

FCC PART 27

TEST AND MEASUREMENT REPORT

For

Cellphone-Mate, Inc.

48820 Kato Road, Suite 300B, Fremont, CA 94538, USA

FCC ID: RSNCM2500W Model: CM2500W

Report Type: **Product Type:** Original Report WiMax Single Direction Amplifier Limel Lars **Test Engineer:** Lionel Lara **Report Number:** R1111152-27 **Report Date:** 2011-12-16 Victor Zhang Reviewed By: EMC/RF Lead **Prepared By:** Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, (SP) Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" ...

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION	5
	1.3	Objective	5
	1.4	RELATED SUBMITTAL(S)/GRANT(S)	
	1.5	TEST METHODOLOGY	
	1.6	MEASUREMENT UNCERTAINTY	
	1.7	TEST FACILITY	6
2	SY	STEM TEST CONFIGURATION	7
	2.1	JUSTIFICATION	7
	2.2	EUT Exercise Software	7
	2.3	EQUIPMENT MODIFICATIONS	
	2.4	LOCAL SUPPORT EQUIPMENT AND SOFTWARE LIST AND DETAILS	
	2.5	INTERNAL CONFIGURATIONS OF EUT	
	2.6	INTERFACE PORTS AND CABLES	
	2.7	TEST SETUP BLOCK DIAGRAM	8
3	SU	MMARY OF TEST RESULTS	10
4	FC	C §2.1046 & §27.50 – RF OUTPUT POWER	11
	4.1	APPLICABLE STANDARD	11
	4.2	TEST PROCEDURE	
	4.3	TEST ENVIRONMENTAL CONDITIONS	11
	4.4	TEST EQUIPMENT LIST AND DETAILS	
	4.5	TEST RESULTS	12
5	FC	C §2.1047 - MODULATION CHARACTERISTIC	13
	5.1	APPLICABLE STANDARD	
	5.2	TEST RESULT	
6		C §2.1049 & §27.53 - OCCUPIED BANDWIDTH	
v	6.1	APPLICABLE STANDARD	
	6.2	TEST PROCEDURE	
	6.3	TEST F ROCEPORE TEST ENVIRONMENTAL CONDITIONS	
	6.4	TEST EQUIPMENT LIST AND DETAILS	
	6.5	TEST RESULTS	
7	FC	C §2.1053 & §27.53 - SPURIOUS RADIATED EMISSIONS	
•	7.1	APPLICABLE STANDARD	
	7.1	TEST PROCEDURE	
	7.3	TEST F ROCEPORE TEST EQUIPMENT LIST AND DETAILS	
	7.4	TEST ENVIRONMENTAL CONDITIONS.	
	7.5	SUMMARY OF TEST RESULTS	
	7.6	TEST RESULTS	23
8	FC	C §2.1051 & §27.53 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	24
-	8.1	APPLICABLE STANDARD	
	8.2	TEST PROCEDURE	
	8.3	TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST ENVIRONMENTAL CONDITIONS	

8.5	TEST RESULTS	24
9 FC	CC §27.53 – BAND EDGE	31
9.1	APPLICABLE STANDARD	31
9.2	TEST PROCEDURE	
9.3	TEST EQUIPMENT LIST AND DETAILS	
9.4	TEST ENVIRONMENTAL CONDITIONS	
9.5	TEST RESULTS	
	CC §2.1055 & §27.54 – FREQUENCY STABILITY	
	APPLICABLE STANDARD	
	TEST RESULTS	
11 FC	CC §1.1307(B), §27.52 & §2.1091 - RF EXPOSURE INFORMATION	39
11.1	APPLICABLE STANDARD	39
11.2	MPE Prediction	39
12 FC	CC §15.109 - RADIATED EMISSIONS	40
12.1	APPLICABLE STANDARD	40
	TEST SETUP	
12.3	TEST PROCEDURE	40
	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	TEST EQUIPMENT LIST AND DETAILS	
	TEST ENVIRONMENTAL CONDITIONS	
	SUMMARY OF TEST RESULTS	
	RADIATED SPURIOUS EMISSIONS TEST PLOTS AND DATA	
	XHIBIT A - FCC ID LABEL REQUIREMENTS	
	FCC ID LABEL REQUIREMENTS.	
	FCC ID LABEL CONTENTS	
	FCC LABEL LOCATION ON EUT	
14 EX	KHIBIT B - TEST SETUP PHOTOGRAPHS	45
	RADIATED EMISSIONS - FRONT VIEW	
	RADIATED EMISSIONS 30 MHz to 1 GHz- REAR VIEW	
	RADIATED EMISSIONS ABOVE 1 GHz- REAR VIEW	
	XHIBIT C - EUT PHOTOGRAPHS	
	EUT - Top View	
	EUT - BOTTOM VIEW	
	EUT - SIDE VIEW 1	
	EUT - SIDE VIEW 2	
	EUT – UPLINK PORT VIEW	
	EUT – DOWNLINK PORT VIEW	
	EUT – Cover off View	
	EUT – MAIN PCB BOARD FRONT VIEW	
	0 A C/DC Power Surdi V View	

DOCUMENT REVISION HISTORY

Revision NumberReport Number0R1111152-27		Description of Revision	Date of Revision	
		Original Report	2011-12-16	

Report Number: R1111152-27 Page 4 of 51 FCC Part 27 Test Report

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Cellphone-Mate Inc.* and their product, model: *CM2500W*, *FCC ID: RSNCM2500W*, which will henceforth be referred to as the EUT (Equipment Under Test). The EUT is a single direction amplifier (downlink) with N type female antenna connectors that operates in the 2496-2690 MHz range. The WiMax band supports three modulations: QPSK, 16QAM, 64QAM.

