



## FCC CFR47 CERTIFICATION

## PART 24E

## **TEST REPORT**

## FOR

## **CELLULAR PHONE AMPLIFIER**

## **MODEL: CM 1000**

## FCC ID:RSNCM1000

## REPORT NUMBER: 03U2456-1

## **ISSUE DATE: JANUARY 14, 2004**

Prepared for CELLPHONE-MATE, INC. 36543 SAN PEDRO DRIVE # 277 FREMONT, CA 94536 U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, ROUTE 2 MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888



## TABLE OF CONTENT

| 1.   | TEST RESULT CERTIFICATION                              | 3  |
|------|--------------------------------------------------------|----|
| 2.   | EUT DESCRIPTION                                        | 4  |
| 3.   | TEST METHODOLOGY                                       | 4  |
| 4.   | TEST FACILITY                                          | 4  |
| 5.   | ACCREDITATION AND LISTING                              | 4  |
| 6.   | MEASURING INSTRUMENT CALIBRATION                       | 4  |
| 7.   | INSTRUMENTATION LIST AND EUT SETUP INFORMATION.        | 5  |
| 8.   | MODIFICATIONS LIST                                     | 7  |
| 9.   | TEST SETUP, PROCEDURE AND RESULT                       | 8  |
| 9.1. | SECTION 2.1046: RF POWER OUTPUT (CONDUCTED)            | 8  |
| 9.4. | SECTION 2.1046: RF POWER OUTPUT (RADIATED)             |    |
| 9.2. | SECTION 2.1047: MODULATION CHARACTERISTICS             |    |
| 9.3. | SECTION 2.1049: OCCUPIED BANDWIDTH                     |    |
| 9.4. | SECTION 2.1051: SPURIOUS EMISSIONS AT ANTENNA TERMINAL |    |
| 9.5. | SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION   |    |
| 9.6. | SECTION 2.1055: FREQUENCY STABILITY                    |    |
| 9.7. | POWERLINE CONDUCTED EMISSION                           |    |
| 10.  | APENDIX                                                | 61 |
| 10.1 | EXTERNAL & INTERNAL PHOTOS                             |    |
| 10.2 | . SCHEMATICS                                           | 61 |
| 10.3 | . BLOCK DIAGRAM                                        | 61 |
| 10.4 | USER MANUAL                                            | 61 |

Page 2 of 61

## 1. TEST RESULT CERTIFICATION

| COMPANY NAME:   | CELLPHONE-MATE, INC.<br>36543 SAN PEDRO DRIVE # 277<br>FREMONT, CA 94536<br>U.S.A. |
|-----------------|------------------------------------------------------------------------------------|
| EUT DESCRIPTION | CELLULAR PHONE AMPLIFIER                                                           |
| MODEL NAME:     | CM 1000                                                                            |
| DATE TESTED:    | JANUARY 14, 2004                                                                   |

| TYPE OF EQUIPMENT     | INTENTIONAL RADIATOR, CELL PHONE AMPLIFIER |
|-----------------------|--------------------------------------------|
| MEASUREMENT PROCEDURE | ANSI 63.4 / 2001, TIA/EIA 603              |
| PROCEDURE             | CERTIFICATION                              |
| FCC RULE              | CFR 47 PART 24 SUBPART E                   |

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 24 subpart E Cellular Radiotelephone Service. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

**Note** : This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Tested By:

-\_\_\_\_L\_\_\_\_

FRANK IBRAHIM EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES Released For CCS By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Page 3 of 61

## 2. EUT DESCRIPTION

1900 MHz CDMA/GSM Cell Phone Amplifier:

- an EIRP of 24.8 dBm for CDMA mode, with 5 dBi gain antenna.
- an EIRP of 29.3 dBm for CDMA mode, with 3 dBi gain antenna.
- an EIRP of 23.7 dBm for GSM mode, with 5 dBi gain antenna.
- an EIRP of 26.3 dBm for GSM mode, with 3 dBi gain antenna.

## 3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

## 4. TEST FACILITY

The sites and measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

## 5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

## 6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Page 4 of 61

## 7. INSTRUMENTATION LIST AND EUT SETUP INFORMATION

| TEST EQUIPMENT LIST          |              |                  |            |          |  |  |  |  |
|------------------------------|--------------|------------------|------------|----------|--|--|--|--|
| Name of Equipment            | Manufacturer | Model No.        | Serial No. | Due Date |  |  |  |  |
| Line Filter                  | Lindgren     | LMF-3489         | 497        | CNR      |  |  |  |  |
| LISN, 10 kHz ~ 30 MHz        | Solar        | 8012-50-R-24-BNC | 8379443    | 10/13/04 |  |  |  |  |
| LISN, 10 kHz ~ 30 MHz        | FCC          | LISN-50/250-25-2 | 2023       | 10/13/04 |  |  |  |  |
| EMI Test Receiver            | R & S        | ESHS 20          | 827129/006 | 7/17/04  |  |  |  |  |
| Preamplifier, 1 ~ 26.5 GHz   | HP           | 8449B            | 3008A00369 | 4/25/04  |  |  |  |  |
| Spectrum Nalyzer             | HP           | 8593EM           | 3710A00205 | 10/1/04  |  |  |  |  |
| Signal Generator, 2 ~ 40 GHz | R & S        | SMP04            | DE 34210   | 5/25/05  |  |  |  |  |
| Spectrum Nalyzer             | Agilent      | E4440A           | US41421507 | 5/8/04   |  |  |  |  |
| Horn Antenna                 | ETS.Lindgren | 3117             | 00029310   | 12/26/04 |  |  |  |  |
| Horn Antenna                 | ETS.Lindgren | 3117             | 00029301   | 12/26/04 |  |  |  |  |

#### **TEST PERIPHRALS**

| TEST PERIPHERALS                                           |        |                 |              |            |  |  |  |  |  |
|------------------------------------------------------------|--------|-----------------|--------------|------------|--|--|--|--|--|
| Device Type Manufacturer Model Number Serial Number FCC ID |        |                 |              |            |  |  |  |  |  |
| Signal Generator                                           | HP     | E4432B          | US39341935   | N/A        |  |  |  |  |  |
| Cell Phone                                                 | Nokia  | 6185            | 253/13967541 | GMLNSD-3AX |  |  |  |  |  |
| <b>Cell Phone Charger</b>                                  | Nokia  | ACP-7U          | H6316        | N/A        |  |  |  |  |  |
| AC/DC Adapter                                              | HiTRON | HES10-12010-0-1 | 0115         | N/A        |  |  |  |  |  |

#### **TEST I/O CABLES**

| TEST I / O CABLES |                   |          |           |            |        |         |         |        |  |  |
|-------------------|-------------------|----------|-----------|------------|--------|---------|---------|--------|--|--|
| Cable             | I/O               | # of I/O | Connector | Type of    | Cable  | Data    |         |        |  |  |
| No                | Port              | Port     | Туре      | Cable      | Length | Traffic | Bundled | Remark |  |  |
| 1                 | AC/DC             | 1        | US115     | Unshielded | 1.5 m  | No      | No      | N/A    |  |  |
| 2                 | Phone / Sig. Gen. | 1        | SMA       | Shielded   | 10 cm  | Yes     | No      | N/A    |  |  |
| 3                 | Antenna           | 1        | SMA       | Shielded   | 1 m    | Yes     | No      | N/A    |  |  |
| 4                 | AC/DC             | 1        | US115     | Unshielded | 1.5m   | No      | No      | N/A    |  |  |

Page 5 of 61

#### TEST SETUP



Page 6 of 61

## 8. MODIFICATIONS LIST

The following modifications were performed for the EUT to pass emissions requirements:

- 1. Copper tape was placed on the input and output ports of the EUT to close the gap.
- 2. Copper tape was also connecting the SMA connector to chassis providing a grounding path.

Page 7 of 61

## 9. TEST SETUP, PROCEDURE AND RESULT

## 9.1. SECTION 2.1046: RF POWER OUTPUT (CONDUCTED)

#### **INSTRUMENTS LIST**

| EQUIPMENT       | MANUFACTURE | MODEL NO. | SERIAL NO. | CAL. DUE DATE |
|-----------------|-------------|-----------|------------|---------------|
| PSA Analyzer    | Agilent     | E446A     | US42070220 | 1/13/04       |
| 10dB Attenuator | Agilent     | 8493C     | 59028      | N/A           |
| DC Power Supply | Kenwood     | PA36-3A   | 7060074    | N/A           |

#### TEST PROCEDURE:

The output port of the EUT was connected to a spectrum analyzer, the RBW and VBW were set to 3MHz, the output peak power was recorded, the Input cable going to the EUT was connected to a spectrum analyzer, the output power was measured.

