§2.1051, & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Requirements: CFR 47, § 2.1051 & §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

Test Procedure

The EUT output was connected to the input of the Spectrum Analyzer through a calibrated attenuator.

The resolution bandwidth of the Spectrum Analyzer was set to 30kHz, and th3e resulting data was plotted to show any out-of-band emissions up to the 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2003-08-01
HP	Plotter	HP7470A	2541A49659	Not Required
Weinschel	Attenuator	MS015	58633	N/A

* **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	28° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2004-08-25.

Test Results

Please refer to the hereinafter plots.

FCC ID: RSNCM2000

						SM20	00	CELL	850
								\$	
MKA 823	.8 M	Hz							
16.	50 d	Bm					-		
hulledown	unnunn	manser	manuture	mannahan	Monghan	who have have	manu	how have been segured	mohur
					10		104		

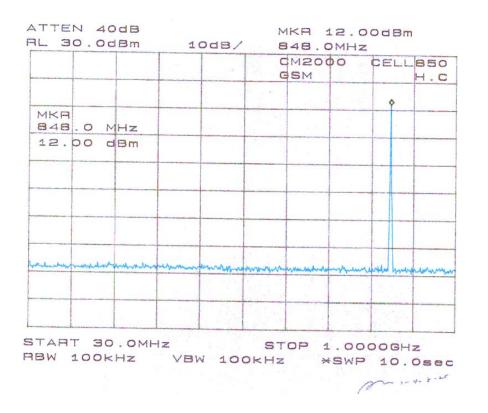
START 30.0MHZ STOP 1.0000GHZ RBW 100KHZ VBW 100KHZ *SWP 10.0sec

	GSM	000	1	.85 L.
z				
Bm				
				+
				+
met man and man and and a second	have my	interment	manum	manna
OOGHz	STOP	10.0	OOGH	iz
00GHz z VBW 100	STOP <hz< td=""><td>10.0 *SWP</td><td>00GH</td><td>iz o</td></hz<>	10.0 *SWP	00GH	iz o

FCC ID: RSNCM2000

			C	M20	00	CELL	850
			G	SM			M . C
	-					\$	
MKA 836.7 MHz			-	-			
16.00 dBm							
man was a second and the second and the second seco	muhhhh	how have me	monterman	Muhraman	www.how	my	manul
							-
						1	-

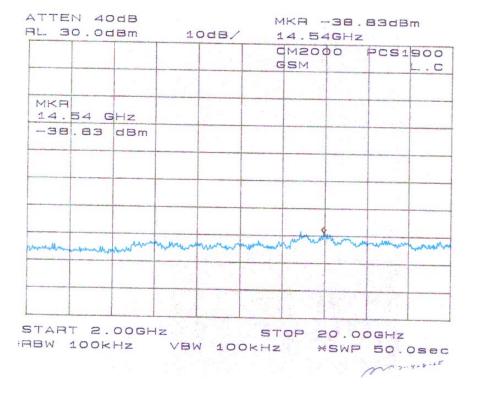
START 30.0MHZ STOP 1.0000GHZ RBW 100kHz VBW 100kHz *SWP 10.0sec


ATTEN 400B MKR -42.50dBm RL 30.0dBm 10dB/ 7.195GHz CM2000 CELLB50 GSM M.C MKR 7.195 GHz -42.50 dBm 8 M. Mar mountabled white mere START 1.000GHZ STOP 10.000GHZ RBW 100kHz VBW 100kHz *SWP 50.0sec pm 2... 4. 8-21