1.2 Mechanical Description

The EUT measures 14cm (L) x 12cm (W) x 3cm (H), and weighs approximately 802.5 g.

The test data gathered are from production sample, sample number: LE2288 provided by the manufacturer.

1.3 Objective

This type approval report is prepared on behalf of *Cellphone-Mate*, *Inc*. in accordance with Part 2, Subpart J, and Part 27 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, band edge, and conducted and radiated margin.

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 27 - Miscellaneous Wireless Communications Services Applicable Standards: TIA/EIA-603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Report Number: R1111152-27 Page 5 of 51 FCC Part 27 Test Report

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from +2.0 dB for Conducted Emissions tests and +4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and

December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

Report Number: R1111152-27 Page 6 of 51 FCC Part 27 Test Report

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

N/A, signal was sent through EUT using a signal generator, device was set to normal operating mode.

2.3 Equipment Modifications

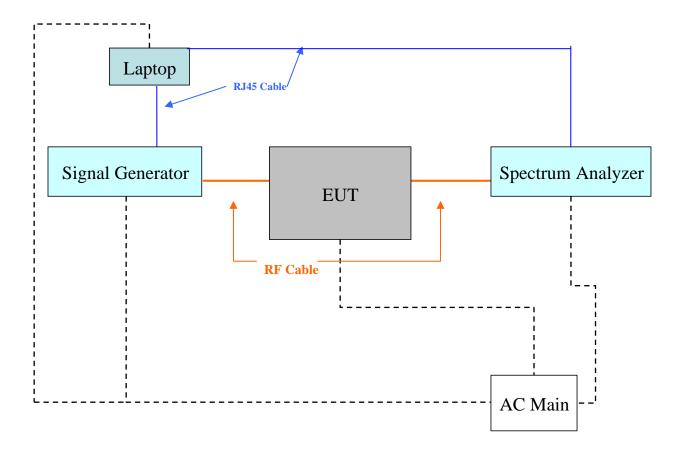
No modifications were made to the EUT.

2.4 Local Support Equipment and Software List and Details

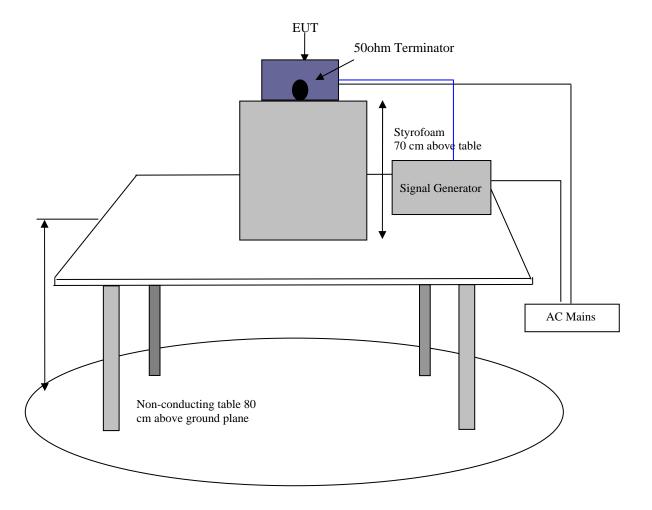
Manufacturer Description		Model	Serial Number
НР	Signal Generator	83650B	3614A00276
Dell	Laptop	PP05L	37140867901
Agilent ESG-D Series Signal Generator		E4438C	MY45091309
Agilent	Signal Studio for 3GPP LTE	N7624B	-

2.5 Internal Configurations of EUT

Manufacturer Description		Model	Serial Number
Cellphone-Mate Inc	Main PCB Board	CM2500W	-


2.6 Interface Ports and Cables

Cable Description	Length (m)	То	From
RF Cable	< 1	EUT	Spectrum Analyzer
RF Cable	< 1	EUT	Signal Generator


Report Number: R1111152-27 Page 7 of 51 FCC Part 27 Test Report

2.7 Test Setup Block Diagram

Conducted Emissions

Radiated Emissions

3 **SUMMARY OF TEST RESULTS**

FCC Rules	Description of Tests	Results
§2.1046, §27.50(h)(2)	RF Output Power	Compliant
§2.1047	Modulation Characteristics	N/A ¹
§2.1049, §27.53 (h)	Occupied Bandwidth	Compliant
§2.1053, §27.53 (c)(g)(h)	Spurious Radiated Emissions	Compliant
§2.1051, §27.53 (c)(g)(h) Spurious Emissions at Antenna Terminals		Compliant
§27.53 (c)(g)(h)	Band Edge	Compliant
§27.54	Frequency Stability	N/A ²
§2.1091, §27.52	RF Exposure	Compliant
§15.109	Radiated Emissions	Compliant

Report Number: R1111152-27 Page 10 of 51 FCC Part 27 Test Report

Note: ¹ Not applicable. ² EUT is an amplifier; frequency stability testing is not required.

4 FCC §2.1046 & §27.50 – RF OUTPUT POWER

4.1 Applicable Standard

According to FCC §27.50, the maximum effective isotropic radiated power (EIRP) of mobile and other user station must not exceed 2 Watts.

4.2 Test Procedure

Conducted:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.

4.3 Test Environmental Conditions

Temperature:	19-21°C
Relative Humidity:	40-44 %
ATM Pressure:	101-102 kPa

The testing was performed by Lionel Lara from 2011-12-02 to 2011-12-05 at RF Site.