#### TEST SETUP





DATE: JANUARY 14, 2004



Page 9 of 61

#### **RESULTS:**

#### Output Port, CDMA, Low Channel:



Page 10 of 61

#### Output Port, CDMA, Mid Channel:

| 🔆 Agilent 13:51:27 Jan 12, 2004                   | Peak Search                                              |  |  |  |  |  |  |  |
|---------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|
| Ref 35 dBm Atten 40 dB                            | Mkr1 1.880 06 GHz<br>25.93 dBm Next Peak                 |  |  |  |  |  |  |  |
| *Peak<br>Log<br>10<br>dB/<br>0ffst                | Next Pk Right                                            |  |  |  |  |  |  |  |
| 10.3<br>dB                                        | Next Pk Left                                             |  |  |  |  |  |  |  |
| LgAv                                              | Min Search                                               |  |  |  |  |  |  |  |
| V1 S2<br>S3 FC<br>AA                              | Pk-Pk Search                                             |  |  |  |  |  |  |  |
| £(f):<br>FTun<br>Swp <b>1.880060000 GHz</b>       | Mkr → CF                                                 |  |  |  |  |  |  |  |
| Center 1.880 00 GHz<br>#Res BW 3 MHz Sw           | Span 10 MHz         More           1 of 2         1 of 2 |  |  |  |  |  |  |  |
| File Operation Status, A:\SCREN298.GIF file saved |                                                          |  |  |  |  |  |  |  |

Page 11 of 61

#### Output Port, CDMA, High Channel:



Page 12 of 61

#### Output Port, GSM, Low Channel:

| 🔆 Agiler                                                                              | nt 13:55:1                 | 9 Jan 12     | 2, 2004 |                                                   |  |  |      |                |                 | Peak Search   |  |  |  |
|---------------------------------------------------------------------------------------|----------------------------|--------------|---------|---------------------------------------------------|--|--|------|----------------|-----------------|---------------|--|--|--|
| Ref 30.3                                                                              | dBm                        | Atten        | 30 dB   |                                                   |  |  | Mkr1 | 1.850<br>21.5  | 10 GHz<br>7 dBm | Next Peak     |  |  |  |
| #Peak<br>Log<br>10<br>dB/                                                             |                            |              |         | 1<br><b>(</b>                                     |  |  |      |                |                 | Next Pk Right |  |  |  |
| 0ffst<br>10.3<br>dB                                                                   |                            |              |         |                                                   |  |  |      |                |                 | Next Pk Left  |  |  |  |
| LgAv                                                                                  |                            |              |         |                                                   |  |  |      |                |                 | Min Search    |  |  |  |
| V1 S2<br>S3 FC<br>AA                                                                  |                            |              |         |                                                   |  |  |      |                |                 | Pk-Pk Search  |  |  |  |
| £(†): M<br>FTun<br>Swp -1                                                             | larker<br>85010<br>21.57 ( | 10000<br>dBm | GHz-    |                                                   |  |  |      |                |                 | Mkr → CF      |  |  |  |
| Center 1.850 20 GHz Span 10 MHz<br>#Res BW 3 MHz #VBW 3 MHz Sweep 1.066 ms (1000 pts) |                            |              |         |                                                   |  |  |      | More<br>1 of 2 |                 |               |  |  |  |
| File Oper                                                                             | ration Sta                 | atus, A:'    | SCREN   | File Operation Status, A:\SCREN300.GIF file saved |  |  |      |                |                 |               |  |  |  |

Page 13 of 61

#### Output Port, GSM, Mid Channel:

| 🔆 Ag                                                                                  | <b>ilent</b> 13                                   | :55:52             | Jan 12     | 2,2004 |  |        |  |                |               |                  | Peak Search   |
|---------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|------------|--------|--|--------|--|----------------|---------------|------------------|---------------|
| Ref 30                                                                                | .3 dBm                                            |                    | Atten      | 30 dB  |  |        |  | Mkr1           | 1.880<br>22.0 | 02 GHz<br>17 dBm | Next Peak     |
| #Peak<br>Log<br>10<br>dB/                                                             |                                                   |                    |            |        |  | 1<br>> |  |                |               |                  | Next Pk Right |
| uffst<br>10.3<br>dB                                                                   |                                                   |                    |            |        |  |        |  |                |               |                  | Next Pk Left  |
| LgAv                                                                                  |                                                   |                    |            |        |  |        |  |                |               |                  | Min Search    |
| V1 S2<br>S3 FC<br>AA                                                                  |                                                   |                    |            |        |  |        |  |                |               |                  | Pk-Pk Search  |
| £(f):<br>FTun<br>Swp                                                                  | Mark<br>-1.88<br>-22 I                            | er<br>0020<br>07 d | 1000<br>Rm | GHz-   |  |        |  |                |               |                  | Mkr → CF      |
| Center 1.880 00 GHz Span 10 MHz<br>#Res BW 3 MHz #VBW 3 MHz Sweep 1.066 ms (1000 pts) |                                                   |                    |            |        |  |        |  | More<br>1 of 2 |               |                  |               |
| File 0                                                                                | File Operation Status, A:\SCREN301.GIF file saved |                    |            |        |  |        |  |                |               |                  |               |

Page 14 of 61

#### Output Port, GSM, High Channel:



Page 15 of 61

## 9.4. SECTION 2.1046: RF POWER OUTPUT (RADIATED)

#### MEASUREMENT PROCEDURE

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be placed 0.80 meter above the ground plane, the X, Y, and Z positions shall be tested and the worst case reported. The transmitter shall be switched on with typical modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a tuned dipole or horn antenna (substitution antenna).

10). The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.

11). The substitution antenna shall be connected to a calibrated signal generator.

12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

Page 16 of 61

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

Page 17 of 61



Radiated Emission Measurement 30 MHz to 1000 MHz



Radiated Emission Above 1000 MHz





Radiated Emission - Substitution Method Set-up for Freq below 1GHz



Radiated Emission - Substitution Method Set-up for Freq above 1GHz



#### **MEASUREMENT RESULT:**

1900MHz CDMA/GSM Output Power Measurement:

| With 5 dBi Gain Antenna: |           | EIRP  |
|--------------------------|-----------|-------|
|                          | FREQUENCY | PEAK  |
| 1900 MHz (GSM)           | (MHz)     | (dBm) |
| LOW                      | 1850.2    | 22.0  |
| MID                      | 1880.0    | 23.7  |
| HI                       | 1909.8    | 21.5  |

|                 |           | EIRP  |
|-----------------|-----------|-------|
|                 | FREQUENCY | PEAK  |
| 1900 MHz (GDMA) | (MHz)     | (dBm) |
| LOW             | 1851.0    | 24.0  |
| MID             | 1880.0    | 24.8  |
| HI              | 1909.0    | 24.1  |

| With 3 dBi Gain Antenna: | EIRP      |       |
|--------------------------|-----------|-------|
|                          | FREQUENCY | PEAK  |
| 1900 MHz (GSM)           | (MHz)     | (dBm) |
| LOW                      | 1850.2    | 26.1  |
| MID                      | 1880.0    | 26.3  |
| Н                        | 1909.8    | 25.7  |

|                 |           | EIRP  |
|-----------------|-----------|-------|
|                 | FREQUENCY | PEAK  |
| 1900 MHz (GDMA) | (MHz)     | (dBm) |
| LOW             | 1851.0    | 29.3  |
| MID             | 1880.0    | 29.3  |
| HI              | 1909.0    | 28.4  |