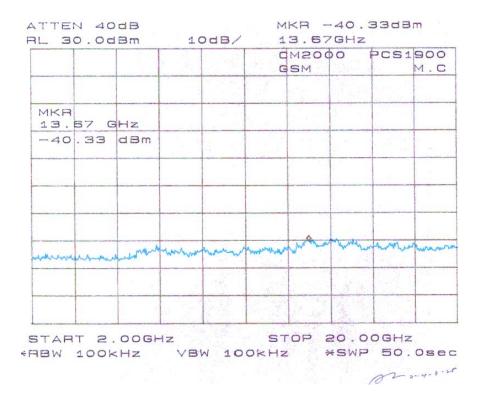
FCC ID: RSNCM2000

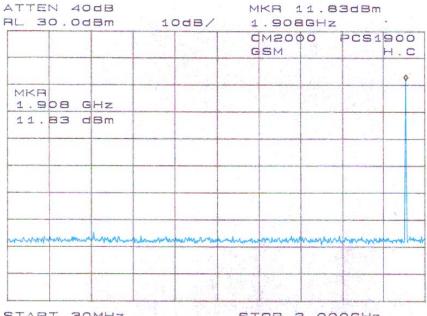
		T	1	T	1 6	Mago	0	FELL	DEC
						SM		and the second second	H.C
						-			
MKR 7.1	80 G	Hz							
-44	. 00	dBm	_						
Menhanan ma	mulmu	perfordences	mmm	manue	maham	American	nehran	unhand	window

START 1.000GHZ STOP 10.000GHZ RBW 100kHz VBW 100kHz *SWP 50.0sec

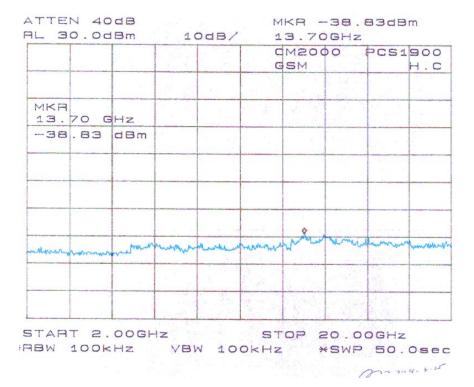

pr 2.04. 2.35

FCC ID: RSNCM2000


		-				M200	b0	PCS1	1
					G	SM			L.C
			- Auguste						\$
MKR 1.8		GHz							
13.	50	dBm				-			
when	mound	unan	montan	mmul	multim	moluna	mann	manter	and from


START 30MHZ STOP 2.000GHZ RBW 100KHZ VBW 100KHZ *SWP 10.0sec

	1 100 14			MSOC	90	1.	1.
		1 and a start	C	SM			M.C
	1.12	1.30	13.31	1.200			8
MKR 1.879 GHz							
14.83 dBm							
un marken and	manama	unpursus	mymon	malina	manthale	Marchant	and have
	1			1.11	1	1	-


START 30MHZ STOP 2.000GHZ RBW 100KHZ VBW 100KHZ *SWP 10.0sec

START 30MHZ STOP 2.000GHZ (RBW 100KHZ VBW 100KHZ *SWP 10.0sec

§2.1055 (a), §2.1055 (d), & §24.235 - FREQUENCY STABILITY

This EUT is an amplifier, not a transmitter. There is no oscillator circuit in the EUT, therefore there is no frequency stability measurement required.

§24.238 – BAND EDGE

Applicable Standard

According to \$24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Test Procedure

The EUT output was connected to the input of the Spectrum Analyzer through a calibrated attenuator.

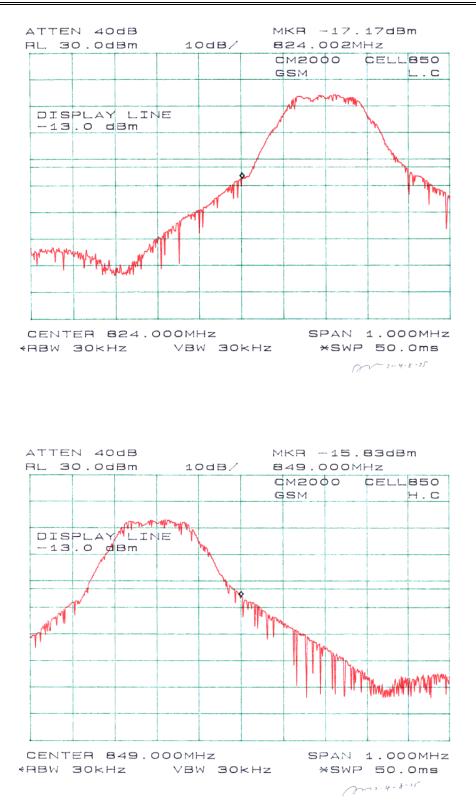
The resolution bandwidth of the Spectrum Analyzer was set to 30kHz, and the center frequency was set to the band edge frequency.