4.4 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	ESG-D Series Signal Generator	E4438C	MY45091309	2011-04-28
Agilent	Spectrum Analyzer	E4440A	US45303156	2010-08-09¹

Note ¹: *Two year calibration cycle.*

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

4.5 Test Results

Maximum Output Power – Downlink

Mode	Modulation	Frequency (MHz)	Input Power (dBm)	Output Power (dBm)	EIRP with Ant. Gain (dBm)	EIRP Limit (dBm)
	QPSK (5 MHz)	2499	-54	8.38	22.38	33
	QPSK (5 MHz)	2608.0	-56	6.88	20.88	33
	QPSK (5 MHz)	2687	-52	7.41	21.41	33
	16QAM (5 MHz)	2499	-54	8.41	22.41	33
	16QAM (5 MHz)	2608.0	-56	6.85	20.85	33
	16QAM (5 MHz)	2687	-53	6.45	20.45	33
	64QAM (5 MHz)	2499	-54	8.40	22.40	33
	64QAM (5 MHz)	2608.0	-56	6.87	20.87	33
Downlink	64QAM (5 MHz)	2687	-52	7.40	21.40	33
2496-2690 MHz	QPSK (10 MHz)	2501	-54	8.54	22.54	33
	QPSK (10 MHz)	2608.0	-56	6.96	20.96	33
	QPSK (10 MHz)	2685	-52	7.55	21.55	33
	16QAM (10 MHz)	2501	-54	8.56	22.56	33
	16QAM (10 MHz)	2608.0	-56	6.87	20.87	33
	16QAM (10 MHz)	2685	-52	7.56	21.56	33
	64QAM (10 MHz)	2501	-54	8.57	22.57	33
	64QAM (10 MHz)	2608.0	-56	6.85	20.85	33
	64QAM (10 MHz)	2685	-52	7.55	21.55	33

Note: Typical antenna gain is 14 dBi. 2 watts EIRP = 33 dBm

5 FCC §2.1047 - MODULATION CHARACTERISTIC

5.1 Applicable Standard

According to FCC §2.1047(d) and Part 27, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

5.2 Test Result

N/A

Report Number: R1111152-27 Page 13 of 51 FCC Part 27 Test Report

6 FCC §2.1049 & §27.53 - OCCUPIED BANDWIDTH

6.1 Applicable Standard

Requirements: FCC §2.1049 and §27.53.

6.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 kHz and the 26 dB & 99% bandwidth was recorded.

6.3 Test Environmental Conditions

Temperature:	19-21°C
Relative Humidity:	40-44 %
ATM Pressure:	101-102 kPa

The testing was performed by Lionel Lara from 2011-12-02 to 2011-12-05 at RF Site.

6.4 Test Equipment List and Details

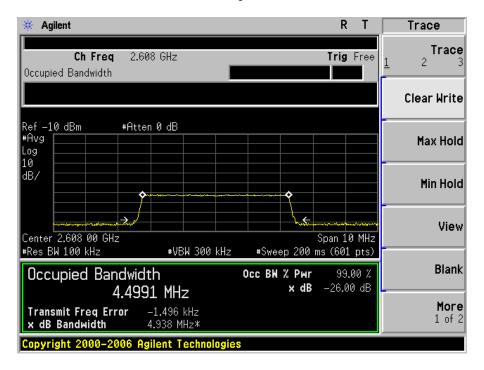
Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	ESG-D Series Signal Generator	E4438C	MY45091309	2011-04-28
Agilent	Spectrum Analyzer	E4440A	US45303156	2010-08-09 ¹

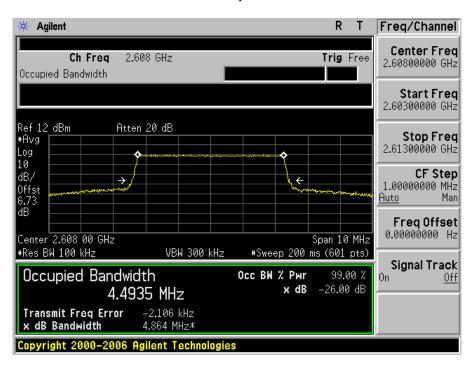
Note ¹: *Two year calibration cycle.*

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.5 Test Results

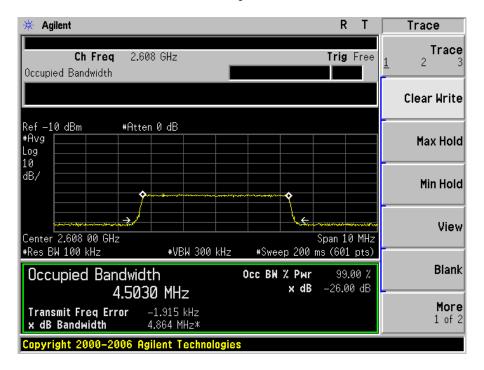
Occupied Bandwidth - Downlink

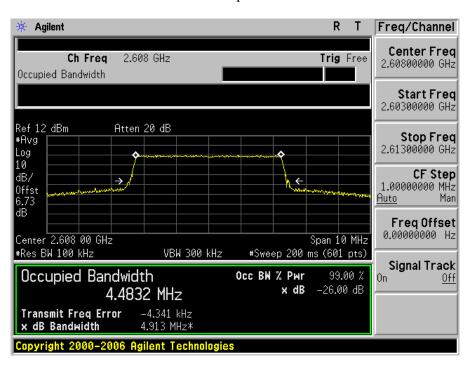

Mode	Modulation	Frequency (MHz)	Emission Bandwidth Input (MHz)	Emission Bandwidth Output (MHz)
	QPSK (5 MHz)	2608.0	4.4991	4.4935
	QPSK (10 MHz)	2608.0	8.9374	8.9271
Downlink	16QAM (5 MHz)	2608.0	4.5030	4.4832
2496-2690 MHz	16QAM (10 MHz)	2608.0	8.9540	8.9365
	64QAM (5 MHz)	2608.0	4.5013	4.4918
	64QAM (10 MHz)	2608.0	8.9407	8.9239


Please refer to the following plots.

