Zone Enhancer
Operating Frequency Banger	UL: 776-787MHz
Operating Frequency Range:	DL: 746-757MHz
	GXW (GSM)
	G7W (EDGE)
Emissions Type(s):	F9W(CDMA)
	F9W(WCDMA)
	W7D (LTE)
	0.3 GMSK (GSM)
	3p/8 8-PSK (EDGE)
Modulation Type(s):	QPSK (CDMA)
	BPSK/QPSK (WCDMA)
	OFDM (LTE)
Number of TX Chains:	1
Antenna Type(s) and Gain:	Dedicated, See antenna kitting information
Beamforming Type:	NA
Antonno Connection Type:	Donor/Outdoor integral antenna/ UL: 50 Ohm SMA
Antenna Connection Type:	Server / indoor antenna/ DL: 75 Ohm F
Nominal Input Voltage:	120V/60
Firmware / Software used for Test:	EZ_LTEV_V1005SC

FCC PART 20.21/27

General Test Setup

Summary of Conditions

The equipment under test (EUT) is a Fixed Wideband Consumer Booster.

The EUT is placed on the Styrofoam platform for radiated emission and a test bench for conducted emission measurement.

Conducted measurement performed at the Outside (Donor) and Inside (Server) antenna port. The EUT Server port is a type F connector and 75-ohm impedance.

The EUT Donor port is SMA connector and 50-ohm impedance. The EUT uses an integral Donor antenna installed in the enclosure.

UL: 776-787MHz DL: 746-757MHz

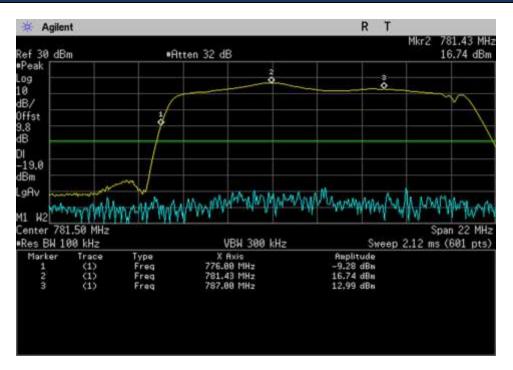
Test procedure:

The test was performed IAW the FCC document: 935210 D03 Signal Booster Measurements v04r02, dated June 19, 2018.

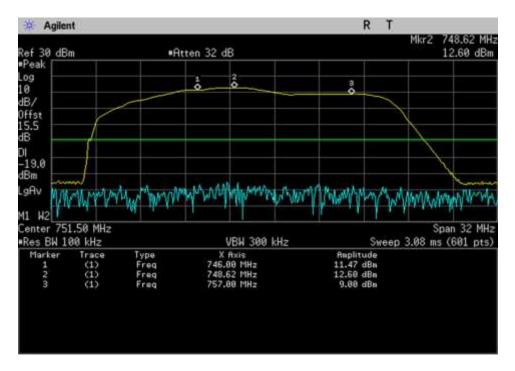
Test environment conditions: Temperature: 22.3 – 25°C, Relative Humidity: 47 - 52 %, Atmospheric Pressure: 101kPa

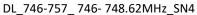
7.1 Authorized Frequency Band Verification

Test Conditions / Setup


Test Location: Customer: Specification: Work Order #: Test Type: Tested By:	Customer:Cellphone-Mate, Inc.Specification:7.1 Band verificationWork Order #:102393Test Type:Conducted EmissionsTested By:E. WongSequence#:1				
<i>Equipment Tested</i> Device		nufacturer	Model #	S/N	
Configuration 1					
Support Equipme	nt:				
Device Configuration 1	Ma	nufacturer	Model #	S/N	
Test Conditions /	Notes:				
Test Equipment:					
Asse	et #	Description	Model	Calibration Date	Cal Due Date
034	71	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
P054	411	Attenuator	54A-10	1/19/2018	1/19/2020
P07:	191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
P07:	192	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
P069	909	Attenuator	PE7083	12/20/2017	12/20/2019
0343	18	Signal Generator	E4438C	6/19/2017	6/19/2019

Summary of Results


Pass: The plots below show the device only operates on the CMRS frequency bands authorized for use by the NPS.



Plots

UL_776-787_776-781.43MHz_SN4

7.2 Maximum Power / 7.3 Maximum Gain

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place	• Fremont, CA	94539 • 510 249 1170
Customer: Specification:	Cellphone-Mate, Inc. 7.2 Maximum Power Measurement 7.3 Maximum Booster Gain		
Work Order #: Test Type: Tested By:	102393 Conducted Emissions E. Wong		4/1/19 09:04:00 AM 1
2	e	1	

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions / Notes	r•			

Test Equipment: Asset # Description Model **Calibration Date** Cal Due Date Spectrum Analyzer E4440A 03471 1/18/2018 1/18/2020 P05411 Attenuator 54A-10 1/19/2018 1/19/2020 32022-29094K-P07191 Cable 10/30/2017 10/30/2019 29094K-48TC 32022-29094K-P07192 Cable 10/9/2017 10/9/2019 29094K-48TC P06909 Attenuator PE7083 12/20/2017 12/20/2019 03418 Signal Generator E4438C 6/19/2017 6/19/2019

Summary of Results

Pass: As summarized in table below, measured EIRP, Gain and UL/DL gain ratio are within limits.

Pre AGC				Pre AGC		
	Pulse GSM			4.1 MHz AWGN		
Frequency (MHz)	Input (dBm)	Output (dBm)	Gain (dB)	Input (dBm)	Output (dBm)	Gain (dB)
UL776-787	-37.1	25.3	62.4	-35.3	25.4	60.7
DL 746-757	-44.2	15.8	60.0	-46.8	15.9	62.7

Max Fixed Gain limit:

Fixed Wideband Consumer booster

UL	dB
776-787 MHz	64.4
DL	
746-757 MHz	64.4

Pulse GSM					Conducted	Conducted and EIRP
Frequency (MHz)	Output Power (dBm)	*Ant Gain- (dBi)	Cable loss (dB)	EIRP (dBm)	Limit Min (dBm)	Limit Max (dBm)
UL776-787	25.3	4.0	0.0	29.3	17	30
DL 746-757	15.8	2.5	3.3	15.0	NA	17

4.1MHz AWGN				Conducted	Conducted and EIRP	
Frequency (MHz)	Output Power (dBm)	*Ant Gain- (dBi)	Cable loss (dB)	EIRP (dBm)	Limit Min (dBm)	Limit Max (dBm)
UL776-787	25.4	4.0	0.0	29.4	17	30
DL 746-757	15.9	2.5	3.3	15.1	NA	17

* Antenna gain and cable losses indicated from the antenna kitting

UL Ant kit number	SC500W (integral antenna)
DL Ant Kit number	SC312W, SC-RG6-50

Section 5.5 power						
	Pulse GSM 4.1 MHz AWGN				VGN	
Frequency (MHz)	Input (dBm)	Output (dBm)	Gain (dB)	Input (dBm)	Output (dBm)	Gain (dB)
UL776-787	0.0	25.1	25.1	0.0	25.4	25.4
DL 746-757	-20.0	15.2	35.2	-20.0	14.8	34.8

UL gain vs DL gain	Pulse GSM	4.1MHz AWGN	Limit
	(dB)	(dB)	(dB)
UL gain vs DL gain 776/746	2.4	-2.0	9.0

7.4 Intermodulation Product

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place	• Fremont, CA 94539 • 510 249 1170
Customer:	Cellphone-Mate, Inc.	
Specification:	7.4 Intermodulation	
Work Order #:	102393	Date: 4/1/19
Test Type:	Conducted Emissions	Time: 13:04:00 AM
Tested By:	E. Wong	Sequence#: 1

Equipment Tested:

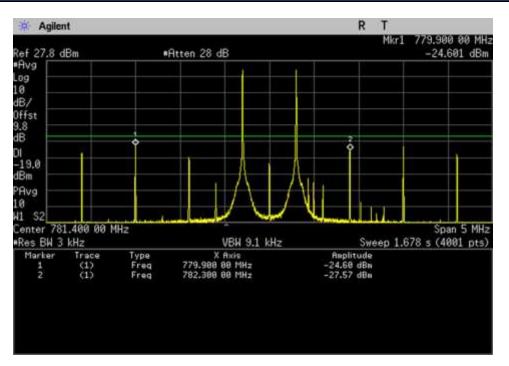
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

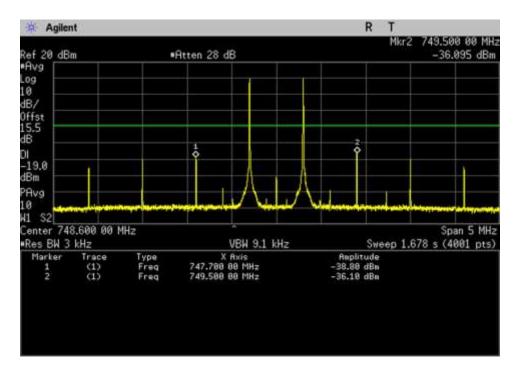
Test Equipment:

Description	Model	Calibration Date	Cal Due Date
Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
Attenuator	54A-10	1/19/2018	1/19/2020
Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
Attenuator	PE7083	12/20/2017	12/20/2019
Signal Generator	E4438C	6/19/2017	6/19/2019
	Spectrum Analyzer Attenuator Cable Cable Attenuator	Spectrum Analyzer E4440A Attenuator 54A-10 Cable 32022-29094K-29094K-29094K-48TC Cable 32022-29094K-48TC Cable 32022-29094K-29094K-29094K-48TC Attenuator PE7083	Spectrum Analyzer E4440A 1/18/2018 Attenuator 54A-10 1/19/2018 Cable 32022-29094K- 29094K-48TC 10/30/2017 Cable 32022-29094K- 29094K-48TC 10/9/2017 Cable 32022-29094K- 29094K-48TC 10/9/2017 Attenuator PE7083 12/20/2017

Summary of Results


Pass: As shown on the plots, all intermodulation products measured are below -19dbm limit.