Page 20 of 61

#### **Radiated Emissions**

#### Front, with 5 dBi Gain antenna:



#### Back, with 5 dBi Gain antenna:





#### Front, with 3 dBi Gain antenna:



#### Back, with 3 dBi Gain antenna:





#### Output Power (EIRP), 1900 MHz CDMA/GSM - Low / Mid/ High Channel Fundamental

| 1/8/04      | High Freq         | uency Substit         | ution Measu         | irement        |                |               |        |               |                |          |  |
|-------------|-------------------|-----------------------|---------------------|----------------|----------------|---------------|--------|---------------|----------------|----------|--|
| Compli      | iance Certific    | ation Service         | s, Morgan H         | lill Open Fi   | eld Site       |               |        |               |                |          |  |
|             |                   |                       |                     |                |                |               |        |               |                |          |  |
| Test Eng    | gr:               | Frank Ibrahim         |                     |                |                |               |        |               |                |          |  |
| Project #   | #:                | 03U2456-1             |                     |                |                |               |        |               |                |          |  |
| Compan      | ıy:               | Cellphone Mate        |                     |                |                |               |        |               |                |          |  |
| EUT De      | scrip.:           | Cellphone Amplifi     | Cellphone Amplifier |                |                |               |        |               |                |          |  |
| EUT M/      | N:                | CM 1000               | 20 1000             |                |                |               |        |               |                |          |  |
| Test Tar    | rget:             | FCC PART 24           |                     |                |                |               |        |               |                |          |  |
| Mode O      | ner               | TX ON maximun         | nower               |                |                |               |        |               |                |          |  |
| mout O      | per.              | TA OIV, maximum       | i power             |                |                |               |        |               |                |          |  |
| Test Fai    | uinmont.          |                       |                     |                |                |               |        |               |                |          |  |
| Test Equ    | upment.           |                       |                     |                |                |               |        |               |                |          |  |
|             |                   | 1                     |                     |                |                |               |        |               |                |          |  |
| ЕМСО        | Horn 1-18GHz      | Pre-ampli             | fer 1-26GHz         | Spe            | ctrum Analyzer | •             |        | Horn >1       | 8GHz           | Limit    |  |
|             |                   | J                     |                     | -              |                |               |        |               |                |          |  |
|             | <del>.</del>      |                       | -                   |                |                | -             |        |               |                |          |  |
| 1           |                   |                       |                     | I              |                |               |        |               |                | ·        |  |
| 🗖 Hi Fre    | quency Cables     |                       |                     |                | Pool Moosu     | romonte .     |        |               |                |          |  |
|             | _                 |                       | _                   |                | Fundamental    | ements.       |        | Dandadaa      |                | Cumions  |  |
| <b>⊻</b> (2 | 2 ft) □ (2 ~      | ~ 3 ft) $\Box$ (4 ~ 6 | 6 ft) [] (12 ft)    |                | PRW>000/ ~~ '  | AdB Emission  | e BW   | PBW=>10/ E    | missions BW DW | =1MHz    |  |
|             |                   |                       |                     |                | VDW-DDW        | 200B Emission | SDW    | VDW-> 2*DE    |                |          |  |
|             |                   |                       |                     |                | V D W-KD W     |               |        | V D W => 5 KI | 5 W V          | DW-INIIZ |  |
| £           | SA manding        | SC mading             | CI                  | Cain           | Cain           | FIDD          | I imit | Mangin        | Note           |          |  |
|             | SA reauling       | , SG reading          |                     | Gain           | Gain           |               |        | wiai gili     | INOLE          | 3        |  |
| GHZ         | (dBm)             | (dBm)                 | (ab)                | ( <b>dB</b> 1) | (aBa)          | (aBm)         | (abm)  | (ab)          |                |          |  |
| Low Chai    | nnel (1851 MHz),  | CDMA, 5 dBi An        | tenna               |                |                |               |        |               |                |          |  |
| 1.8510      | 86.5              | 19.7                  | 0.2                 | 4.4            | 2.3            | 23.9          | 33.0   | -9.1          | v              |          |  |
| 1.8510      | 86.4              | 19.8                  | 0.2                 | 4.4            | 2.3            | 24.0          | 33.0   | -9.0          | Н              |          |  |
| Mid Char    | nnel (1880 MHz),  | CDMA, 5 dBi Ant       | tenna               |                |                |               |        |               |                |          |  |
| 1.8800      | 87.5              | 20.6                  | 0.2                 | 4.4            | 2.3            | 24.8          | 33.0   | -8.2          | V              |          |  |
| 1.8800      | 87.2              | 19.6                  | 0.2                 | 4.4            | 2.3            | 23.8          | 33.0   | -9.2          | Н              |          |  |
| High Cha    | nnel (1909 MHz).  | , CDMA, 5 dBi An      | itenna              |                |                |               |        |               |                |          |  |
| 1.9090      | 86.2              | 19.9                  | 0.2                 | 4.4            | 2.3            | 24.1          | 33.0   | -8.9          | V              |          |  |
| 1.9090      | 83.9              | 17.2                  | 0.2                 | 4.4            | 2.3            | 21.4          | 33.0   | -11.6         | Н              |          |  |
| Low Chai    | nnel (1851 MHz),  | CDMA, 3 dBi An        | tenna               |                |                |               |        |               |                |          |  |
| 1.8510      | 91.3              | 25.1                  | 0.2                 | 4.4            | 2.3            | 29.3          | 33.0   | -3.7          | V              |          |  |
| 1.8510      | 81.6              | 14.7                  | 0.2                 | 4.4            | 2.3            | 18.9          | 33.0   | -14.1         | Н              |          |  |
| Mid Char    | nnel (1880 MHz),  | CDMA, 3 dBi Ant       | tenna               |                |                |               |        |               |                |          |  |
| 1.8800      | 91.8              | 25.1                  | 0.2                 | 4.4            | 2.3            | 29.3          | 33.0   | -3.7          | V              |          |  |
| 1.8800      | 82.3              | 16.1                  | 0.2                 | 4.4            | 2.3            | 20.3          | 33.0   | -12.7         | Н              |          |  |
| High Cha    | nnel (1909 MHz),  | , CDMA, 3 dBi An      | itenna              |                |                |               |        |               |                |          |  |
| 1.9090      | 89.7              | 24.2                  | 0.2                 | 4.4            | 2.3            | 28.4          | 33.0   | -4.6          | <u>V</u>       |          |  |
| 1.9090      | 81.2              | 14.8                  | 0.2                 | 4.4            | 2.3            | 19.0          | 33.0   | -14.0         | Н              |          |  |
| Low Char    | nnei (1850.2 MHz  | t), GSM, 5 dBi Ant    | tenna               |                |                |               |        |               |                |          |  |
| 1.8502      | 84.8              | 17.8                  | 0.2                 | 4.4            | 2.3            | 22.0          | 33.0   | -11.0         | V              |          |  |
| 1.8502      | 83.8              | 15.9                  | 0.2                 | 4.4            | 2.3            | 20.1          | 33.0   | -12.9         | Н              |          |  |
| Mid Char    | nnel (1880 MHz),  | GSM, 5 dBi Antei      | nna                 |                |                |               |        |               |                |          |  |
| 1.8800      | 85.5              | 19.5                  | 0.2                 | 4.4            | 2.3            | 23.7          | 33.0   | -9.3          | V              |          |  |
| 1.8800      | 84.8              | 18.3                  | 0.2                 | 4.4            | 2.3            | 22.5          | 33.0   | -10.5         | Н              |          |  |
| High Cha    | innel (1909.8 MH: | z), GSM, 5 dBi An     | tenna               | L              |                |               | 22.0   | 11.0          |                |          |  |
| 1.9098      | 84.0              | 16.9                  | 0.2                 | 4.4            | 2.3            | 21.1          | 33.0   | -11.9         | V              |          |  |
| 1.9098      | 85.0              | 17.3                  | 0.2                 | 4.4            | 2.3            | 21.5          | 55.0   | -11.5         | Н              |          |  |
| Low Char    | nnel (1850.2 MHz  | c), GSM, 3 dBi Ant    | tenna               |                |                |               |        | 6.0           |                |          |  |
| 1.8502      | 89.3              | 21.9                  | 0.2                 | 4.4            | 2.3            | 26.1          | 33.0   | -6.9          | V              |          |  |
| 1.8502      | 84.5              | 18.2                  | 0.2                 | 4.4            | 2.3            | 22.4          | 33.0   | -10.6         | Н              |          |  |
| Mid Char    | nnel (1880 MHz),  | GSM, 3 dBi Anter      | nna                 |                |                |               | 22.0   | ( <b>-</b>    |                |          |  |
| 1.8800      | 89.3              | 22.1                  | 0.2                 | 4.4            | 2.3            | 26.3          | 33.0   | -6.7          | <u>V</u>       |          |  |
| 1.8800      | 85.5              | 19.0                  | 0.2                 | 4.4            | 2.3            | 23.2          | 55.0   | -9.8          | Н              |          |  |
| High Cha    | innei (1909.8 MH: | z), GSM, 3 dBi An     | tenna               | L              |                |               | 22.0   |               |                |          |  |
| 1.9098      | 88.9              | 21.5                  | 0.2                 | 4.4            | 2.3            | 25.7          | 33.0   | -7.3          | V V            |          |  |
| 1.9098      | 81.3              | 14.8                  | 0.2                 | 4.4            | 2.3            | 19.0          | 33.0   | -14.0         | Н              |          |  |

Page 23 of 61

#### 9.2. SECTION 2.1047: MODULATION CHARACTERISTICS

Not applicable.

## 9.3. SECTION 2.1049: OCCUPIED BANDWIDTH

#### INSTRUMENTS LIST

| EQUIPMENT       | MANUFACTURE | MODEL NO. | SERIAL NO. | CAL. DUE DATE |
|-----------------|-------------|-----------|------------|---------------|
| PSA Analyzer    | Agilent     | E446A     | US42070220 | 1/13/04       |
| 10dB Attenuator | Agilent     | 8493C     | 59028      | N/A           |
| DC Power Supply | Kenwood     | PA36-3A   | 7060074    | N/A           |

#### TEST PROCEDURE:

A comparison of the input- modulated spectrum and the output- modulated spectrum of the EUT was performed. RBW was set to 1 % of EBW, VBW was set to 3 times the RBW, the signal generator with CDMA or GSM modulation was connected to the input port of the EUT, the output port was connected to the spectrum analyzer, the analyzer was tuned to the transmit frequency, 26 dB BW was measured and recorded for Low, Mid and High channels.

TEST SETUP





#### **RESULTS:**

| Mode | Channel    | 26 dB BW (MHz)<br>Input Port |          |
|------|------------|------------------------------|----------|
| CDMA | Low        | 1.376                        | 1.371    |
| CDMA | Mid        | 1.381                        | 1.383    |
| CDMA | High 1.364 |                              | 1.374    |
| GSM  | Low        | 0.297912                     | 0.290365 |
| GSM  | Mid        | 0.295447                     | 0.298322 |
| GSM  | High       | 0.296141                     | 0.299641 |

Page 25 of 61

#### Output Port, CDMA, Low Channel:



Page 26 of 61

#### Output Port, CDMA, Mid Channel:



Page 27 of 61

Output Port, CDMA, High Channel:



Page 28 of 61

#### Output Port, GSM, Low Channel:



Page 29 of 61

#### Output Port, GSM, Mid Channel:



Page 30 of 61

#### Output Port, GSM, High Channel:



Page 31 of 61

#### Input Port, CDMA, Low Channel:



Page 32 of 61

#### Input Port, CDMA, Mid Channel:



Page 33 of 61

#### Input Port, CDMA, High Channel:



Page 34 of 61

#### Input Port, GSM, Low Channel:



Page 35 of 61

#### Input Port, GSM, Mid Channel:



Page 36 of 61

#### Input Port, GSM, High Channel:



Page 37 of 61

# 9.4. SECTION 2.1051: SPURIOUS EMISSIONS AT ANTENNA TERMINAL

#### TEST PROCEDURE:

The output of the EUT was connected to a spectrum analyzer, RBW & VBW were set to 1 MHz, the spectrum from 30MHz to 10<sup>th</sup> harmonic of the fundamental was investigated for CDMA/ GSM modes, for Low, Mid and High channels. For the frequency span of 1MHz close to the fundamental frequency the RBW was reduced to 1% of the EBW.