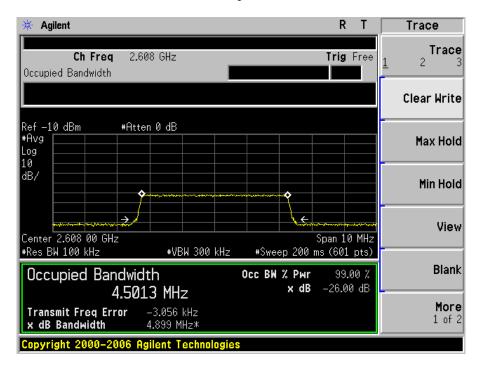
Report Number: R1111152-27 Page 15 of 51 FCC Part 27 Test Report

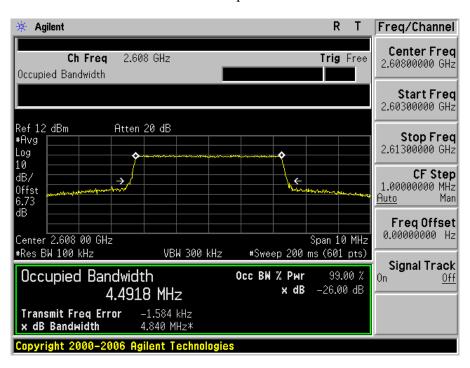
QPSK (5 MHz), Frequency: 2608 MHz


Input

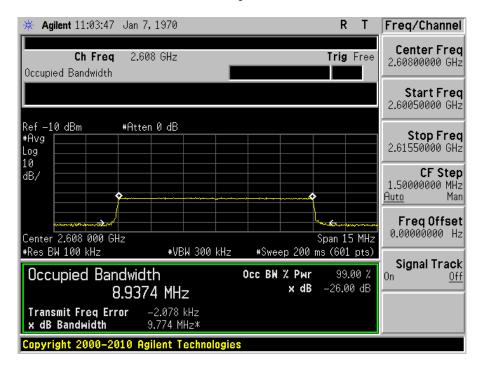


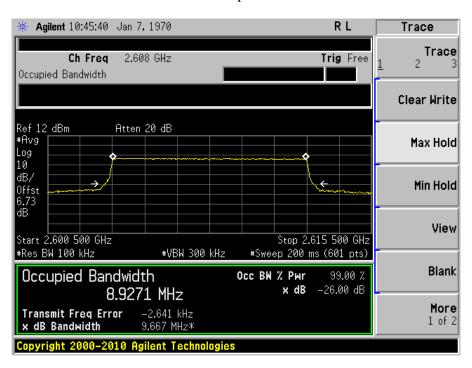
16QAM (5 MHz), Frequency: 2608 MHz


Input

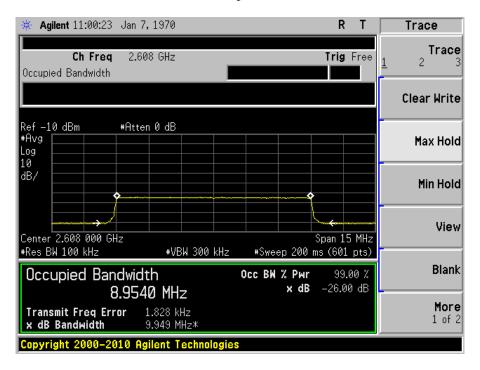


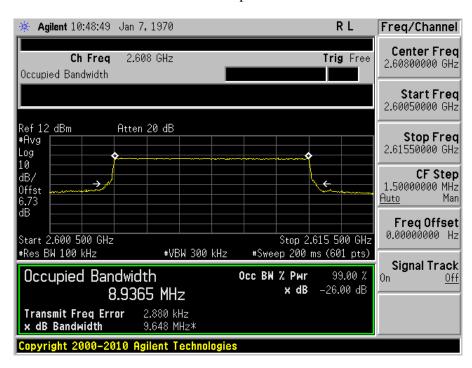
64QAM (5 MHz), Frequency: 2608 MHz


Input

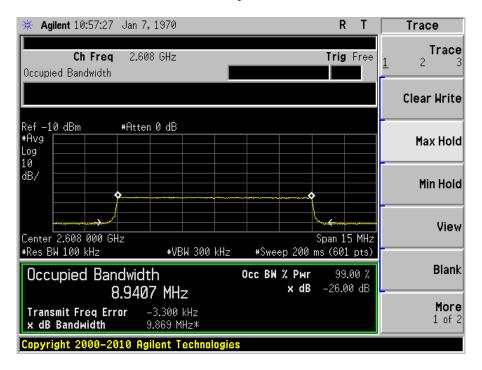


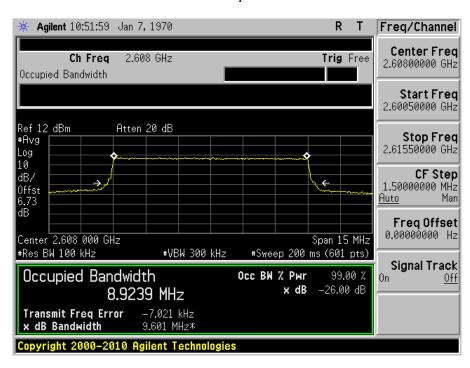
QPSK (10 MHz), Frequency: 2608.0 MHz


Input



16QAM (10 MHz), Frequency: 2608.0 MHz


Input



64QAM (10 MHz), Frequency: 2608.0 MHz

Input

7 FCC §2.1053 & §27.53 - SPURIOUS RADIATED EMISSIONS

7.1 Applicable Standard

Requirements: FCC §2.1053, §27.53.