Inter Modulation Product					
Frequency* (MHz)	Pre AGC (dBm)	Limit (dBm)	Results		
UL 776-787	-24.6	-19	Pass		
DL 746-757	-36.1	-19	Pass		


Note: The EUT maintains compliance with the intermodulation limit at input power of AGC+10dB

UL_776-787_781.4MHz_SN4_B

DL_746-757_748.6MHz_SN4

7.5 Out of Band Emissions

Test Conditions / Setup

Test Location: Customer:	CKC Laboratories, Inc. • 1120 Fulton Place Cellphone-Mate, Inc.	• Fremont, CA	94539 • 510 249 1170
Specification:	7.5 Out of Band Emission		
Work Order #:	102393	Date:	4/2/19
Test Type:	Conducted Emissions	Time:	14:00:00 PM
Tested By:	E. Wong	Sequence#:	1

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Additional plots taken to show compliance under different RBW requirement as applicable.

Test Equipment:

Asset #	Description	Model	Calibration Date	Cal Due Date
03471	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
P05411	Attenuator	54A-10	1/19/2018	1/19/2020
P07191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
P07192	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
P06909	Attenuator	PE7083	12/20/2017	12/20/2019
03418	Signal Generator	E4438C	6/19/2017	6/19/2019

Summary of Results

Low							
0	Out of Band Emission						
Frequency (MHz) Pre AGC Limit (dBm) Results							
UL776-787	-33.0	-19	Pass				
DL 746-757	-45.2	-19	Pass				

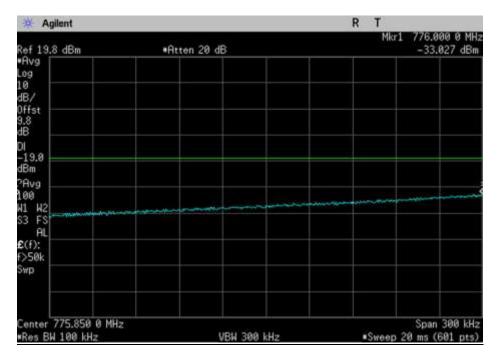
CDMA (alternative 1.25 MHz AWGN)

High							
O	Out of Band Emission						
Frequency (MHz) Pre AGC Limit Results							
UL776-787	-33.2	-19	Pass				
DL 746-757	-45.2	-19	Pass				

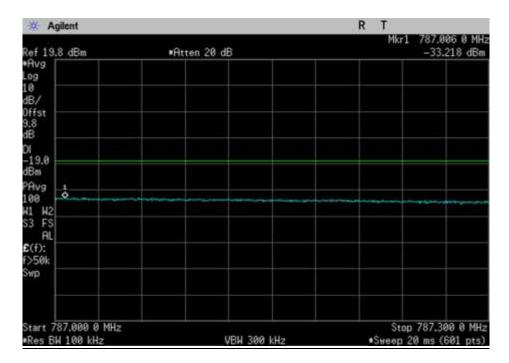
GS	Μ
	_

Low						High		
Out of Band Emission				C	out of Band E	mission		
Frequency (MHz)	Pre AGC	Limit (dBm)	Results		Frequency (MHz)	Pre AGC	Limit (dBm)	Results
UL776-787	-20.7	-19	Pass		UL776-787	-24.4	-19	Pass
DL 746-757	-32.9	-19	Pass		DL 746-757	-31.0	-19	Pass

LTE (alternative 4.1MHz AWGN)


Low						High		
Out of Band Emission				C	out of Band E	mission		
Frequency (MHz)	Pre AGC	Limit (dBm)	Results		Frequency (MHz)	Pre AGC	Limit (dBm)	Results
UL776-787	-33.9	-19	Pass		UL776-787	-24.4	-19	Pass
DL 746-757	-34.7	-19	Pass		DL 746-757	-34.0	-19	Pass

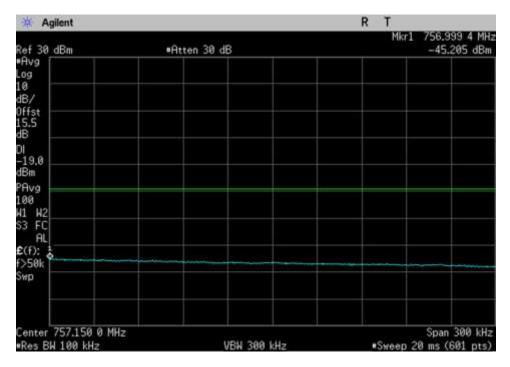
Note: The EUT also maintains compliance with the out-of-band emissions limit at input power 10dB above AGC or indicated in section 5.5.



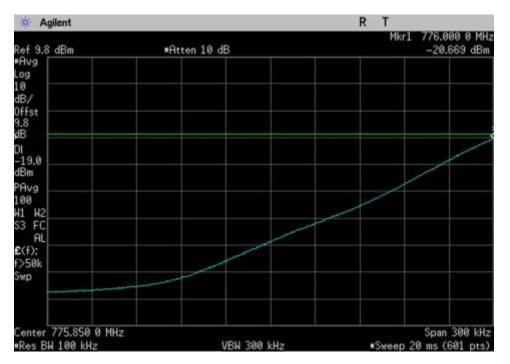
Plots

<u>CDMA</u>

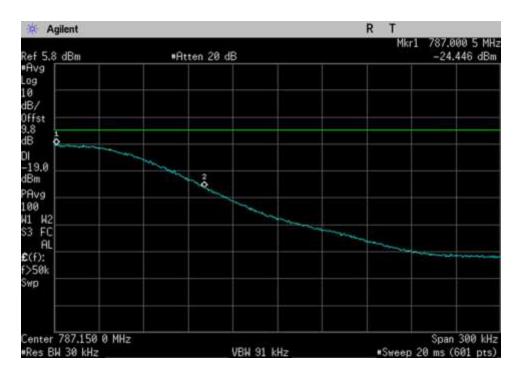
UL_776-787_CDMA_ 775.7- 776MHz_SN4

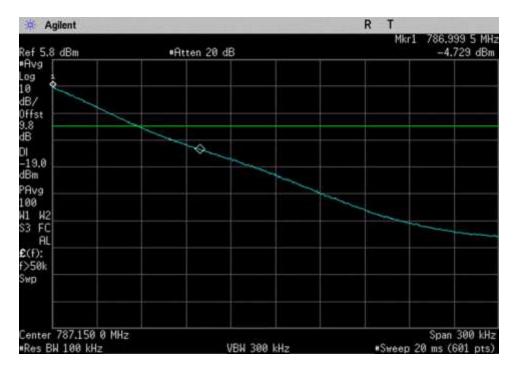


UL_776-787_CDMA_787-787.3MHz_SN4

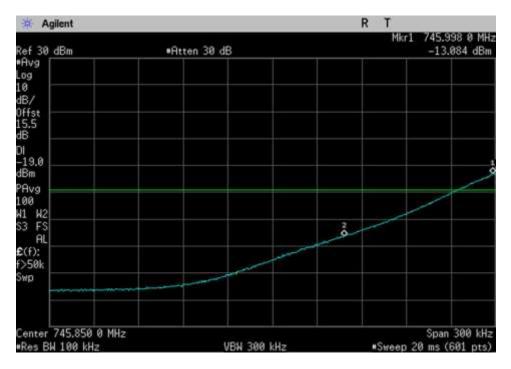

Agilent		R T Mkr1 745.995 5 Mł
ef 30 dBm	Atten 30 dB	-45.196 dBr
Avg		
og		
0 B/		
fst		
ffst 5.5 3		
3		
19.0		
19.0 3m		
Avg a0		
і [°] н2		
3 FS		
AL		
(f):		
50k		
чр		
enter 745.850 0 MH	2	Span 300 kH
Res BW 100 kHz	VBW 300 kHz	*Sweep 20 ms (601 pts