Page 38 of 61

#### **RESULTS:**

#### BAND EDGE, CDMA, Low Channel:



Page 39 of 61

#### BAND EDGE, CDMA, High Channel:



Page 40 of 61

#### BAND EDGE, GSM, Low Channel:



Page 41 of 61

#### BAND EDGE, GSM, High Channel:



Page 42 of 61

| 🔆 Agilent 12:20:22 J                              | Jan 12, 2004                                                                                                    |                                                                          | Marker                                |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|--|--|
| Ref 25 dBm At                                     | itten 30 dB                                                                                                     | Mkr1 9.2<br>-34.35                                                       | 6 GHz<br>dBm 1 2 3 4                  |  |  |
| #reak<br>Log                                      |                                                                                                                 |                                                                          |                                       |  |  |
| 10                                                |                                                                                                                 |                                                                          | Normal                                |  |  |
| dB/                                               |                                                                                                                 |                                                                          | i i i i i i i i i i i i i i i i i i i |  |  |
| 10.3                                              |                                                                                                                 |                                                                          |                                       |  |  |
| dB                                                |                                                                                                                 |                                                                          | Delta                                 |  |  |
|                                                   |                                                                                                                 |                                                                          |                                       |  |  |
| -13.0<br>dBm                                      |                                                                                                                 |                                                                          | Delta Pair                            |  |  |
| LgAv                                              | 1                                                                                                               |                                                                          | (Tracking Ref)                        |  |  |
|                                                   |                                                                                                                 |                                                                          |                                       |  |  |
| V1 S2<br>S3 EChina and muchania                   | about all and a start and a | المراجع ومعار المراجع والمراجع والمحمو والمراجع ومعادي ومعاديهم والمراجع | 🚧 🚽 Span Pair                         |  |  |
|                                                   |                                                                                                                 |                                                                          | Span <u>Center</u>                    |  |  |
| £(f): Marker                                      |                                                                                                                 |                                                                          |                                       |  |  |
|                                                   | אמי בח≃ מטו                                                                                                     |                                                                          | Off                                   |  |  |
| SMD -3.20000000                                   |                                                                                                                 |                                                                          |                                       |  |  |
| -34.35 GBI                                        |                                                                                                                 |                                                                          | More                                  |  |  |
| #Res BW 1 MHz                                     | #VBW 1_MHz                                                                                                      | Sweep 49.95 ms (1000                                                     | nts)                                  |  |  |
| File Operation Status, A:\SCREN294.GIF file saved |                                                                                                                 |                                                                          |                                       |  |  |

#### RF Conducted Emissions (30 MHz – 20 GHz), CDMA, Low Channel:

Page 43 of 61

| ✤ Agilent 12:20:52 Jan 12, 2004                    | Marker                         |  |  |  |  |
|----------------------------------------------------|--------------------------------|--|--|--|--|
| Mkr1 3.78 GHz<br>Ref 25 dBm Atten 30 dB -38.10 dBm | Select Marker                  |  |  |  |  |
| #Peak<br>Log                                       | <u> </u>                       |  |  |  |  |
| 10                                                 | Normal                         |  |  |  |  |
| 05/<br>0ffst                                       |                                |  |  |  |  |
| 10.3 dB                                            | Delta                          |  |  |  |  |
|                                                    | Deita                          |  |  |  |  |
| -13.0<br>dBm                                       | Delta Pair                     |  |  |  |  |
| LgAv                                               | (Tracking Ref)<br>Ref <u>∆</u> |  |  |  |  |
| V1 S2                                              | Span Pair                      |  |  |  |  |
| AA                                                 | Span <u>Center</u>             |  |  |  |  |
| £(f): Marker                                       | 044                            |  |  |  |  |
| Swp 3.78000000 GHz                                 | UIT                            |  |  |  |  |
| -38.10 dBm                                         | More                           |  |  |  |  |
| Start 30 MHz                                       | 1 of 2                         |  |  |  |  |
| #Kes BW I MHZ #VBW I MHZ Sweep 49.95 ms (1000 pts) |                                |  |  |  |  |

#### RF Conducted Emissions (30 MHz – 20 GHz), CDMA, Mid Channel:

Page 44 of 61

| 🔆 Agilent 12:21:17 Jan 12, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marker                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Mkr1 3.82 GH:<br>Ref 25 dBm Atten 30 dB -37.44 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Select Marker                   |  |  |  |  |  |
| #Peak<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                        |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Normal                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |  |  |  |  |  |
| 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |  |  |  |  |  |
| dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delta                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                               |  |  |  |  |  |
| dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Delta Pair<br>(Tracking Ref)    |  |  |  |  |  |
| LgAv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref <u>A</u>                    |  |  |  |  |  |
| V1 S2<br>S3 FC provely particular and marked and the second and the s | <b>Span Pair</b><br>Span Center |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |  |  |  |  |  |
| E(f): Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0ff                             |  |  |  |  |  |
| Swp 3.82000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |  |
| -37.44 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maura                           |  |  |  |  |  |
| Start 30 MHz Stop 20.00 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nore<br>1 of 2                  |  |  |  |  |  |
| #Res BW 1 MHz #VBW 1 MHz Sweep 49.95 ms (1000 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |  |
| File Operation Status, A:\SCREN296.GIF file saved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |  |  |  |  |  |

#### RF Conducted Emissions (30 MHz – 20 GHz), CDMA, High Channel:

Page 45 of 61

| 🔆 Agilent 12:19:45                                | Jan 12, 2004                                      |                                     | Marker                                   |  |  |  |
|---------------------------------------------------|---------------------------------------------------|-------------------------------------|------------------------------------------|--|--|--|
| Ref 25 dBm f<br>#Peak                             | Atten 30 dB                                       | Mkr1<br>                            | 9.24 GHz<br>42.07 dBm <u>1</u> 2 3 4     |  |  |  |
| Log<br>10<br>dB/                                  |                                                   |                                     | Normal                                   |  |  |  |
| Offst<br>10.3<br>dB                               |                                                   |                                     | Delta                                    |  |  |  |
| UI<br>-13.0<br>dBm<br>Laθv                        |                                                   |                                     | <b>Delta Pair</b><br>(Tracking Ref)      |  |  |  |
| V1 S2<br>S3 FC                                    | window when the main water                        | harrowland hanged black and a share | Ket <u>▲</u><br>Span Pair<br>Span Center |  |  |  |
| AA<br>£(f):<br>FTun<br>Swp <b>9.240000</b>        | 000 GHz                                           |                                     | Off                                      |  |  |  |
| <b>–42.07 dE</b><br>Start 30 MHz<br>#Res BW 1 MHz | <b>3m</b><br>⊭VBW 1 M                             | Stop<br>Hz Sweep 49.95 ms (         | 20.00 GHz 1 of 2<br>1000 pts)            |  |  |  |
| File Operation Statu                              | File Operation Status, A:\SCREN293.GIF file saved |                                     |                                          |  |  |  |

RF Conducted Emissions (30 MHz - 20 GHz), GSM, Low Channel:

Page 46 of 61

| 🔆 Ag           | <b>ilent</b> 12                                   | 2:19:13 | Jan 12     | 2,2004               |           |            |                                   |                |                  |                 | Marker             |
|----------------|---------------------------------------------------|---------|------------|----------------------|-----------|------------|-----------------------------------|----------------|------------------|-----------------|--------------------|
| Ref 25         | dBm                                               |         | Atten      | 30 dB                |           |            |                                   | M              | lkr1 3.<br>-39.6 | 78 GHz<br>0 dBm | Select Marker      |
| #геак<br>Log   |                                                   |         |            |                      |           |            |                                   |                |                  |                 | <u> </u>           |
| 10             |                                                   |         |            |                      |           |            |                                   |                |                  |                 | Normal             |
| dB/<br>Affst   |                                                   |         |            |                      |           |            |                                   |                |                  |                 |                    |
| 10.3           |                                                   |         |            |                      |           |            |                                   |                |                  |                 |                    |
| aB             |                                                   |         |            |                      |           |            |                                   |                |                  |                 | Delta              |
| -13.0          |                                                   |         |            |                      |           |            |                                   |                |                  |                 | Delta Pair         |
| dBm<br>L∝⊖u    |                                                   |         |            |                      |           |            |                                   |                |                  |                 | (Tracking Ref)     |
| LGHA           |                                                   | 1       |            |                      |           |            |                                   |                |                  |                 | Ref 🛕              |
| V1 S2<br>S2 EC | an ala                                            |         | A. swimple | لمغديهم لاسطح لحيابط | Muly Saly | day the Al | ر ملاطن المار<br>الماري ماريد الم | der Providence | Aret work        |                 | Span Pair          |
| SS FC<br>AA    |                                                   |         |            |                      |           |            |                                   |                |                  |                 | Span <u>Center</u> |
| <b>£</b> (f):  | Mark                                              | er      |            |                      |           |            |                                   |                |                  |                 |                    |
| Flun<br>Swp    | 3.78                                              | 0000    | 000        | GHz-                 |           |            |                                   |                |                  |                 | Uff                |
|                | -39                                               | .60 d   | Bm         |                      |           |            |                                   |                |                  |                 |                    |
| Start 3        | BØ MHz                                            |         |            |                      |           |            |                                   | St             | top 20.0         | 00 GHz          | More<br>1 of 2     |
| #Res B         | W 1 MH                                            | z       |            | #V                   | BW 1 M    | IHz        | Sweep                             | 49.95 n        | ns (100          | 0 pts)          |                    |
| File 0         | File Operation Status, A:\SCREN292.GIF file saved |         |            |                      |           |            |                                   |                |                  |                 |                    |

