Appendix A. Maximum Permissible Exposure

FCC TEST REPORT

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500	-	-	F/300	6	
1500-100,000	-	-	5	6	

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500	-	-	F/1500	30	
1500-100,000	-	-	1.0	30	

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 \mathbf{P} = Peak RF output power (W)

- **G** = EUT Antenna numeric gain (numeric)
- $\mathbf{d}~=~$ Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC TEST REPORT

1.3. Calculated Result and Limit

Max Conducted Power for IEEE 802.11b/g: 16.42 dBm

	Test Mode	Min. User	Gain (dBi)	Numeric Gain	Conducted	Conducted	Power Density	
Test MO		Distance (cm)			Power (dBm)	Power (mW)	(mW/cm2)	
	2.4G	20	2.94	1.967886	16.42	43.8531	0.0172	

Max Conducted Power for IEEE 802.11n : 17.61 dBm

Test Mode	Min. User	Gain (dBi)	Numeric Gain	Conducted	Conducted	Power Density	
TCSt Mode	Distance (cm)			Power (dBm)	Power (mW)	(mW/cm2)	
2.4G	20	2.94	1.967886	17.61	57.6766	0.0226	

SPORTON International Inc.	Page No.	: A3 of A3
TEL : 886-3-327-3456	Issued Date	: Aug. 30, 2010
FAX : 886-3-318-0055	FCC ID	: RSE-TG670