DL_746-757_CDMA_745.7-746MHz_SN4

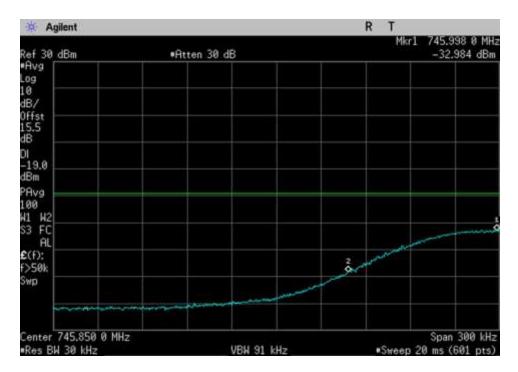

DL_746-757_CDMA_757-757.3MHz_SN4


<u>GSM</u>

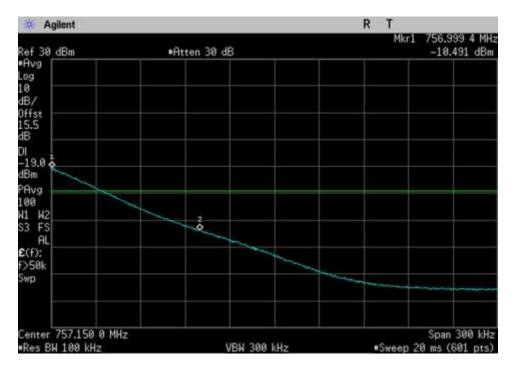
UL_776-787_GSM_ 775.7- 776MHz_SN4_



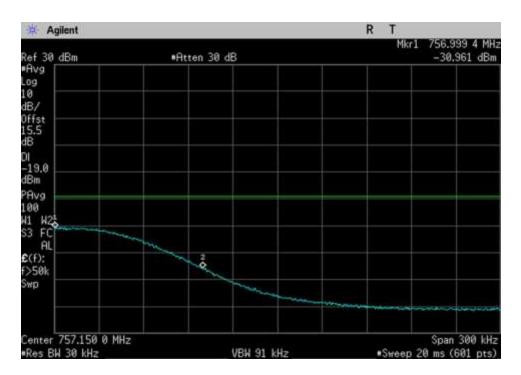
UL_776-787_GSM_ 787- 787.3MHz_a_SN4_30K_



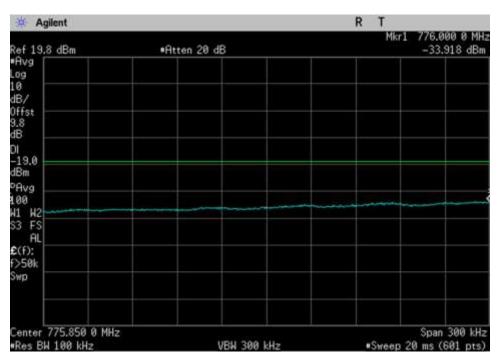
UL_776-787_GSM_ 787- 787.3MHz_b_SN4_100K

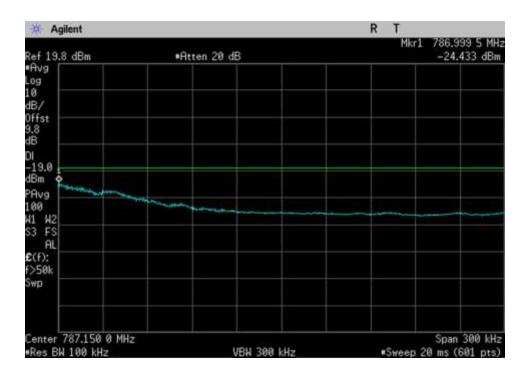


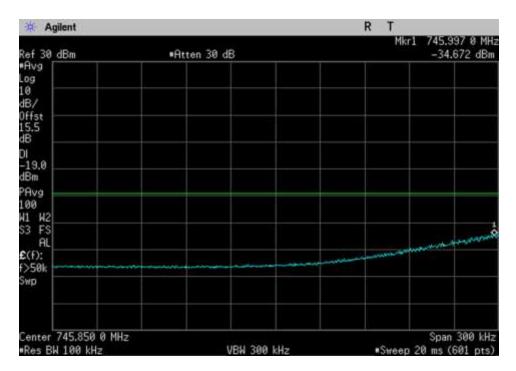
DL_746-757_GSM_ 745.7- 746MHz_a_SN4_100kHz_



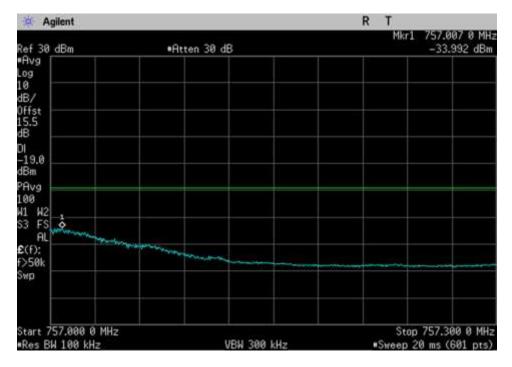
DL_746-757_GSM_ 745.7- 746MHz_b_SN4_30kHz


DL_746-757_GSM_ 757- 757.3MHz_a-SN4-100kHz


DL_746-757_GSM_ 757- 757.3MHz_b_SN4_30kHz


<u>LTE</u>

UL_776-787_LTE_ 775.7- 776MHz_SN4



UL_776-787_LTE_ 787- 787.3MHz_SN4

DL_746-757_LTE_ 745.7- 746MHz_SN4

DL_746-757_LTE_ 757- 757.3MHz_SN4

7.6 Conducted Spurious Emissions

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton P	Place • Fremont, CA	94539 • 510 249 1170	
Customer: Specification:	Cellphone-Mate, Inc. 7.6 Conducted Spurious Emissions			
Work Order #:	102393	Date:	4/2/19	
Test Type:	Conducted Emissions	Time:	15:00:00	
Tested By:	E. Wong	Sequence#:	1	
Equipment Tested	<i>d</i> :			
D	N	NT	C/NT	

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

. . .

Frequency range of measurement = 9kHz- 8GHz. 9 kHz - 150 kHz -> RBW= 200Hz VBW= 200Hz 150 kHz - 30 MHz -> RBW= 9kHz VBW= 9kHz 30 MHz - 1000MHz -> RBW*= 1MHz VBW= 3MHz 1000 MHz - 8000MHz ->RBW= 1MHz VBW= 3MHz

*As specified on 7.6 Conducted spurious emissions test procedure of 935210 D03 Signal Booster Measurements, for frequencies below 1 GHz, an RBW of 1 MHz may be used in a preliminary measurement. If non-compliant emissions are detected, a final measurement shall be made with a 100 kHz RBW. Additionally, a peak detector may also be used for the preliminary measurement. If non-compliant emissions are detected, then a final measurement of these emissions shall be made with the power averaging (RMS) detector.

**Visual inspection of analyzer trace from 9kHz-30MHz, no emission found, trace not included in plots.

In addition, for operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotopically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization

Test Eq	uipment:				
	Asset #	Description	Model	Calibration Date	Cal Due Date
	03471	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
	P05411	Attenuator	54A-10	1/19/2018	1/19/2020
	P07191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
	P07192	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
	P06909	Attenuator	PE7083	12/20/2017	12/20/2019
	03418	Signal Generator	E4438C	6/19/2017	6/19/2019

Summary of Results

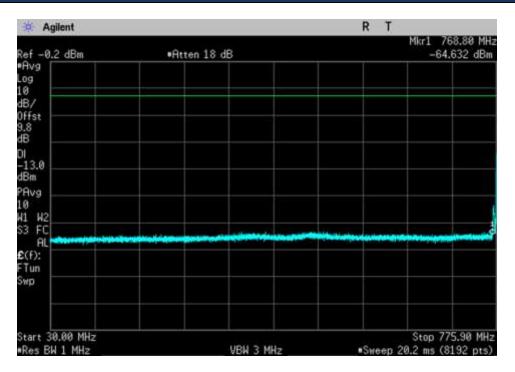
Pass: As summarized in plots below, the conducted spurious emissions are within limits.

<u>9 kHz-30 MHz</u>

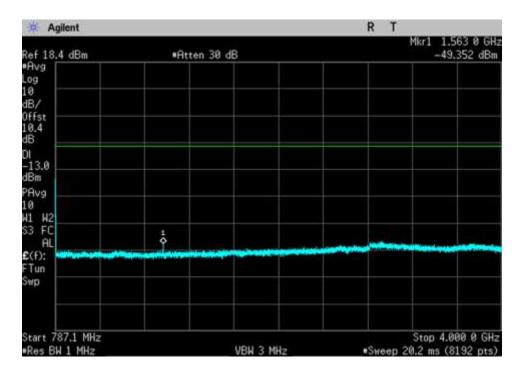
No Conducted Spurious Emissions were found within 20dB of the limit.