#### RF Conducted Emissions (30 MHz – 20 GHz), GSM, Mid Channel:

Page 47 of 61

| 🔆 Agilent 12:17:26 Jan 12, 2004                   | Marker                |  |  |  |  |  |
|---------------------------------------------------|-----------------------|--|--|--|--|--|
| Mkr1 5.74<br>Ref 25 dBm Atten 30 dB -37.62        | GHz<br>dBm<br>1 2 3 4 |  |  |  |  |  |
| Teak                                              | <u> </u>              |  |  |  |  |  |
| 10                                                | Normal                |  |  |  |  |  |
|                                                   |                       |  |  |  |  |  |
| 10.3                                              |                       |  |  |  |  |  |
|                                                   | Delta                 |  |  |  |  |  |
| -13.0                                             |                       |  |  |  |  |  |
| dBm                                               | (Tracking Ref)        |  |  |  |  |  |
|                                                   | Ref <u>A</u>          |  |  |  |  |  |
| V1 S2                                             | Span Pair             |  |  |  |  |  |
| S3 FC                                             | Span <u>Center</u>    |  |  |  |  |  |
|                                                   |                       |  |  |  |  |  |
| FTun Marker                                       | Off                   |  |  |  |  |  |
| Swp -5.740000000 GHz                              |                       |  |  |  |  |  |
| -37.62 dBm                                        | More                  |  |  |  |  |  |
| Start 30 MHz Stop 20.00                           | GHZ 1 of 2            |  |  |  |  |  |
| File Operation Status, 0:\SCDEN291 GIE file saved |                       |  |  |  |  |  |
| File Operation Status, H:\Screnz91.61 file saved  |                       |  |  |  |  |  |

#### RF Conducted Emissions (30 MHz - 20 GHz), GSM, High Channel:

Page 48 of 61

## 9.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

| Frequency Range<br>(MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth |
|--------------------------|-------------------|-------------------------|-----------------|
| Above 1000               | ⊠ Peak            | ☐ 1 MHz                 | ⊠ 1 MHz         |
|                          | □ Average         | ☐ 1 MHz                 | □ 10 Hz         |

Detector Function Setting of Test Receiver

Page 49 of 61



Radiated Emission Measurement



Radiated Emission - Substitution Method set-up

Page 50 of 61

#### TEST PROCEDURE

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 1m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a substitution antenna.

10). The substitution antenna shall be oriented for vertical polarization.

11). The substitution antenna shall be connected to a calibrated signal generator.

12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

#### MEASUREMENT RESULT

No non-compliance noted, as shown below

Page 51 of 61

#### REPORT NO: 03U2456-1 EUT: CELLULAR PHONE AMPLIFIER, MODEL: CM 1000 FCC ID: RSNCM1000

#### <u>1900MHz Band CDMA/GSM - Harmonics / Spurious and Substitution Emissions, Low / Mid / High</u> <u>Channels:</u>

| 1/8/04                                                                            | 1/8/04 High Frequency Substitution Measurement                  |                                                                                                               |               |                                                       |                                  |       |                                      |                                     |                                       |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|----------------------------------|-------|--------------------------------------|-------------------------------------|---------------------------------------|--|--|
| Complia                                                                           | nce Certifica                                                   | ation Services                                                                                                | , Morgan H    | lill Open Fie                                         | eld Site                         |       |                                      |                                     |                                       |  |  |
| Test Engr<br>Project #:<br>Company<br>EUT Dese<br>EUT M/N<br>Test Targ<br>Mode Op | ::<br>:<br>crip.:<br>N:<br>set:<br>er:                          | Frank Ibrahim<br>03U2456-1<br>Cellphone Mate<br>Cellphone Amplifi<br>CM 1000<br>FCC PART 24<br>TX ON, maximum | er<br>1 power |                                                       |                                  |       |                                      |                                     |                                       |  |  |
| <u>Test Equi</u>                                                                  | pment:                                                          |                                                                                                               |               |                                                       |                                  |       |                                      |                                     |                                       |  |  |
| EMCO Horn 1-18GHz Pre-amplifer 1-26GHz                                            |                                                                 |                                                                                                               | Spe           | ctrum Analyzei                                        | r<br>T                           |       | Horn > 18GHz                         |                                     |                                       |  |  |
| Hi Frequ                                                                          | ft) (2 ~                                                        | 3 ft) (4 ~ 6                                                                                                  |               | Peak Measu<br>Fundamental:<br>RBW>99% or 2<br>VBW=RBW | <b>rements:</b><br>26dB Emission | ns BW | Bandedge:<br>RBW=>1% E<br>VBW=> 3*RI | missions BW RBW=1MHz<br>BW VBW=1MHz |                                       |  |  |
| f                                                                                 | SA reading                                                      | sG reading                                                                                                    | CL            | Gain                                                  | Gain                             | EIRP  | Limit                                | Margin                              | Notes                                 |  |  |
| GHz                                                                               | (dBm)                                                           | (dBm)                                                                                                         | (dB)          | (dBi)                                                 | (dBd)                            | (dBm) | (dBm)                                | (dB)                                |                                       |  |  |
| Low Chanr                                                                         | nel (1851 MHz), (                                               | CDMA, 3 dBi Ant                                                                                               | enna          | 8.0                                                   | 5.0                              | 15.4  | 12.0                                 | 2.4                                 | ¥7                                    |  |  |
| 5.702<br>5.553                                                                    | 40.1                                                            | -23.0                                                                                                         | 0.4           | 8.0                                                   | 5.9                              | -15.4 | -13.0                                | -2.4                                | V                                     |  |  |
| 5.555<br>7.404                                                                    | 52.3                                                            | -32.3                                                                                                         | 0.3           | 11.3                                                  | 9.2                              | -23.2 | -13.0                                | -24.8                               | V                                     |  |  |
| 9.255                                                                             | 67.4                                                            | -33.9                                                                                                         | 0.8           | 12.2                                                  | 10.1                             | -22.5 | -13.0                                | -9.5                                | V                                     |  |  |
| 11.106                                                                            | 49.5                                                            | -50.1                                                                                                         | 0.9           | 12.5                                                  | 10.4                             | -38.5 | -13.0                                | -25.5                               | V                                     |  |  |
| 3.702                                                                             | 39.8                                                            | -29.7                                                                                                         | 0.4           | 8.0                                                   | 5.9                              | -22.1 | -13.0                                | -9.1                                | Н                                     |  |  |
| 5.553                                                                             | 63.7                                                            | -37.8                                                                                                         | 0.5           | 9.8                                                   | 7.7                              | -28.5 | -13.0                                | -15.5                               | Н                                     |  |  |
| 7.404                                                                             | 54.2                                                            | -46.2                                                                                                         | 0.7           | 11.3                                                  | 9.2                              | -35.6 | -13.0                                | -22.6                               | H                                     |  |  |
| 9.255                                                                             | 00.2<br>49.5                                                    | -33.5                                                                                                         | 0.8           | 12.2                                                  | 10.1                             | -22.1 | -13.0                                | -9.1                                | H                                     |  |  |
| Mid Chann                                                                         | el (1880 MHz) (                                                 | -40.4<br>CDMA 3 dBi Ante                                                                                      | enna          | 12.5                                                  | 10.4                             | -50.0 | -13.0                                | -25.0                               | 11                                    |  |  |
| 3.760                                                                             | 45.9                                                            | -23.2                                                                                                         | 0.4           | 8.0                                                   | 5.9                              | -15.6 | -13.0                                | -2.6                                | V                                     |  |  |
| 5.640                                                                             | 68.8                                                            | -31.8                                                                                                         | 0.5           | 9.8                                                   | 7.7                              | -22.5 | -13.0                                | -9.5                                | V                                     |  |  |
| 7.520                                                                             | 53.6                                                            | -47.1                                                                                                         | 0.7           | 11.3                                                  | 9.2                              | -36.5 | -13.0                                | -23.5                               | V                                     |  |  |
| 9.400                                                                             | 62.4                                                            | -38.2                                                                                                         | 0.8           | 12.2                                                  | 10.1                             | -26.8 | -13.0                                | -13.8                               | V                                     |  |  |
| 11.280                                                                            | 49.9                                                            | -48.0                                                                                                         | 0.9           | 12.5                                                  | 10.4                             | -30.4 | -13.0                                | -23.4                               | V H                                   |  |  |
| 5.640                                                                             | 62.5                                                            | -29.4                                                                                                         | 0.4           | 9.8                                                   | 7.7                              | -21.8 | -13.0                                | -16.6                               | Н                                     |  |  |
| 7.520                                                                             | 54.2                                                            | -46.0                                                                                                         | 0.7           | 11.3                                                  | 9.2                              | -35.4 | -13.0                                | -22.4                               | H                                     |  |  |
| 9.400                                                                             | 59.8                                                            | -40.1                                                                                                         | 0.8           | 12.2                                                  | 10.1                             | -28.7 | -13.0                                | -15.7                               | Н                                     |  |  |
| 11.280                                                                            | 50.2                                                            | -48.0                                                                                                         | 0.9           | 12.5                                                  | 10.4                             | -36.4 | -13.0                                | -23.4                               | Н                                     |  |  |
| High Chan                                                                         | nel (1909 MHz),                                                 | CDMA, 3 dBi Ant                                                                                               | tenna         |                                                       |                                  |       |                                      |                                     |                                       |  |  |
| 3.8180                                                                            | 46.2                                                            | -23.5                                                                                                         | 0.4           | 8.0                                                   | 5.9                              | -15.9 | -13.0                                | -2.9                                | V                                     |  |  |
| 3.7270<br>7.6360                                                                  | 49.6                                                            | -31.9                                                                                                         | 0.5           | <sup>9.8</sup>                                        | 9.2                              | -22.0 | -13.0                                | -9.0                                | v<br>V                                |  |  |
| 9.5450                                                                            | 63.5                                                            | -37.0                                                                                                         | 0.8           | 12.2                                                  | 10.1                             | -25.6 | -13.0                                | -12.6                               | · · · · · · · · · · · · · · · · · · · |  |  |
| 11.4540                                                                           | 48.7                                                            | -50.5                                                                                                         | 0.9           | 12.5                                                  | 10.4                             | -38.9 | -13.0                                | -25.9                               | V                                     |  |  |
| 3.8180                                                                            | 38.9                                                            | -31.1                                                                                                         | 0.4           | 8.0                                                   | 5.9                              | -23.5 | -13.0                                | -10.5                               | Н                                     |  |  |
| 5.7270                                                                            | 63.4                                                            | -38.0                                                                                                         | 0.5           | 9.8                                                   | 7.7                              | -28.7 | -13.0                                | -15.7                               | H                                     |  |  |
| 7.6360                                                                            | 48.7                                                            | -51.4                                                                                                         | 0.7           | 11.3                                                  | 9.2                              | -40.8 | -13.0                                | -27.8                               | <u>H</u>                              |  |  |
| 11.4540                                                                           | 50.6                                                            | -39.5                                                                                                         | 0.9           | 12.2                                                  | 10.1                             | -35.4 | -13.0                                | -13.1                               | H H                                   |  |  |
| -                                                                                 | <b>40</b> 30.0 <b>-4</b> 7.0 0.7 12.3 10.4 -33.4 -13.0 -22.4 11 |                                                                                                               |               |                                                       |                                  |       |                                      |                                     |                                       |  |  |