7.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \log (TX \text{ Power in Watts}/0.001)$ – the absolute level Spurious attenuation limit in dB = $43 + 10 \log_{10}$ (power out in Watts)

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	ESG-D Series Signal Generator	E4438C	MY45091309	2011-04-28
Agilent	Spectrum Analyzer	E4440A	US45303156	2010-08-09 ¹
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2011-06-29
Hewlett Packard	Pre amplifier	8447D	2944A06639	2011-06-09
Sunol Sciences	Horn antenna	DRH-118	A052704	2011-02-23
Mini-Circuits	Pre Amplifier	ZVA-183-S	570400946	2011-05-09

Note ¹: *Two year calibration cycle.*

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Report Number: R1111152-27 Page 22 of 51 FCC Part 27 Test Report

7.4 Test Environmental Conditions

Temperature:	19-21°C
Relative Humidity:	40-44 %
ATM Pressure:	101-102 kPa

The testing was performed by Lionel Lara from 2011-12-02 to 2011-12-05 at Chamber3.

7.5 Summary of Test Results

The worst case reading as follows:

Frequency Bands	Margin	Frequency	Polarization	Frequency
	(dB)	(MHz)	(Horizontal/Vertical)	Range
DL: 2496-2690 MHz	Note 1	1	-	30 MHz – 26 GHz

Note ¹: All harmonics were on the noise floor level and/or 20 dB below the limit. All digital signals were tested on another standard.

7.6 Test Results

DL: 2496-2690 MHz

Modulation: CW Signal – 2608.0 MHz (Scan from 30 MHz to 26 GHz @ 3 Meter Distance)

Indic	ated			ntenna			Substituted				
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Gain Correction (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
-	-	-	_	-	-	-	-	_	-	-	Note 1

Note ¹: All harmonics were on the noise floor level and/or 20 dB below the limit. All digital signals were tested on another standard.

8 FCC §2.1051 & §27.53 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

8.1 Applicable Standard

Requirements: FCC §2.1051 & §27.53.

The spectrum shall be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$

8.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

8.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	ESG-D Series Signal Generator	E4438C	MY45091309	2011-04-28
Agilent	Spectrum Analyzer	E4440A	US45303156	2010-08-09 ¹
НР	Signal Generator	83650B	3614A00276	2010-06-21 ¹

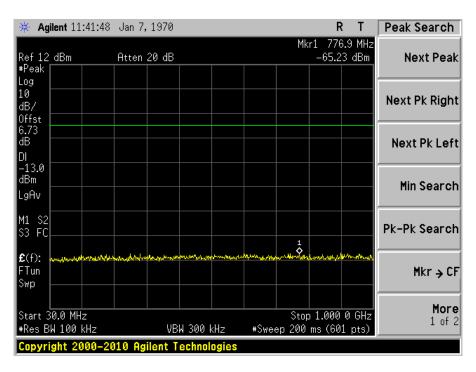
Note ¹: *Two year calibration cycle.*

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

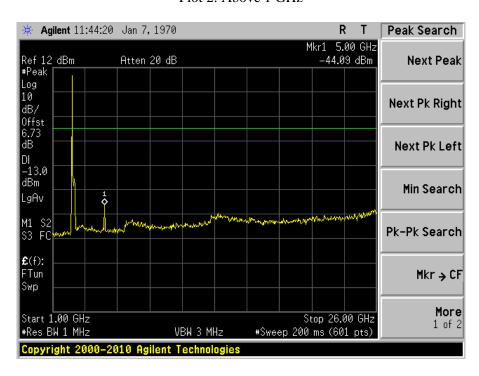
8.4 Test Environmental Conditions

Temperature:	19-21°C
Relative Humidity:	40-44 %
ATM Pressure:	101-102 kPa

The testing was performed by Lionel Lara from 2011-12-02 to 2011-12-05 at RF Site.

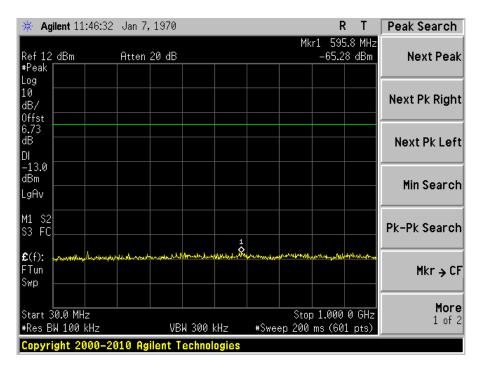

8.5 Test Results

Please refer to the following plots.