The 1559-1610 band was also investigated and found emission within limits using applied correction (see calculation below).

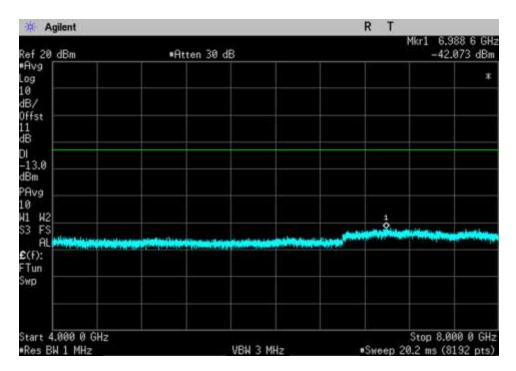
Limit Line Calculation*					
Frequency Antenna Gain- cable loss			Limit line EIRP	Limit line EIRP	Limit line EIRP corrected
(MHz)	(dBi)		(dBW/MHz)	(dBm)	(dBm)
UL 776-787	4		-70.0	-40	-44



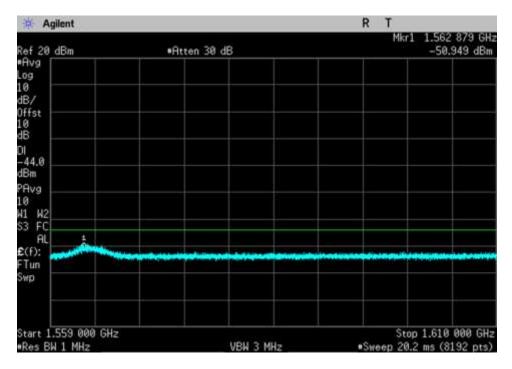
LIMIT LINE FOR SPURIOUS CONDUCTED EMISSION


REQUIRED ATTENUATION		=	43+10 LOG P DB	
Limit line (dBuV)	=	V dBuv -	Attenuation	
V_{dBuV}		= =	$20 \log \frac{V}{1 \times 10^{-6}}$ 20 (Log V - Log 1 x 10^{-6}) 20 Log V - 20 Log 1 x 10^{-6}	
		=	$20 \log V - 20 (-6)$ $20 \log V + 120$	
Attenuation		=	$43+10 \operatorname{Log} P$ $43+10 \operatorname{Log} \frac{V^2}{R}$	
		= =	$43+10(\text{Log V}^{2} - \text{Log R}) 43+10(2 \text{Log V} - \text{Log R}) 43+20 \text{Log V} -10 \text{Log R}$	
Limit line =	= 20 Log	= = V + 120 - =	Attenuation 20 Log V + 120 – (43 + 20 Log V – 10Log 20 Log V + 120 – 43 – 20 Log V + 10Log I - 43 – 20 Log V + 10Log R 120 – 43 + 10 Log 50 Note : R = 120 –43 + 16.897 94 dBuV at any power level	R

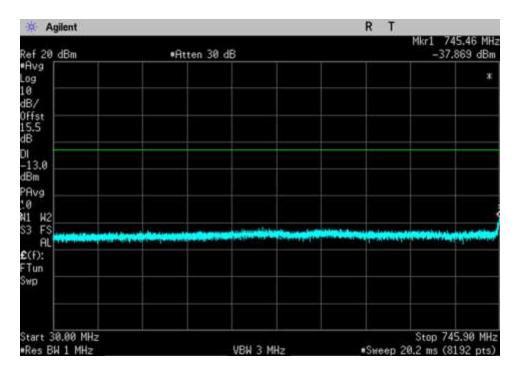
Plots



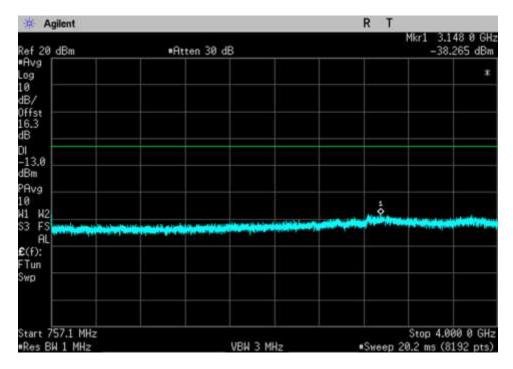
UL_776-787_a 30- 775.9MHz_SN4



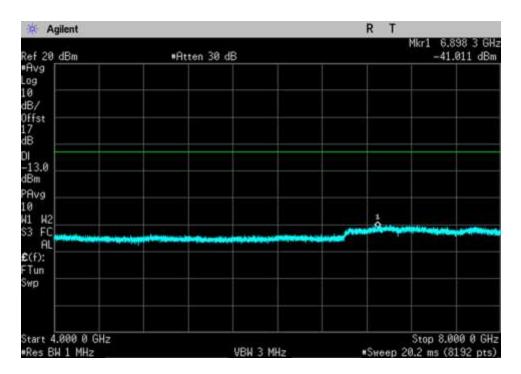
UL_776-787_b 787.1- 4000MHz_SN4



UL_776-787_c 4000- 8000MHz_SN4



UL_776-787_d 1559- 1610MHz_SN4



DL_746-757_ 30- 745.9MHz_SN4

DL_746-757_757.1-4000MHz_SN4

DL_746-757_ 4000- 8000MHz_SN4

7.7 Noise limit

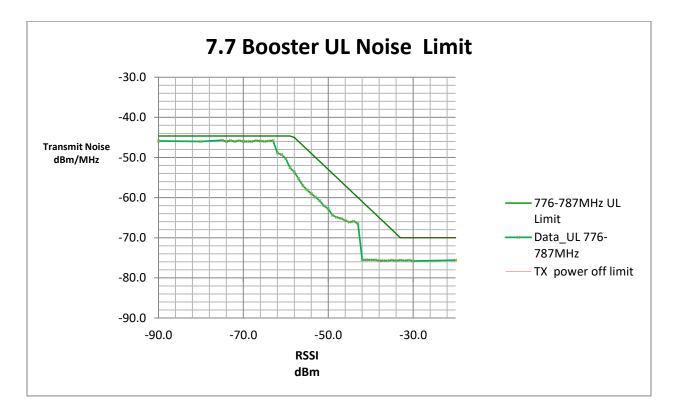
Test Conditions / Setup

Test Location: Customer:	CKC Laboratories, Inc. • Cellphone-Mate, Inc.	1120 Fulton Place • Fremont, CA	94539 • 510 249 1170
Specification:	• /	ım Transmitter Noise Power Le	vel / Variable UL Noise Timing)
Work Order #:	102393	Date:	4/2/19
Test Type:	Conducted Emissions	Time:	11:28:00
Tested By:	E. Wong	Sequence#:	1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Equipment:					
Asse	t#	Description	Model	Calibration Date	Cal Due Date
0347	1	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
P054	11	Attenuator	54A-10	1/19/2018	1/19/2020
P071	91	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
P071	92	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
P069	09	Attenuator	PE7083	12/20/2017	12/20/2019
C000	82	Directional Coupler	722-10-1.500V	9/18/2017	9/18/2019
0341	8	Signal Generator	E4438C	6/19/2017	6/19/2019

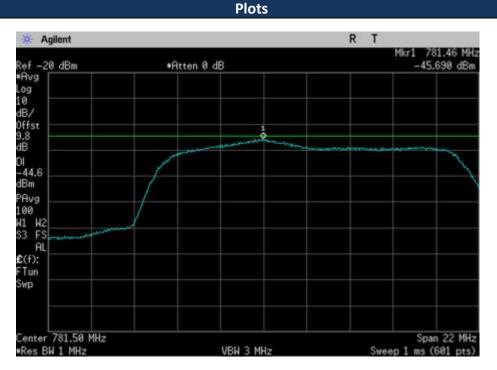

Summary of Results

Pass: As demonstrated, measured noise are within the limit. All maximum variable uplink noise timings are within 3 second limit.