Test Equipment List and Details

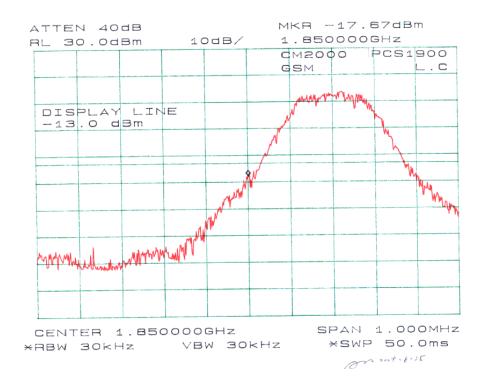
Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2003-08-01
HP	Plotter	HP7470A	2541A49659	Not Required
Weinschel	Attenuator	MS015	58633	N/A

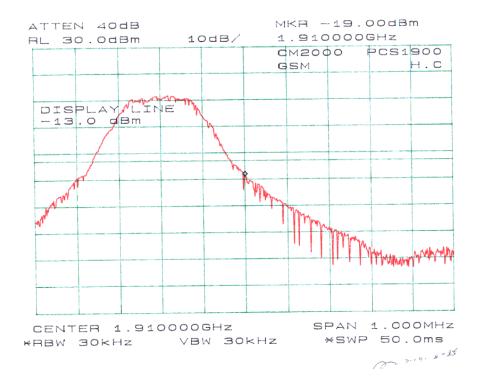
* **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Environmental Conditions

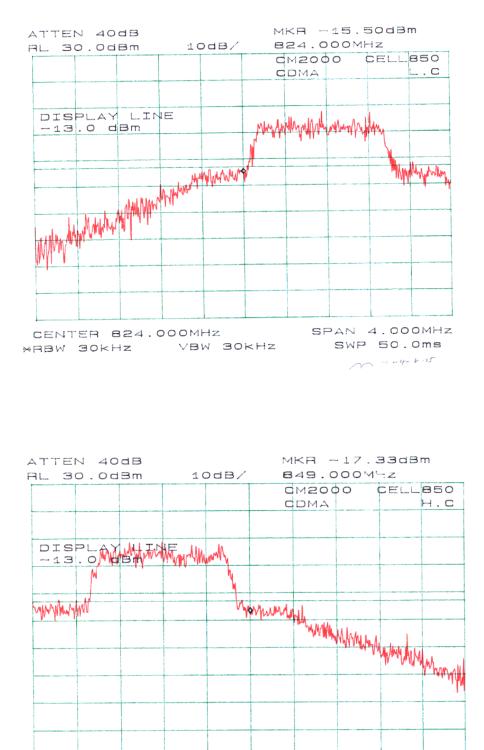

Temperature:	28° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2004-08-25.

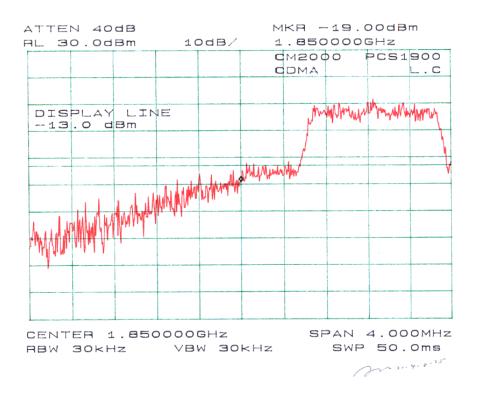

Test Results

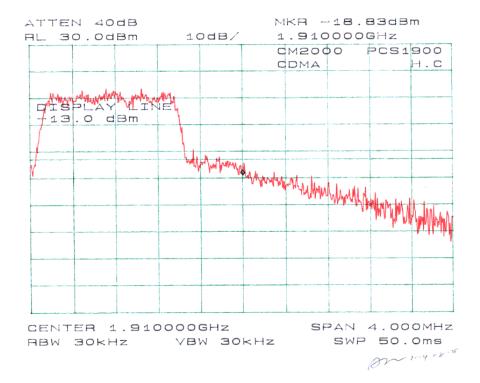

Please refer to the following plots.

FCC ID: RSNCM2000



FCC ID: RSNCM2000




FCC ID: RSNCM2000

CENTER 849.000MHz SPAN 4.000MHz RBW 30KHz VBW 30KHz SWP 50.0ms

FCC ID: RSNCM2000