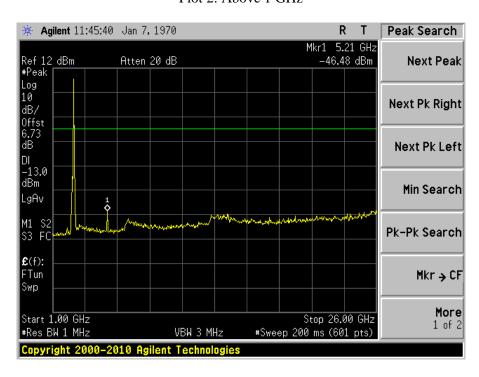

DL: 2496-2690 MHz

Modulation: CW Signal, Frequency: 2499 MHz

Plot 1: 30 MHz to 1 GHz

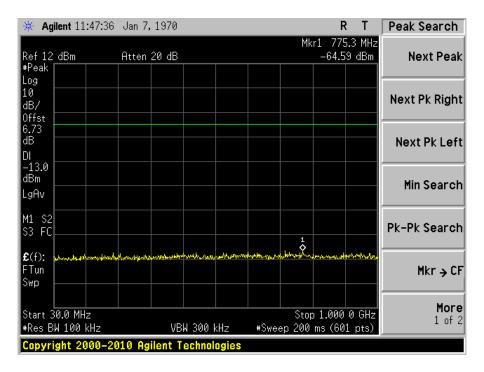


Plot 2: Above 1 GHz

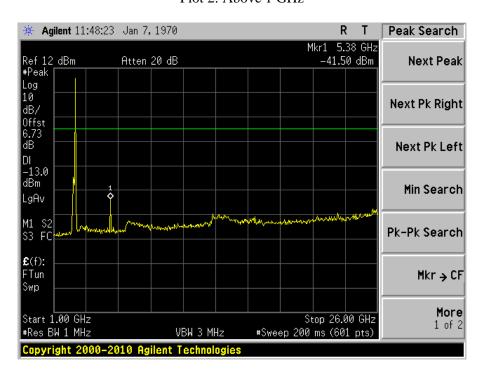


Modulation: CW Signal, Frequency: 2608 MHz

Plot 1: 30 MHz to 1 GHz

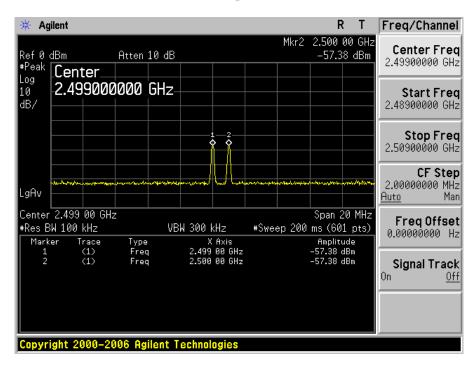


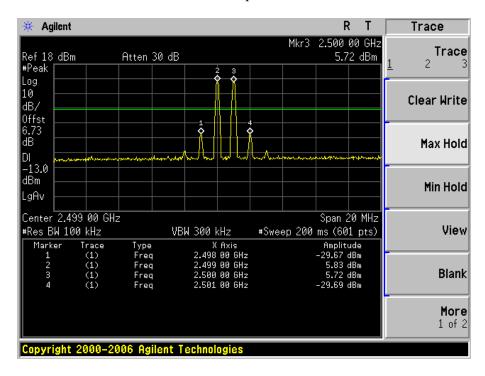
Plot 2: Above 1 GHz



Modulation: CW Signal, Frequency: 2687 MHz

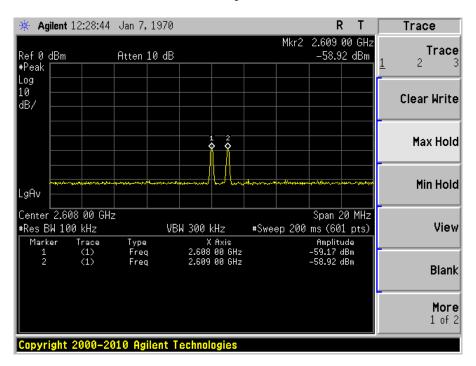
Plot 1: 30 MHz to 1 GHz

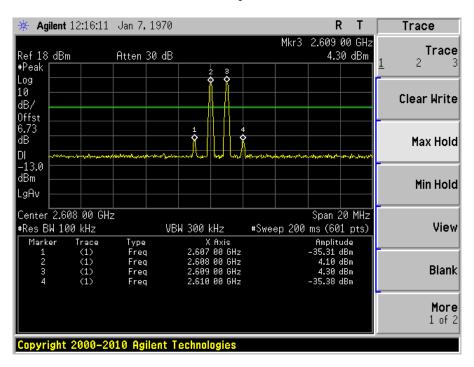

Plot 2: Above 1 GHz



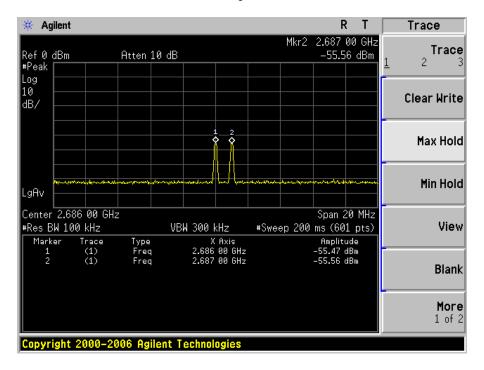
Inter-Modulation:

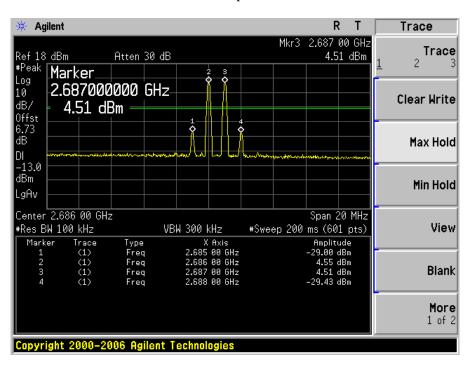
Low Channel


Input



Middle Channel


Input



High Channel

Input

9 FCC §27.53 – BAND EDGE

9.1 Applicable Standard

According to FCC §27.53, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

9.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

9.3 Test Equipment List and Details

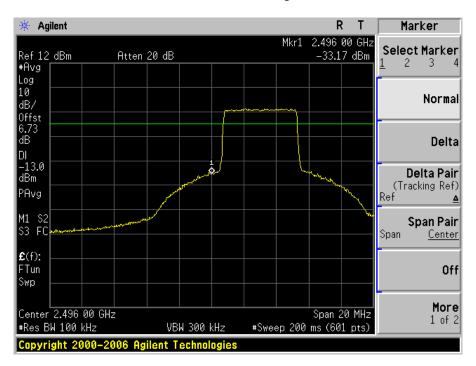
Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	ESG-D Series Signal Generator	E4438C	MY45091309	2011-04-28
Agilent	Spectrum Analyzer	E4440A	US45303156	2010-08-09 ¹