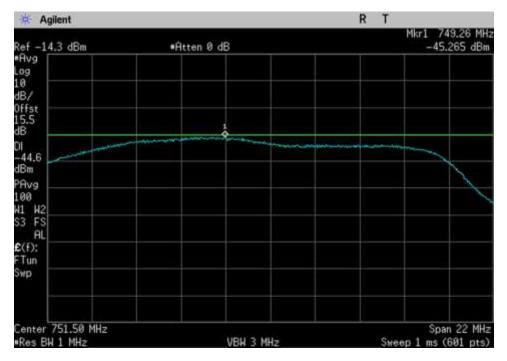
7.7.1 Maximum transmitter noise power level

• 7.7.1 a-g: Maximum transmitter noise with 50-ohm shielded load

Maximum Noise Power					
Frequency MHz	Measured dBm./MHz	Limit dBm/MHz	Margin		
UL 776-787	-45.7	-44.6	-1.1		
DL 746-757	-45.20	-44.60	-0.60		


776.0- 787.0 MHz						
			Limit			
RSSI	Measured	RSSI	Fixed		Margin	
(dBm)	Noise (dBm/MHz)	Dependent	Booster	TX off		
-75.0	-45.7		-44.6		-1.1	
-73.0	-45.8		-44.6		-1.2	
-33.0	-75.6	-70.0			-5.6	
-43.0	-66.5	-60.0			-6.5	
-34.0	-75.7	-69.0			-6.7	
-44.0	-65.9	-59.0			-6.9	
-31.0	-75.6			-70	-5.6	

7.7.2 Variable uplink noise timing


Uplink Noise timing					
Frequency MHz	Measured Sec	Limit sec			
UL776-787	0.33	3			

7.7.1 Maximum Transmitter Noise Power Level

UL_776-787_ 781.5MHz_SN4

DL_746-757_751.5MHz_SN4

7.7.2 Variable UL Noise Timing

UL_776-787_781.5MHz_SN4_variable UL noise timing

Page 39 of 75 Report No.: 102393-8

7.8 Uplink Inactivity

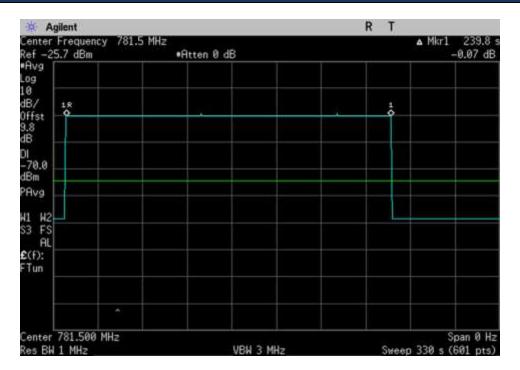
Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place	• Fremont, CA 94539 • 510 249 1170
Customer:	Cellphone-Mate, Inc.	
Specification:	7.8 Uplink Inactivity	
Work Order #:	102393	Date: 4/1/19
Test Type:	Conducted Emissions	Time: 14:06:00 PM
Tested By:	E. Wong	Sequence#: 1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Equipment:

Asset #	Description	Model	Calibration Date	Cal Due Date
03471	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
P05411	Attenuator	54A-10	1/19/2018	1/19/2020
P07191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
P06909	Attenuator	PE7083	12/20/2017	12/20/2019


Summary of Results

Pass: As demonstrated, when the booster is not serving an active device connection after 5 minutes the uplink noise power does not exceed -70dBm/MHz

Uplink Inactivity				
Frequency Measured Limit				
MHz	Min	Min		
UL776-787	4.0	5.0		

Plots

UL_776-787_ 781.5MHz_SN4

7.9 Booster Gain Limit

Test Conditions / Setup

Test Location: Customer:	CKC Laboratories, Inc. • 1120 I Cellphone-Mate, Inc.	Fulton Place • Fremont, CA 94539 • 510 249 1170
Specification:	7.9 Variable Booster gain(Ma	x Gain / Variable Uplink Gain Timing)
Work Order #:	102393	Date: 4/3/19
Test Type:	Conducted Emissions	Time: 8:10:00
Tested By:	E. Wong	Sequence#: 1

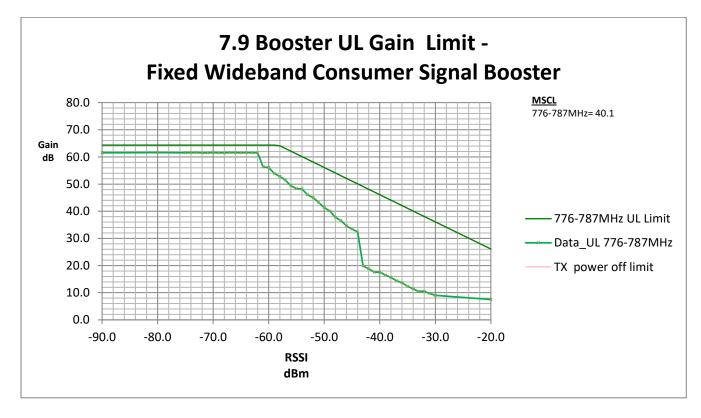
Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Manufacturer provided MSCL calculation based on

	MS	CL Calculations of fixed boo	oster EZ 4GV		
		MSCL			
Band (MHz)	Path loss (dB)	Indoor Antenna Gain (dBi)	Indoor Cable Loss(dB)	Polarity Loss(dB)	MSCL(dB)
LTE(776-787)	36.3	2.5	3.32	3	40.1

Test Equipment:

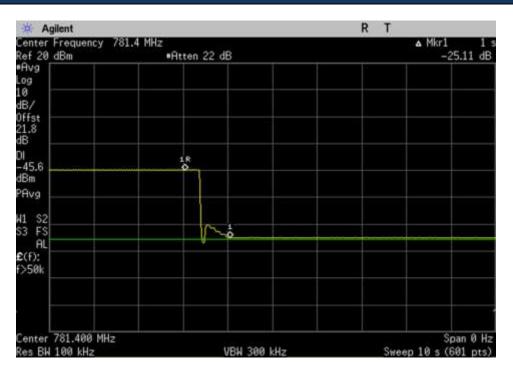

Asset #	Description	Model	Calibration Date	Cal Due Date
03471	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
P05411	Attenuator	54A-10	1/19/2018	1/19/2020
P07191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
P07192	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
P06909	Attenuator	PE7083	12/20/2017	12/20/2019
C00082	Directional Coupler	722-10-1.500V	9/18/2017	9/18/2019
03418	Signal Generator	E4438C	6/19/2017	6/19/2019

Summary of Results

Pass: As demonstrated, computed gains are within the gain limit. All maximum variable uplink gain timings are within 3 second limit.

7.9.1 Maximum gain

	776.0 - 787.0 MHz						
					Limit		
RSSI (dBm)	Input (dBm)	Measured Output (dBm)	Measured Gain (dBm)	RSSI Dependent	Fixed Booster	TX off	Margin
-80.0	-41.2	20.4	61.6	-	64.4	-	-2.8
-74.0	-41.2	20.4	61.6	-	64.4	-	-2.8
-58.0	-41.2	11.6	52.8	64.1	-	-	-11.3
-57.0	-41.2	10.3	51.5	63.1	-	-	-11.6
-54.0	-41.2	7.0	48.2	60.1	-	-	-11.9
-56.0	-41.2	8.1	49.3	62.1	-	-	-12.8


7.9.2 Variable uplink gain timing

Uplink Gain Timing				
Frequency (MHz)	Measured (Sec)	Limit (Sec)		
UL 776-787	1	3		

7.9.1 Maximum Gain

For this subsection, see summary of results of 7.9 7.9.1 Maximum gain

7.9.2 Variable uplink Gain Timing

UL_776-787_ 781.4MHz_SN4

Plot

7.10 Occupied Band Width

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place	• Fremont, CA	94539 • 510 249 1170
Customer:	Cellphone-Mate, Inc.		
Specification:	7.10 Occupied Band Width		
Work Order #:	102393	Date:	4/1/19
Test Type:	Conducted Emissions	Time:	14:41:00
Tested By:	E. Wong	Sequence#:	1

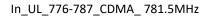
Equipment Tested:

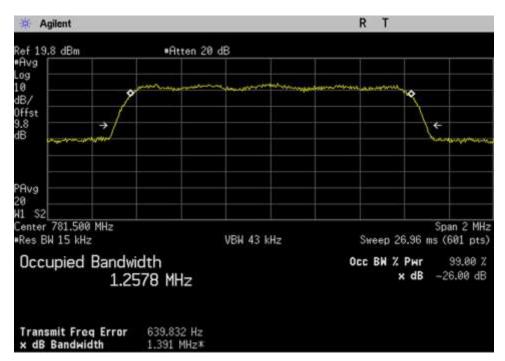
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

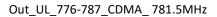
Test Conditions / Notes:

Test Equipment:

1 Cot Equip					
	Asset #	Description	Model	Calibration Date	Cal Due Date
	03471	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
	P05411	Attenuator	54A-10	1/19/2018	1/19/2020
	P07191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
	P07192	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
	P06909	Attenuator	PE7083	12/20/2017	12/20/2019
	03418	Signal Generator	E4438C	6/19/2017	6/19/2019

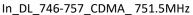

Summary of Results

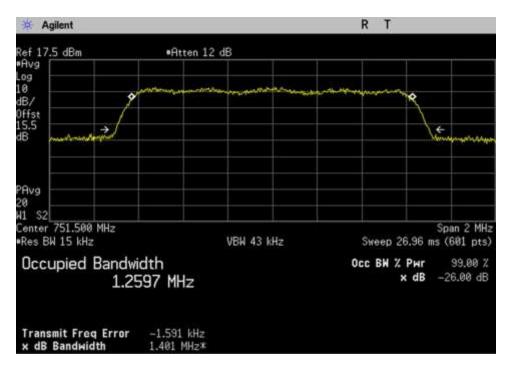

Pass: As summarized in plots below, the uniformity of the output signal relative to the input signal are practically identical. Therefore, the comparison is within limits.