Page 52 of 61

| 1/8/04        | High Frequ      | ency Substitu   | tion Measur   | ement      |                |              |        |           |              |                 |   |
|---------------|-----------------|-----------------|---------------|------------|----------------|--------------|--------|-----------|--------------|-----------------|---|
| Complia       | nce Certificat  | ion Services, N | Morgan Hill   | Open Field | Site           |              |        |           |              |                 |   |
| Test Engr     | •               | Frank Ibrahim   |               |            |                |              |        |           |              |                 |   |
| Project #     | •               | 03112456-1      |               |            |                |              |        |           |              |                 |   |
| Comnany       | •               | Cellphone Mate  |               |            |                |              |        |           |              |                 |   |
|               | •<br>           | Collphone Ampli | fior          |            |                |              |        |           |              |                 |   |
| EUT Desc      | crip.:          | Celiphone Ampli | ner           |            |                |              |        |           |              |                 |   |
| EUT M/N       | :               | CM 1000         |               |            |                |              |        |           |              |                 |   |
| Test Targ     | et:             | FCC PART 24     |               |            |                |              |        |           |              |                 |   |
| Mode Op       | er:             | TX ON, maximu   | m power       |            |                |              |        |           |              |                 |   |
| Test Equi     | pment:          |                 |               |            |                |              |        |           |              |                 |   |
| ЕМСО Н        | forn 1-18GHz    | Pre-ampli       | fer 1-26GHz   | Spe        | ectrum Analyze | r            |        | Horn >1   | 8GHz         | Limit           |   |
|               | ,<br>           |                 |               |            |                | -            |        |           | -            | -               |   |
| Hi Frequ      |                 |                 |               |            |                |              |        |           |              |                 |   |
| in riequ      | acticy cables   |                 |               |            | Peak Measu     | rements:     |        |           |              |                 |   |
| <b>I</b> (2 : | ft) 🗌 🗌 (2 ~    | 3 ft) 🔲 (4 ~ 6  | ft) 🔲 (12 ft) |            | Fundamental:   |              |        | Bandedge: |              | <u>Spurious</u> |   |
|               |                 |                 |               |            | RBW>99% or     | 26dB Emissio | ons BW | RBW=>1% I | Emissions BW | RBW=1MHz        |   |
|               |                 |                 |               |            | VBW=RBW        |              |        | VBW=> 3*R | BW           | VBW=1MHz        |   |
| f             | SA reading      | SG reading      | CL            | Gain       | Gain           | EIRP         | Limit  | Margin    |              | Notes           | - |
| GHz           | (dBm)           | (dBm)           | (dB)          | (dBi)      | (dBd)          | (dBm)        | (dBm)  | (dB)      | -            |                 |   |
| Low Chan      | nel (1851 MHz). | CDMA, 5 dBi A   | ntenna        |            |                |              |        |           |              |                 | - |
| 3.702         | 45.9            | -24.1           | 0.4           | 8.0        | 5.9            | -16.5        | -13.0  | -3.5      |              | V               |   |
| 5.553         | 70.2            | -31.7           | 0.5           | 9.8        | 7.7            | -22.4        | -13.0  | -9.4      |              | V               | - |
| 7.404         | 53.2            | -47.4           | 0.7           | 11.3       | 9.2            | -36.8        | -13.0  | -23.8     |              | V               | _ |
| 9.255         | 68.9            | -31.2           | 0.8           | 12.2       | 10.1           | -19.8        | -13.0  | -6.8      |              | V               |   |
| 11.106        | 50.1            | -48.1           | 0.9           | 12.5       | 10.4           | -36.5        | -13.0  | -23.5     |              | V               | _ |
| 3.702         | 38.5            | -31.1           | 0.4           | 8.0        | 5.9            | -23.5        | -13.0  | -10.5     |              | Н               |   |
| 5.553         | 65.2            | -36.0           | 0.5           | 9.8        | 7.7            | -26.7        | -13.0  | -13.7     |              | Н               |   |
| 7.404         | 55.2            | -44.7           | 0.7           | 11.3       | 9.2            | -34.1        | -13.0  | -21.1     |              | Н               |   |
| 9.255         | 65.8            | -35.0           | 0.8           | 12.2       | 10.1           | -23.6        | -13.0  | -10.6     |              | Н               |   |
| 11.106        | 50.1            | -48.3           | 0.9           | 12.5       | 10.4           | -36.7        | -13.0  | -23.7     |              | Н               |   |
| Mid Chanı     | nel (1880 MHz), | CDMA, 5 dBi A   | ntenna        |            |                |              |        |           |              |                 |   |
| 3.760         | 46.2            | -23.5           | 0.4           | 8.0        | 5.9            | -15.9        | -13.0  | -2.9      |              | V               |   |
| 5.640         | 69.4            | -31.8           | 0.5           | 9.8        | 7.7            | -22.5        | -13.0  | -9.5      |              | V               |   |
| 7.520         | 53.8            | -47.0           | 0.7           | 11.3       | 9.2            | -36.4        | -13.0  | -23.4     |              | V               |   |
| 9.400         | 63.2            | -37.3           | 0.8           | 12.2       | 10.1           | -25.9        | -13.0  | -12.9     |              | V               | _ |
| 11.280        | 49.5            | -48.4           | 0.9           | 12.5       | 10.4           | -36.8        | -13.0  | -23.8     |              | V<br>H          | _ |
| 5.760         | 38.5            | -31.1           | 0.4           | 8.0        | 5.9            | -23.5        | -13.0  | -10.5     |              | H               | _ |
| 5.040         | 03.4<br>56.8    | -37.9           | 0.5           | 9.8        | 0.7            | -28.0        | -13.0  | -15.0     |              | H<br>U          |   |
| 9.400         | 50.8            | 30.0            | 0.7           | 12.2       | 7.2<br>10.1    | -33.4        | -13.0  | -20.4     |              | п               | _ |
| 11 280        | 49.8            | -38.4           | 0.0           | 12.2       | 10.1           | -26.8        | -13.0  | -13.5     |              | н               | - |
| High Chan     | nel (1909 MHz)  | CDMA 5 dBi A    | ntenna        | 12.5       | 10.4           | -20.0        | -10.0  | -10.0     |              | n               | - |
| 3.8180        | 46.4            | -24.4           | 0.4           | 8.0        | 5.9            | -16.8        | -13.0  | -3.8      |              | V               | - |
| 5.7270        | 69.5            | -31.7           | 0.5           | 9.8        | 7.7            | -22.4        | -13.0  | -9.4      |              | v               | _ |
| 7.6360        | 48.7            | -49.4           | 0.7           | 11.3       | 9.2            | -38.8        | -13.0  | -25.8     |              | v               |   |
| 9.5450        | 64.3            | -36.0           | 0.8           | 12.2       | 10.1           | -24.6        | -13.0  | -11.6     |              | v               | - |
| 11.4540       | 49.6            | -48.1           | 0.9           | 12.5       | 10.4           | -36.5        | -13.0  | -23.5     |              | V               |   |
| 3.8180        | 38.7            | -30.0           | 0.4           | 8.0        | 5.9            | -22.4        | -13.0  | -9.4      |              | Н               |   |
| 5.7270        | 64.3            | -36.4           | 0.5           | 9.8        | 7.7            | -27.1        | -13.0  | -14.1     |              | Н               | - |
| 7.6360        | 48.9            | -51.8           | 0.7           | 11.3       | 9.2            | -41.2        | -13.0  | -28.2     |              | Н               | - |
| 9.5450        | 62.5            | -37.8           | 0.8           | 12.2       | 10.1           | -26.4        | -13.0  | -13.4     |              | Н               | - |
| 11.4540       | 49.6            | -48.4           | 0.9           | 12.5       | 10.4           | -36.8        | -13.0  | -23.8     |              | Н               | - |