Note ¹: *Two year calibration cycle.*

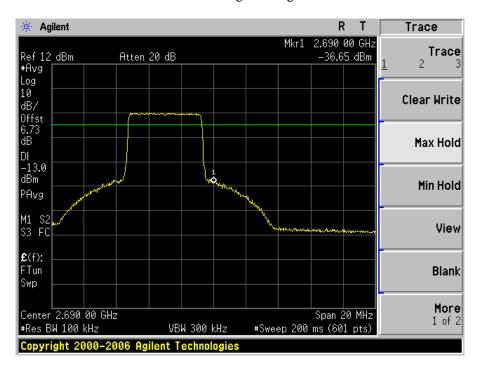
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	19-21°C
Relative Humidity:	40-44 %
ATM Pressure:	101-102 kPa

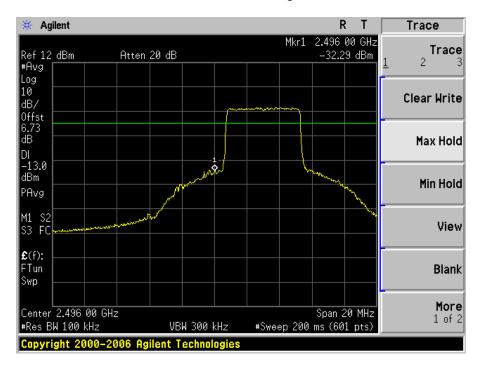

The testing was performed by Lionel Lara from 2011-12-02 to 2011-12-05 at RF Site.

9.5 Test Results

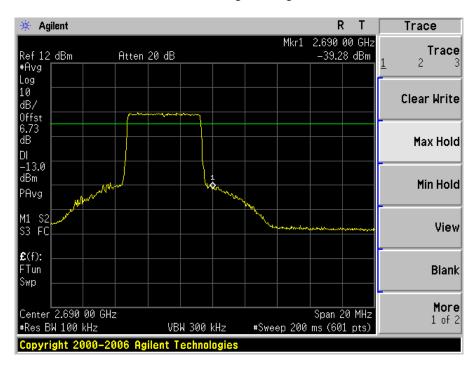

Please refer to the following plots.

QPSK (5 MHz):

Plot 1: Lowest Edge

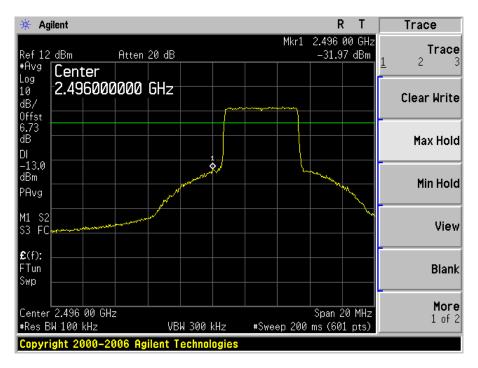


Plot 2: Highest Edge

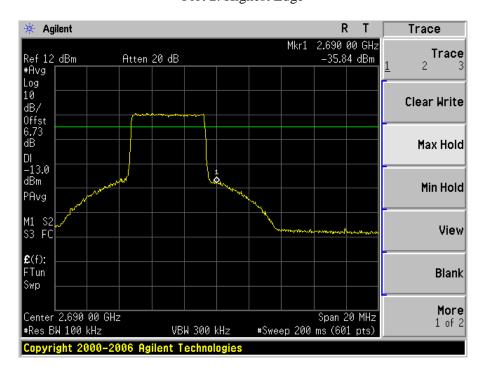


16QAM (5 MHz):

Plot 1: Lowest Edge

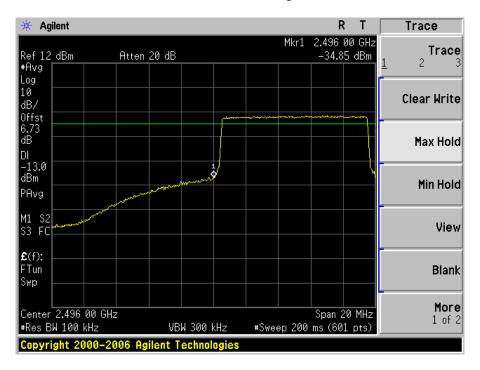


Plot 2: Highest Edge



64QAM (5 MHz):

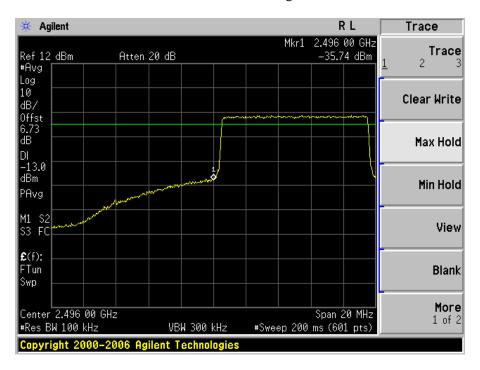
Plot 1: Lowest Edge



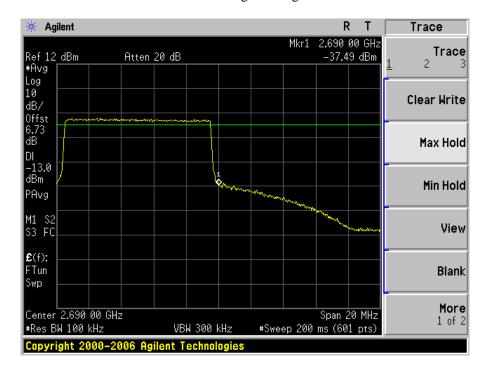
Plot 2: Highest Edge

QPSK (10 MHz):