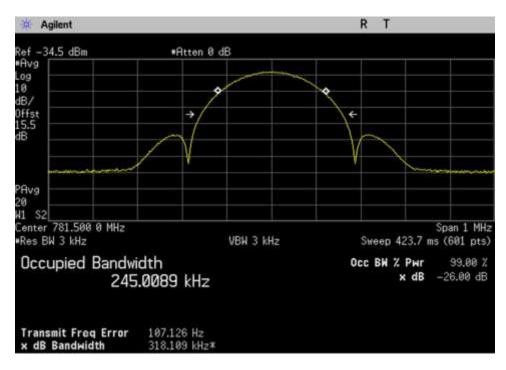


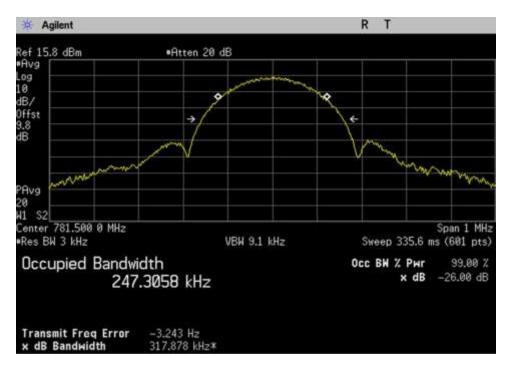
🔆 Agilent RT Ref -20 dBm #Avg Atten 0 dB Log 10 dB/ Offst 9.8 dB ò Ô ÷ €-PAvg 20 W1 \$2 Center 781.500 MHz •Res BW 15 kHz Span 2 MHz Sweep 26.96 ms (601 pts) VBW 43 kHz Occupied Bandwidth Occ BW % Pwr 99.00 % -26.00 dB x dB 1.2577 MHz Transmit Freq Error x dB Bandwidth -690.096 Hz 1.395 MHz*