Page 53 of 61

| 1/8/04              | High Freq                                                      | uency Substit           | ution Meas   | urement     |                |               |         |            |                      |  |  |  |
|---------------------|----------------------------------------------------------------|-------------------------|--------------|-------------|----------------|---------------|---------|------------|----------------------|--|--|--|
| Complia             | Compliance Certification Services, Morgan Hill Open Field Site |                         |              |             |                |               |         |            |                      |  |  |  |
| -                   |                                                                |                         |              | •           |                |               |         |            |                      |  |  |  |
| Test Engr           | :                                                              | Frank Ibrahim           |              |             |                |               |         |            |                      |  |  |  |
| Project #:          |                                                                | 03U2456-1               |              |             |                |               |         |            |                      |  |  |  |
| Company             | :                                                              | Cellphone Mate          |              |             |                |               |         |            |                      |  |  |  |
| EUT Desc            | erip.:                                                         | Cellphone Amplifi       | er           |             |                |               |         |            |                      |  |  |  |
| EUT M/N             | 1:                                                             | CM 1000                 |              |             |                |               |         |            |                      |  |  |  |
| Test Targ           | et:                                                            | FCC PART 24             |              |             |                |               |         |            |                      |  |  |  |
| Mode Op             | er:                                                            | TX ON, maximum          | n power      |             |                |               |         |            |                      |  |  |  |
|                     |                                                                |                         |              |             |                |               |         |            |                      |  |  |  |
| <u>Test Equi</u>    | pment:                                                         |                         |              |             |                |               |         |            |                      |  |  |  |
| EMCOL               | Low 1 19CHa                                                    | Preampli                | for 1-26CHz  | Sne         | etrum Analyzei |               |         | Horn >1    | 8CHz Limit           |  |  |  |
| EMCOF               | IOTIL 1-18GHZ                                                  | rie-ampin               | 101 1-20011Z | spe         | c. un Analyzei |               |         | 1011 21    |                      |  |  |  |
|                     | •                                                              |                         | -            |             |                | -             |         |            | •                    |  |  |  |
| Hi Frequ            | uency Cables                                                   |                         |              |             | Peak Measu     | rements:      |         |            |                      |  |  |  |
|                     | €) <b>□</b> (2)                                                | 2 <del>0</del> )        | e) [ (12.e)  |             | Fundamental:   |               |         | Bandedge:  | Spurious             |  |  |  |
| I <b>™</b> (2 :     | π) <u>Γ</u> (2 ~                                               | 5 Π) [] (4~0            | π) [] (12 π) |             | RBW>99% or 2   | 26dB Emission | is BW   | RBW=>1% E  | missions BW RBW=1MHz |  |  |  |
|                     |                                                                |                         |              |             | VBW=RBW        |               |         | VBW=> 3*RI | BW VBW=1MHz          |  |  |  |
|                     |                                                                |                         |              |             |                |               |         |            |                      |  |  |  |
| f                   | SA reading                                                     | SG reading              | CL           | Gain        | Gain           | EIRP          | Limit   | Margin     | Notes                |  |  |  |
| GHz                 | (dBm)                                                          | (dBm)                   | (dB)         | (dBi)       | (dBd)          | (dBm)         | (dBm)   | (dB)       |                      |  |  |  |
| Low Chann           | nel (1850.2 MHz)                                               | . GSM. 3 dBi Ante       | enna         | (4251)      | (424)          | (ubiii)       | (42)11) | (42)       |                      |  |  |  |
| 3.700               | 45.8                                                           | -24.4                   | 0.4          | 8.0         | 5.9            | -16.8         | -13.0   | -3.8       | V                    |  |  |  |
| 5.551               | 64.8                                                           | -37.1                   | 0.5          | 9.8         | 7.7            | -27.8         | -13.0   | -14.8      | V                    |  |  |  |
| 7.401               | 55.7                                                           | -45.2                   | 0.7          | 11.3        | 9.2            | -34.6         | -13.0   | -21.6      | V                    |  |  |  |
| 9.251               | 66.3                                                           | -33.5                   | 0.8          | 12.2        | 10.1           | -22.1         | -13.0   | -9.1       | V                    |  |  |  |
| 11.101              | 50.6                                                           | -48.1                   | 0.9          | 12.5        | 10.4           | -36.5         | -13.0   | -23.5      | V                    |  |  |  |
| 3.700               | 45.6                                                           | -24.4                   | 0.4          | 8.0         | 5.9            | -16.8         | -13.0   | -3.8       | Н                    |  |  |  |
| 5.551               | 60.8                                                           | -40.7                   | 0.5          | 9.8         | 7.7            | -31.4         | -13.0   | -18.4      | Н                    |  |  |  |
| 7.401               | 57.0                                                           | -42.7                   | 0.7          | 11.3        | 9.2            | -32.1         | -13.0   | -19.1      | Н                    |  |  |  |
| 9.251               | 64.8                                                           | -36.0                   | 0.8          | 12.2        | 10.1           | -24.6         | -13.0   | -11.6      | Н                    |  |  |  |
| 11.101<br>Mid Chann | 50.0                                                           | -47.4<br>SM 2 dDi Anton | 0.9          | 12.5        | 10.4           | -35.0         | -13.0   | -22.0      | Н                    |  |  |  |
| NHU CHAIN<br>3 760  |                                                                | -24 0                   | na<br>0.4    | 8.0         | 5.9            | -16.4         | -13.0   | -3.4       | V                    |  |  |  |
| 5.640               | 62.5                                                           | -24.0                   | 0.4          | 9.8         | 7.7            | -29.8         | -13.0   | -16.8      | V                    |  |  |  |
| 7.520               | 54.6                                                           | -46.0                   | 0.7          | 11.3        | 9.2            | -35.4         | -13.0   | -22.4      | V                    |  |  |  |
| 9.400               | 64.2                                                           | -36.0                   | 0.8          | 12.2        | 10.1           | -24.6         | -13.0   | -11.6      | V                    |  |  |  |
| 11.280              | 52.8                                                           | -45.0                   | 0.9          | 12.5        | 10.4           | -33.4         | -13.0   | -20.4      | V                    |  |  |  |
| 3.760               | 46.1                                                           | -24.1                   | 0.4          | 8.0         | 5.9            | -16.5         | -13.0   | -3.5       | Н                    |  |  |  |
| 5.640               | 58.0                                                           | -42.7                   | 0.5          | 9.8         | 7.7            | -33.4         | -13.0   | -20.4      | Н                    |  |  |  |
| 7.520               | 56.5                                                           | -44.2                   | 0.7          | 11.3        | 9.2            | -33.6         | -13.0   | -20.6      | Н                    |  |  |  |
| 9.400               | 62.3                                                           | -37.8                   | 0.8          | 12.2        | 10.1           | -26.4         | -13.0   | -13.4      | Н                    |  |  |  |
| 11.280              | 53.0                                                           | -45.2                   | 0.9          | 12.5        | 10.4           | -33.6         | -13.0   | -20.6      | Н                    |  |  |  |
| High Chani          | nel (1909.8 MHz                                                | , GSM, 3 dBi Ant        | tenna        | 0.0         | 5.0            | 16.0          | 12.0    | 2.0        |                      |  |  |  |
| 5.820               | 46.3                                                           | -24.4                   | 0.4          | 8.0         | 5.9            | -10.8         | -13.0   | -3.8       | V<br>V               |  |  |  |
| 7 639               | 57.0                                                           | -33.9                   | 0.5          | 9.0<br>11 3 | 9.2            | -24.0         | -13.0   | -11.0      | v<br>V               |  |  |  |
| 9.549               | 63.5                                                           |                         | 0.7          | 12.2        | 7.2<br>10 1    | -32.1         | -13.0   | -17.1      | v<br>V               |  |  |  |
| 11.459              | 53.0                                                           | -45.2                   | 0.9          | 12.5        | 10.4           | -33.6         | -13.0   | -12.7      | V                    |  |  |  |
| 3.820               | 46.2                                                           | -24.4                   | 0.4          | 8.0         | 5.9            | -16.8         | -13.0   | -3.8       | H                    |  |  |  |
| 5.729               | 63.7                                                           | -36.7                   | 0.5          | 9.8         | 7.7            | -27.4         | -13.0   | -14.4      | Н                    |  |  |  |
| 7.639               | 59.0                                                           | -40.7                   | 0.7          | 11.3        | 9.2            | -30.1         | -13.0   | -17.1      | Н                    |  |  |  |
| 9.549               | 65.6                                                           | -35.0                   | 0.8          | 12.2        | 10.1           | -23.6         | -13.0   | -10.6      | Н                    |  |  |  |
| 11.459              | 52.9                                                           | -45.5                   | 0.9          | 12.5        | 10.4           | -33.9         | -13.0   | -20.9      | Н                    |  |  |  |