Plot 1: Lowest Edge

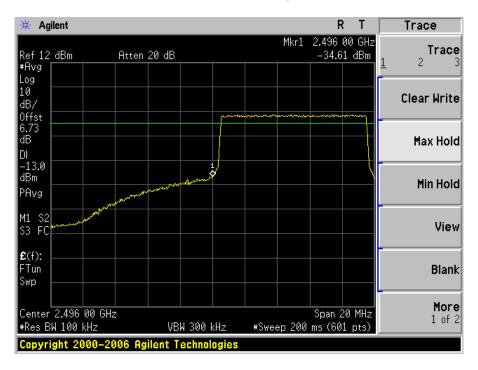


Plot 2: Highest Edge



16QAM (10 MHz):

Plot 1: Lowest Edge



Plot 2: Highest Edge



64QAM (10 MHz):

Plot 1: Lowest Edge

Plot 2: Highest Edge

10 FCC §2.1055 & §27.54 – FREQUENCY STABILITY

10.1 Applicable Standard

According to FCC §27.54, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

10.2 Test Results

Not applicable, EUT is an amplifier; the signal source is from the signal generator, so no frequency stability applied.

Report Number: R1111152-27 Page 38 of 51 FCC Part 27 Test Report

11 FCC §1.1307(b), §27.52 & §2.1091 - RF EXPOSURE INFORMATION

11.1 Applicable Standard

According to FCC §1.1310 and §2.1091 (Mobile Devices) RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minute)
	Limits for Gen	eral Population/Unco	ontrolled Exposure	
0.3-1.34	614	1.63	¹ (100)	30
1.34-30	824/f	2.19/f	$^{1}(180/f^{2})$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

Note: f = frequency in MHz

11.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal (dBm): 8.57

Maximum peak output power at antenna input terminal (mW): 7.19

> Prediction distance (cm): 60

Prediction frequency (MHz): 2501

Antenna Gain, typical (dBi):

Maximum Antenna Gain (numeric): 25.11

Power density at predication frequency and distance (mW/cm²):

0.004

MPE limit for uncontrolled exposure at predication frequency (mW/cm²):

(Note: The MPE was calculated assuming the cable loss between EUT and the antenna was 0 dB.)

11.3 Test Result

For downlink, the indoor antenna with 14 dBi gain should have at least 60 cm prediction distance to meet the MPE limit. The distance needs to be addressed in the user manual.

¹ = Plane-wave equivalent power density

12 FCC §15.109 - RADIATED EMISSIONS

12.1 Applicable Standard

As per FCC §15.109: Radiated Emission Limits

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field Strength (μV/m)
30-88	100
88-216	150
216-960	200
Above 960	500

(g) As an alternative to the radiated emission limits shown in paragraphs (a) and (b) of this section, digital devices may be shown to comply with the standards contained in Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment—Radio Disturbance Characteristics—Limits and Methods of Measurement."

Note: The CISPR 22 §6 Standard, Class B limits are applied to the test data hereinafter.

12.2 Test Setup

The radiated emissions tests were performed in the 10-meter test chamber, using the setup in accordance with ANSI C63.4-2003 measurement procedures. The specifications used were in accordance with CISPR 22 §6 Standard, Class B limits for frequencies between 30 MHz and 1 GHz, and FCC Part 15B, IC ICES-003 Class A limits for frequencies above 1 GHz.

The spacing between the peripherals was 10 cm.

The external I/O cables were draped along the test table and bundled as required.

12.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions readings to ensure the EUT is compliant with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings were performed only when an emission was found to be marginal (within -4 dB of specification limits).

Report Number: R1111152-27 Page 40 of 51 FCC Part 27 Test Report

12.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Class B Limit

12.5 Test Equipment List and Details

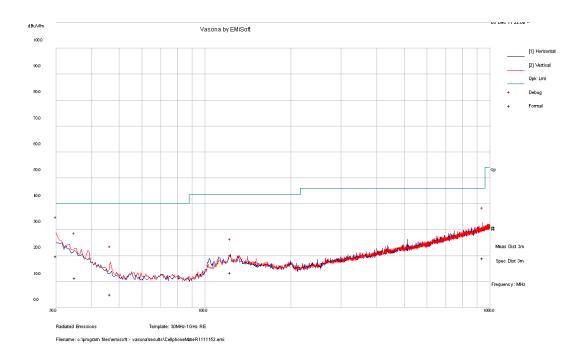
Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2011-06-29
Hewlett Packard	Pre amplifier	8447D	2944A06639	2011-06-09
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2011-03-21

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to NVLAP requirements, traceable to the NIST.

12.6 Test Environmental Conditions

Temperature:	19-21°C	
Relative Humidity:	40-44 %	
ATM Pressure:	101-102 kPa	

Testing was performed by Lionel Lara on 2011-12-02 to 2011-12-05 in chamber 3.


12.7 Summary of Test Results

According to the recorded data, the EUT complied with FCC §15.109 Standard, Class B limits, and had the worst margin reading – when calculated using CISPR 22 §6 Standard, Class B limits – of:

Mode: 30 MHz to 1 GHz							
Margin Frequency (dB) (MHz)		Polarization (Horizontal/Vertical)	Range (MHz)				
-20.24	30.01156	Vertical	30 MHz - 1 GHz				

12.8 Radiated Spurious Emissions Test Plots and Data

30-1000 MHz measured at 3 meters distance

Quasi-Peak Measurements:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Test Ar Height (cm)	Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
30.01156	19.76	191	V	270	40	-20.24
940.8110	19.12	142	V	265	46	-26.88
34.9385	11.45	220	V	99	40	-28.55
122.6878	13.59	252	Н	113	43.5	-29.91
46.5250	5.09	157	V	205	40	-34.91

Report Number: R1111152-27 Page 42 of 51 FCC Part 27 Test Report