Plots

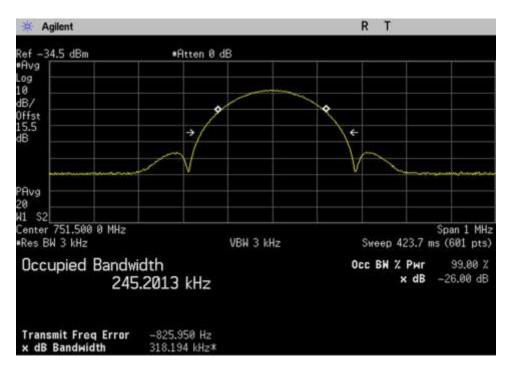


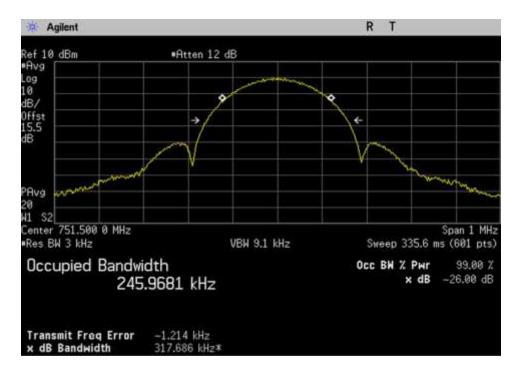




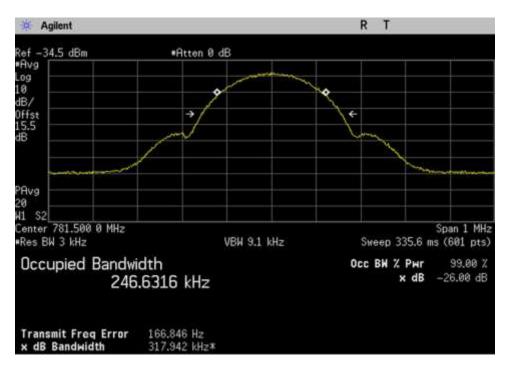


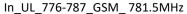
Out_DL_746-757_CDMA_ 751.5MHz



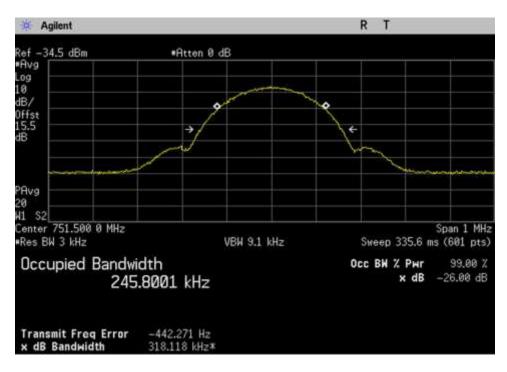


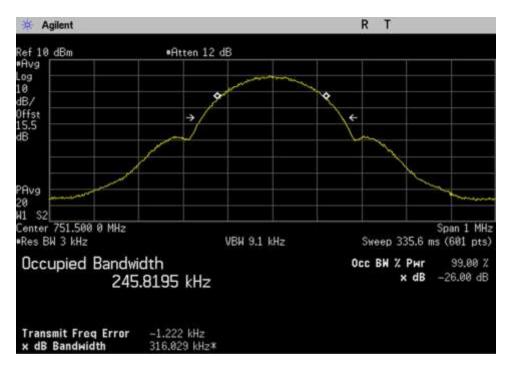
Out_UL_776-787_EDGE_ 781.5MHz



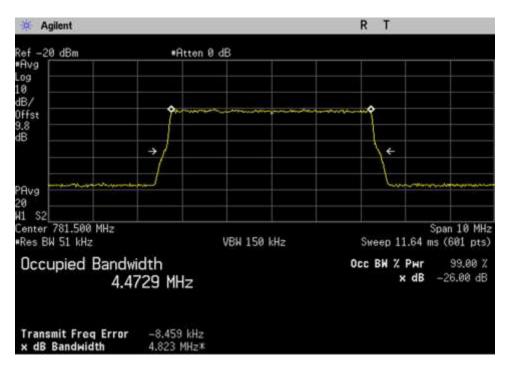

In_DL_746-757_EDGE_ 751.5MHz

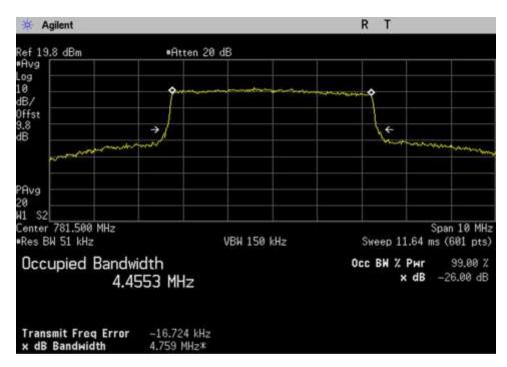
Out_DL_746-757_EDGE_ 751.5MHz



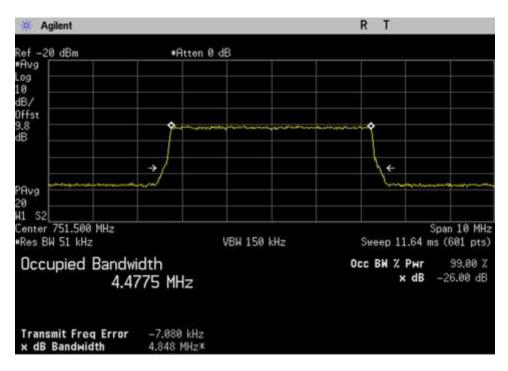


Out_UL_776-787_GSM_ 781.5MHz

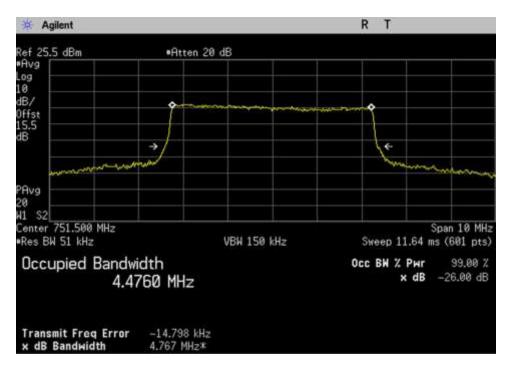




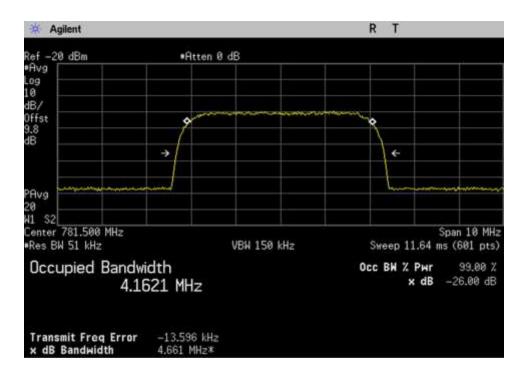
Out_DL_746-757_GSM_ 751.5MHz



In_UL_776-787_LTE_ 781.5MHz

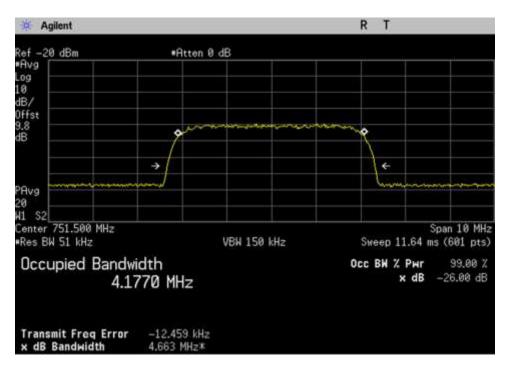


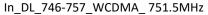
Out_UL_776-787_LTE_ 781.5MHz

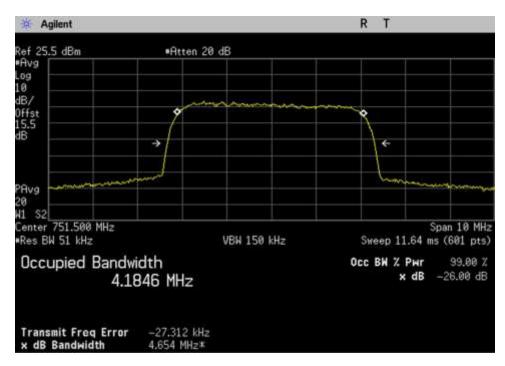


In_DL_746-757_LTE_ 751.5MHz

Out_DL_746-757_LTE_ 751.5MHz







Out_UL_776-787_WCDMA_ 781.5MHz

Out_DL_746-757_WCDMA_ 751.5MHz

7.11 Oscillation Detection

Test Location:	CKC Laboratories, Inc. • 1120 Ful	ton Place • Fremont, CA 94539 • 510 249 1170
Customer:	Cellphone-Mate, Inc.	
Specification:	7.11 Anti-Oscillation (Oscillation	Restarts / Oscillation mitigation or shutdown)
Work Order #:	102393	Date: 4/3/19
Test Type:	Conducted Emissions	Time: 9:53:00
Tested By:	E. Wong	Sequence#: 1

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Note:

- +5 denotes a variable attenuator adjusted such that the insertion loss for center of band under test (isolation) between the booster's donor and server ports is 5 dB greater than the maximum gain, as recorded in the maximum gain test procedure, for the band under test.

Test Equipment:

Asset #	Description	Model	Calibration Date	Cal Due Date
03471	Spectrum Analyzer	E4440A	1/18/2018	1/18/2020
P05411	Attenuator	54A-10	1/19/2018	1/19/2020
P07191	Cable	32022-29094K- 29094K-48TC	10/30/2017	10/30/2019
P07192	Cable	32022-29094K- 29094K-48TC	10/9/2017	10/9/2019
P06909	Attenuator	PE7083	12/20/2017	12/20/2019
03468	Band Pass Filter	4CS10- 781.5/E12.2- O/O	8/16/2017	8/16/2019
03469	Band Pass Filter	4CS10- 751.5/E12-O/O	8/16/2017	8/16/2019
C00082	Directional Coupler	722-10-1.500V	9/18/2017	9/18/2019
02475	Attenuator	8494B	6/8/2017	6/8/2019
03418	Signal Generator	E4438C	6/19/2017	6/19/2019

Summary of Results

Pass: All oscillations detections and mitigations occur within 0.3 seconds in uplink bands, within 1 second in the downlink bands and the noise level is below the -70dBm/MHz limit.

7.11.2 Oscillation restart tests

Oscillation detection			Time Betwee	en restart	Number of r	estart	
Frequency MHz	Measured Sec	Limit Sec	Peak Level dBm	Measured Sec	Limit At least sec	Measured	Limit
UL776-787	0.258	0.3	32.0	70	60	1	5
DL 746-757	0.250	1.0	18.4	68	60	1	5

The booster continues to mitigate at least 1 minute before restarting. The plots demonstrate after 1 restart (the limit is 5 restart), the booster does not resume operation until manually reset.

7.11.3 Test procedure for measuring oscillation mitigation or shutdown

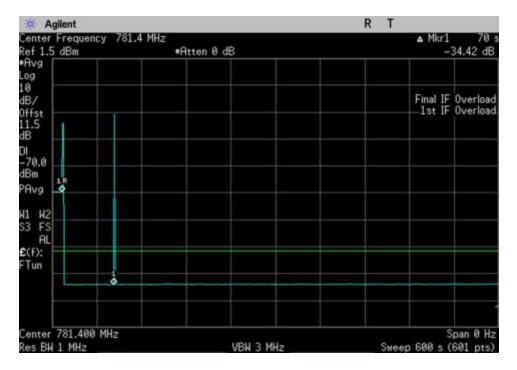
	UL 776-787	
Max Gain Isolation	Pk-Pk Difference	Limit
dB	dB	dB
+5dB	(14.0)*	12.0
+4dB	(19.0)*	12.0
+3dB	(21.0)*	12.0
+2dB	(38.0)*	12.0
+1dB	**	12.0
OdB	**	12.0
-1dB	**	12.0
-2dB	**	12.0
-3dB	**	12.0
-4dB	**	12.0
-5dB	**	12.0

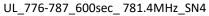
	DL 746-775	
Max Gain Isolation	Pk-Pk Difference	Limit
dB	dB	dB
+5dB	(12.2)*	12.0
+4dB	(13.2)*	12.0
+3dB	(16.0)*	12.0
+2dB	(17.0)*	12.0
+1dB	(20.0)*	12.0
OdB	(46.0)*	12.0
-1dB	**	12.0
-2dB	**	12.0
-3dB	**	12.0
-4dB	**	12.0
-5dB	**	12.0

Note:

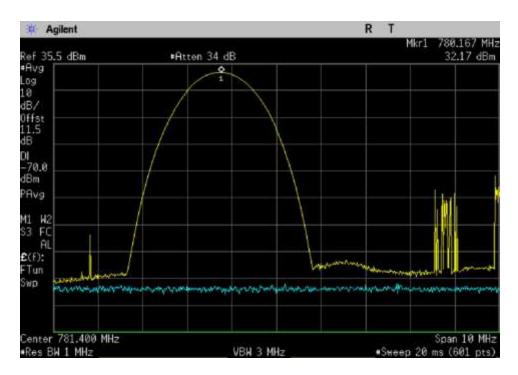
* The measured difference exceeds the limit for a period of less than 300 second before device mitigates or shuts down. The maximum recorded time prior to shutdown was 84 seconds for the Uplink bands and 97 seconds for the Downlink bands.

** The device shuts down immediately.

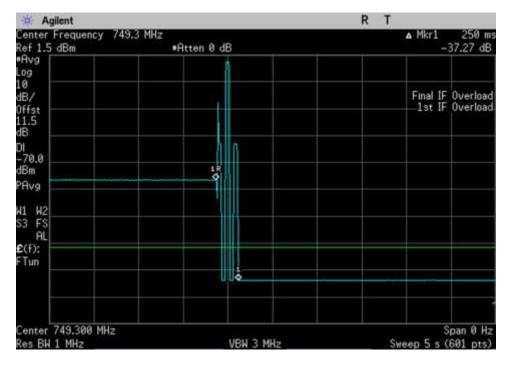



7.11.2 Oscillation Restart Tests

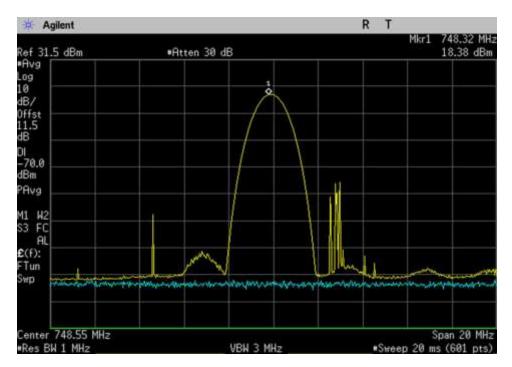
Plots



UL_776-787_781.4MHz_SN4_



UL_776-787_Pk_ 781.4MHz_SN4



DL_746-757_749.3MHz_SN4

f 1.5 dBm	rFrequency 749.3 MHz .5 dBm				▲ Mkr1 68 -30.76 dB		
vg a						*	
/ fst					Final IF 1st IF	Overloa Overloa	
6.0							
0.0 m Vg 1R							
W2 FS							
AL F): un							
Ĺå							
nter 749.300 MHz				-	\$	pan 0 H 601 pts	

DL_746-757_600sec_ 749.3MHz_SN4

DL_746-757_Pk_ 748.55MHz_SN4

7.12 Radiated Spurious Emissions

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. • 1120 Fulton Place	• Fremont, CA 94539 • 510 249 1170
Customer:	Cellphone-Mate, Inc.	
Specification:	Radiated Emissions	
Work Order #:	102393	Date: 4/3/19
Test Type:	Radiated Emissions	Time: 16:30
Tested By:	E. Wong	Sequence#: 1

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency range of measurement = 9 kHz- 8 GHz. 9 kHz - 150 kHz - RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz - RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz - RBW=120 kHz VBW=120 kHz 1000 MHz-8000MHz - RBW=1 MHz VBW=1 MHz

No spurious emissions were found within 20dB of the limit line.