Page 54 of 61

| 1/8/04 High Frequency Substitution Measurement |                 |                        |               |            |                |               |          |             |                       |   |  |
|------------------------------------------------|-----------------|------------------------|---------------|------------|----------------|---------------|----------|-------------|-----------------------|---|--|
| Complia                                        | nce Certificat  | tion Services, N       | Morgan Hill   | Open Field | Site           |               |          |             |                       |   |  |
| Test Engr                                      | r:              | Frank Ibrahim          |               |            |                |               |          |             |                       |   |  |
| Project #:                                     |                 | 03U2456-1              |               |            |                |               |          |             |                       |   |  |
| Company                                        | •               | Cellphone Mate         |               |            |                |               |          |             |                       |   |  |
| EUT Desc                                       | ·<br>rin ·      | Cellphone Ampli        | fier          |            |                |               |          |             |                       |   |  |
| EUT Desc                                       |                 | Cempilone Ampli        | nei           |            |                |               |          |             |                       |   |  |
|                                                |                 | CM 1000                |               |            |                |               |          |             |                       |   |  |
| Test Targ                                      | get:            | FCC PART 24            |               |            |                |               |          |             |                       |   |  |
| Mode Op                                        | er:             | TX ON, maximu          | m power       |            |                |               |          |             |                       |   |  |
| <u>Test Equi</u>                               | pment:          |                        |               |            |                |               |          |             |                       |   |  |
| ЕМСО Н                                         | lorn 1-18GHz    | Pre-ampli              | fer 1-26GHz   | Spe        | ectrum Analyze | r             |          | Horn >1     | 8GHz Limit            |   |  |
|                                                | -               |                        | •             |            |                | -             |          |             | <u> </u>              | • |  |
| 🖵 Hi Frequ                                     | uency Cables    |                        |               |            | Deals Moore    |               |          |             |                       |   |  |
|                                                | o) = //         |                        |               |            | Fundamental:   | rements:      |          | Bandedaa.   | Spurious              |   |  |
| [ (2 :                                         | ft) [] (2~      | 3 ft) $\square$ (4 ~ 6 | ft) [ (12 ft) |            | PDW/>00% or    | 26dD Emissi   | one DW   | DDW-\1%     | Emissions DW PDW-1MHz |   |  |
|                                                |                 |                        |               |            | VDW-DDW        | 200B EIIIISSI | UIIS D W | VDW-> 2*D   | DW VDW-1MU7           |   |  |
|                                                |                 |                        |               |            | VDW-KDW        |               |          | V D W-> 5 K | BW VBW-IMIZ           |   |  |
| £                                              | CA useding      | SC mading              | CI            | Cain       | Cain           | FIDD          | I insi4  | Manain      | Natas                 |   |  |
| I                                              | SA reading      | SG reading             |               | Gain       | Gain           | EIRP          | Limit    | Margin      | INOTES                |   |  |
| GHz                                            | (dBm)           | (dBm)                  | (dB)          | (dBi)      | (dBd)          | (dBm)         | (dBm)    | (dB)        |                       |   |  |
| Low Chan                                       | nel (1850.2 MHz | z), GSM, 5 dBi A       | ntenna        |            |                |               |          |             |                       |   |  |
| 3.700                                          | 44.8            | -24.5                  | 0.4           | 8.0        | 5.9            | -16.9         | -13.0    | -3.9        | V                     |   |  |
| 5.551                                          | 66.1            | -34.7                  | 0.5           | 9.8        | 7.7            | -25.4         | -13.0    | -12.4       | V                     |   |  |
| 7.401                                          | 54.2            | -46.2                  | 0.7           | 11.3       | 9.2            | -35.6         | -13.0    | -22.6       | V                     |   |  |
| 9.251                                          | 64.1            | -36.3                  | 0.8           | 12.2       | 10.1           | -24.9         | -13.0    | -11.9       | V                     |   |  |
| 11.101                                         | 50.1            | -48.0                  | 0.9           | 12.5       | 10.4           | -36.4         | -13.0    | -23.4       | V                     |   |  |
| 3.700                                          | 40.1            | -29.1                  | 0.4           | 8.0        | 5.9            | -21.5         | -13.0    | -8.5        | Н                     |   |  |
| 5.551                                          | 58.2            | -42.7                  | 0.5           | 9.8        | 7.7            | -33.4         | -13.0    | -20.4       | Н                     |   |  |
| 7.401                                          | 56.4            | -44.3                  | 0.7           | 11.3       | 9.2            | -33.7         | -13.0    | -20.7       | H                     |   |  |
| 9.251                                          | 57.6            | -42.8                  | 0.8           | 12.2       | 10.1           | -31.4         | -13.0    | -18.4       | H                     |   |  |
| 11.101                                         | 49.8            | -48.3                  | 0.9           | 12.5       | 10.4           | -36.7         | -13.0    | -23.7       | Н                     |   |  |
| Mid Chan                                       | nel (1880 MHz), | GSM, 5 dBi Ant         | enna          |            |                |               |          |             |                       |   |  |
| 3.760                                          | 45.8            | -24.4                  | 0.4           | 8.0        | 5.9            | -16.8         | -13.0    | -3.8        | V                     |   |  |
| 5.640                                          | 64.1            | -36.7                  | 0.5           | 9.8        | 1.7            | -27.4         | -13.0    | -14.4       | V V                   |   |  |
| /.520                                          | 53.4            | -47.0                  | 0.7           | 11.3       | 9.2            | -36.4         | -13.0    | -23.4       | V<br>xy               |   |  |
| 9.400                                          | 62.4            | -38.2                  | 0.8           | 12.2       | 10.1           | -20.8         | -13.0    | -13.8       | V<br>V                |   |  |
| 3 760                                          | 34.3            | -44./                  | 0.9           | 14.5       | 10.4           | -33.1         | -13.0    | -20.1       | V<br>TT               |   |  |
| 5.700                                          | 40.1            | -29.0                  | 0.4           | 0.0        | 3.9            | -21.4         | -13.0    | -0.4        | <u>п</u><br>ц         |   |  |
| 7.520                                          | 58.2            | -42.5                  | 0.5           |            | 92             | -31.0         | -13.0    | -19.0       | н                     |   |  |
| 9.400                                          | 53.8            | -46.1                  | 0.8           | 12.2       | 10.1           | -34.7         | -13.0    | -21.7       | Н                     |   |  |
| 11.280                                         | 48.2            | -50.5                  | 0.9           | 12.5       | 10.4           | -38.9         | -13.0    | -25.9       | Н                     |   |  |
| High Chan                                      | nel (1909.8 MH  | z), GSM, 5 dBi A       | ntenna        |            |                |               |          |             |                       |   |  |
| 3.820                                          | 45.7            | -24.3                  | 0.4           | 8.0        | 5.9            | -16.7         | -13.0    | -3.7        | V                     |   |  |
| 5.729                                          | 68.5            | -32.4                  | 0.5           | 9.8        | 7.7            | -23.1         | -13.0    | -10.1       | v                     |   |  |
| 7.639                                          | 57.4            | -43.0                  | 0.7           | 11.3       | 9.2            | -32.4         | -13.0    | -19.4       | ·<br>V                |   |  |
| 9.549                                          | 62.4            | -38.3                  | 0.8           | 12.2       | 10.1           | -26.9         | -13.0    | -13.9       | ·<br>V                |   |  |
| 11.459                                         | 54.2            | -44.0                  | 0.9           | 12.5       | 10.4           | -32.4         | -13.0    | -19.4       | v                     |   |  |
| 3.820                                          | 39.8            | -29.0                  | 0.4           | 8.0        | 5.9            | -21.4         | -13.0    | -8.4        | H                     |   |  |
| 5.729                                          | 58.4            | -43.1                  | 0.5           | 9.8        | 7.7            | -33.8         | -13.0    | -20.8       | H                     |   |  |
| 7.639                                          | 50.2            | -50.3                  | 0.7           | 11.3       | 9.2            | -39.7         | -13.0    | -26.7       | H                     |   |  |
| 9.549                                          | 54.3            | -45.5                  | 0.8           | 12.2       | 10.1           | -34.1         | -13.0    | -21.1       | Н                     |   |  |
| 11.459                                         | 50.2            | -48.1                  | 0.9           | 12.5       | 10.4           | -36.5         | -13.0    | -23.5       | Н                     |   |  |

Page 55 of 61

## 9.6. SECTION 2.1055: FREQUENCY STABILITY

No applicable, EUT is an amplifier.

## 9.7. POWERLINE CONDUCTED EMISSION

Detector Function Setting of Test Receiver

| Frequency Range<br>(MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth |
|--------------------------|-------------------|-------------------------|-----------------|
| 150 KHz to 30<br>MHz     | Peak              | 9 KHz                   | 9 KHz           |

#### TEST PROCEDURE

1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in a continuous mode.

2. Line conducted data was recorded for both NEUTRAL and HOT lines.

Page 56 of 61

#### **MEASUREMENT RESULT**



Page 57 of 61

#### LINE CONDUCTION DATA

|           | CONDUCTED EMISSIONS DATA (115VAC 60Hz) |           |           |      |       |        |         |         |         |  |  |
|-----------|----------------------------------------|-----------|-----------|------|-------|--------|---------|---------|---------|--|--|
| Freq.     |                                        | Closs     | Limit     | EN_B | Mar   | Remark |         |         |         |  |  |
| (MHz)     | PK (dBuV)                              | QP (dBuV) | AV (dBuV) | (dB) | QP    | AV     | QP (dB) | AV (dB) | L1 / L2 |  |  |
| 0.15      | 42.94                                  |           |           | 0.00 | 66.00 | 56.00  | -23.06  | -13.06  | L1      |  |  |
| 0.22      | 44.38                                  |           |           | 0.00 | 64.00 | 54.00  | -19.62  | -9.62   | L1      |  |  |
| 0.97      | 40.96                                  |           |           | 0.00 | 56.00 | 46.00  | -15.04  | -5.04   | L1      |  |  |
| 0.15      | 42.70                                  |           |           | 0.00 | 65.94 | 55.94  | -23.24  | -13.24  | L2      |  |  |
| 0.22      | 41.76                                  |           |           | 0.00 | 64.00 | 54.00  | -22.24  | -12.24  | L2      |  |  |
| 1.27      | 41.00                                  |           |           | 0.00 | 56.00 | 46.00  | -15.00  | -5.00   | L2      |  |  |
| 6 Worst I | Data                                   |           |           |      |       |        |         |         |         |  |  |

Page 58 of 61

#### **LINE CONDUCTION - FRONT**



Page 59 of 61

#### **LINE CONDUCTION - BACK**



Page 60 of 61

#### 10. APENDIX

- 10.1. EXTERNAL & INTERNAL PHOTOS
- 10.2. SCHEMATICS
- 10.3. BLOCK DIAGRAM
- 10.4. USER MANUAL

## **END OF REPORT**

Page 61 of 61