Emissions in the band 1559-1610 MHz were investigated and these were not found within 20dB of the limit line.

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotopically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

Test Equipment:

Ass	et #	Description	Model	Calibration Date	Cal Due Date
AN	03471	RF Characteristics	E4440A	1/18/2018	1/18/2020
		Analyzer			
AN	P07508	Preamp	310N	10/15/2018	10/15/2020
AN	00852	Biconilog Antenna	CBL 6111C	5/1/2018	5/1/2020
AN	P06049	Attenuator	PE7002-6	5/14/2018	5/14/2020
AN	P00880	Cable	RG214U	5/14/2018	5/14/2020
AN	P01187	Cable	CNT-195	8/20/2018	8/20/2020
AN	P06691	Cable	PE3062-180	5/14/2018	5/14/2020
AN	03607	Preamp	AMF-7D-	6/6/2017	6/6/2019
			00101800-30-		
			10P		
AN	02157	Horn Antenna-	3115	1/15/2019	1/15/2021
		ANSI C63.5			
AN	03302	Cable	32026-29094K-	1/15/2018	1/15/2020
			29094K-72TC		
AN	P01210	Cable	FSJ1P-50A-4A	12/18/2018	12/18/2020
AN	00432	Loop Antenna	6502	2/19/2019	2/19/2021
AN	03013	Cable	32022-2-2909К-	6/25/2018	6/25/2020
			36TC		

Summary of Results

Pass: All Radiated Spurious Emissions were found with more than 20dB margin of the limit line.

Frequency Range of measurement 9kHz – 8GHz

LIMIT LINE FOR SPURIOUS RADIATED EMISSION

REQUIRED ATTENUATION = 43+10 LOG P (DB) FOR RADIATED SPURIOUS EMISSION MEASURED AT 3-METER TEST DISTANCE,

Required attenuation	=	43+10 Log Pt at 3 meter dB
Limit line (dBuV)	=	E _{dBuv} - Attenuation

E_{dBuv} = Measured field strength at 3 meter in dBuV/m

Power Density (Isotropic)

$$P_{\rm D} = \frac{P_{\rm t}}{4\pi r^2}$$

P_D = Power Density in Watts /m² Pt = Average Transmit Power r = Test distance

Field Intensity E (V/m)

 $E = \sqrt{P_D \ x \ 377}$

$$E = \frac{\sqrt{P_t \times 377}}{4\pi r^2}$$

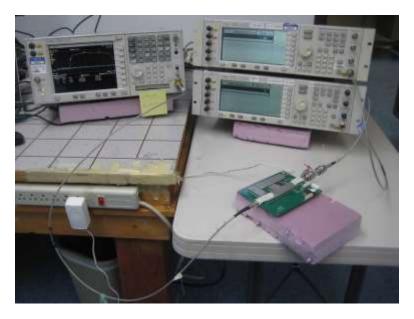
$$E = \sqrt{\frac{P_t \ x \ 30}{r^2}}$$

$$P_{t} = \left(\frac{E^{2} x r^{2}}{30}\right)$$

 $\label{eq:relation} \begin{array}{l} 10 \mbox{ Log } P_t = 10 \mbox{ Log } E^2 \mbox{ (V/m)} + 10 \mbox{ Log } r^2 - 10 \mbox{ Log } 30 \\ 10 \mbox{ Log } P_t = 20 \mbox{ Log } E \mbox{ (V/m)} + 20 \mbox{ Log } r \mbox{ - 10 } \mbox{ Log } 30 \end{array}$

At 3 meter, r = 3 m 10 Log P_t = 20 Log E (V/m) + 20 Log 3 – 10 Log 30 10 Log P_t = 20 Log E (V/m) + 9.54 – 14.77 10 Log P_t = 20 Log E (V/m) - 5.23

Since 20 Log E (V/m) = 20 Log E (uV/m) -120 10 Log Pt = 20 Log E (uV/m) - 120 - 5.23


 $10 \text{ Log P}_t = 20 \text{ Log E} (uV/m) - 125.23$

Limit line (dBuV) at 3 meter	=	E dBuv – Attenuation	
		=	E_{dBuv} - (43+10 Log $P_{t at 3 meter}$)
		=	E dBuv - 43 - 10 Log Pt at 3 meter
		=	E _{dBuv} - 43 – (20 Log E (uV/m) –125.23)
		=	E _{dBuv -} 43 - 20 Log E (uV/m) + 125.23
		=	E _{dBuv} - 20 Log E (uV/m) + 82.23
Since 20 Log E (uV/m) = E in dBuV/	m=	E _{dBuv} -	E _{dBuv} + 82.23
Radiated Emission limit 3 meter	=		82.23 dBuV at any power level measured in dBuV

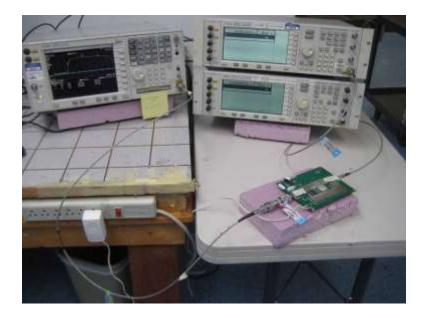
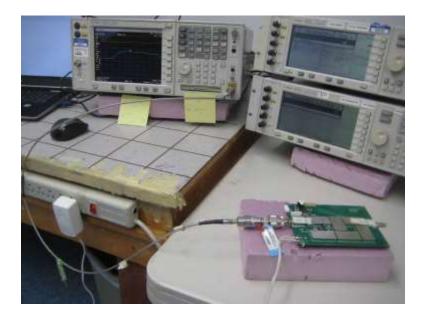


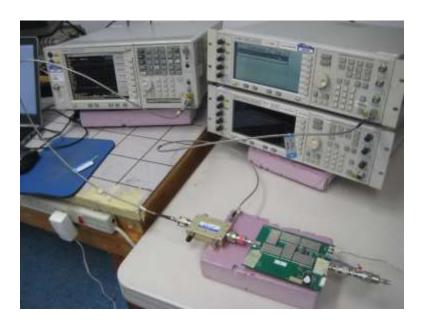
EXHIBIT A: TEST SETUP PHOTOS

Section 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 Test Setup

UL



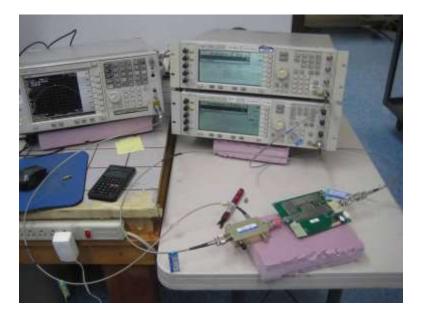
DL Section 7.7.1 and 7.7.2 Test Setup

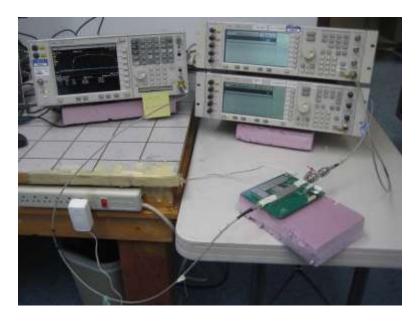


UL

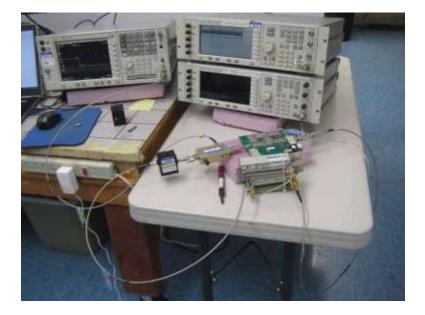
DL

UL, Variable


Section 7.8 Test Setup


UL

Section 7.9 Test Setup



Section 7.10 Test Setup

Section 7.11 Test Setup

Page 70 of 75 Report No.: 102393-8

Section 7.12 Test Setup

Below 1GHz

Below 1GHz

Below 1GHz

Below 1GHz

Above 1GHz

Above 1GHz

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading	(dBµV)			
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz		
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" $^{\Lambda}$ ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.