

TEST REPORT Report Number: 100455091ATL-001

September 26, 2011 Product Name: Sirius XM Lynx Portable Radio Product Model Number: SXi1

Standard: FCC Part 15, Subpart C, Intentional Radiators (15.239)

Tested by: Intertek Testing Services NA Inc. 1950 Evergreen Blvd., Suite 100 Duluth, GA 30096

Report prepared by:

2/1/im

Richard Bianco EMC Team Leader

Client: SIRIUS XM Radio Inc 1500 Eckington PL NE Washington, DC 20002 Contact: Beejay Jolayemi Phone: 202.680.4288 Fax: 202.380.4091

Report reviewed by:

11_1/A

Jeremy O. Pickens Senior Staff Engineer

All services undertaken are subject to the following general policy: This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST, or any agency of the US Government.

1.0 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatum text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Refer to the Test Summary for the specific details.

2.0 Test Summary

Section	Test Full Name	Test Date	Result
3.0	Description of Equipment Under Test		
4.0	System setup including cable interconnection details, support equipment and simplified block diagram.		
5.0	Transmitter Information for equipment operating under Parts 11, 15 and 18 of the rules (Transmitter Info -		PASS
6.0	Occupied Bandwidth (FCC 15C - 15.239 (a))		PASS
7.0	§ 15.107(a) / RSS-Gen 7.2.2 Conducted Emissions – Home Cradle		PASS
8.0	§ 15.109(a) Unintentional Radiated Emissions – Home Cradle		PASS
9.0	§ 15.107(a) / RSS-Gen 7.2.2 Conducted Emissions – Portable		PASS
10.0	§ 15.109(a) Unintentional Radiated Emissions – Portable		PASS
11.0	§ 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) – 88.1MHz – CLA Adapter		PASS
12.0	§ 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) – 96.9MHz – CLA Adapter		PASS
13.0	§ 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) – 107.9MHz – CLA Adapter		PASS
14.0	Test Equipment List		

15.0 Revision History

3.0 Description of Equipment Under Test

Equipment Under Test								
Description	Manufacturer	Model Number	Serial Number					
Satellite Radio	SIRIUS XM Satellite Radio	SXi1	NA					

EUT receive date:	July 11, 2011
EUT receive condition:	Good

Description of EUT provided by Client:

Sirius XM Lynx Hardware Features

- Revolutionary SiriusXM *Power*Connect[™] FM Transmitter works through your vehicle's radio* with easy Do-It-Yourself Installation. The color-coded Vehicle Dock makes it simple to connect.
- Customize your display by choosing the backlight color theme that matches your mood or vehicle dash lights.
- Personalize your radio by choosing the trim ring that reflects your taste or complements your vehicle interior.
- View artist name, song title, and channel information on the large color display.
- Browse programs, artists, and songs playing on other channels without having to change the channel.
- One-Touch JumpTM to traffic and weather of the 20 most congested cities, or to the previous channel to which you were listening.
- Save and enjoy fast access to your favorite channels.
- Lock and unlock channels with easy-to-use parental controls.
- Complete *Power*Connect Vehicle Kit included.
- Universal docking capability add accessories for your home, office, additional vehicles or even outdoors.
- Connectivity could be achieved via Satellite, WiFi, Bluetooth & USB.

Description of EUT exercising:

The EUT was powered with a 12Vdc battery supplied to the dock. The satellite signal was amplified and retransmitted into the emissions chamber to the radio under test. The radio then transmitted the music on the FM channel being investigated. The channels tested were 88.1, 96.9, and 107.9MHz.

Mode ofFrequencyOperationRange (MHz)		Number of Channels	Channel Separation (kHz)	
FM	88.1-107.9	100	200	

Applicant Information:

XM Radio Inc. 1500 Eckington PI, NE Washington, DC 20002

Manufacturer Information:

WNC (Kunshan) Corp. NO. 88 Central Avenue, Area B, Kunshan Export Processing Zone Kunshan City, Jiangsu, China

Method:

Record the details of EUTcabling, document the support equipment, and show the interconnections in a block diagram.

Support Equipment - Homedock Configurations									
Description	Manufacturer	Model Number	Serial Number						
Indoor/Outdoor Antenna Sirius XM		Not Labeled	620						
Homedock	Sirius XM	H-Dock-Sample DV2.1	Sample						
AC/DC Switching Supply	Phihong	PSM08A-052	R11135A1-D						

Support Equipment - Portable Configuration									
Description	Manufacturer	Model Number	Serial Number						
Laptop	Dell	Latitude D610	CN-0D4571-48643-62H						
Power supply	Dell	PA-1650-05D2	CN-0F7970-71615-55M						

Support Equipment - CLA Adapter Configuration									
Description	Manufacturer	Model Number	Serial Number						
CLA Adapter	Sirius XM	SXDIPIP1	U434A0401874J01						
V-Dock	Sirius/XM	V-Dock-SAMPLE	DV2						
Battery	Welker	Werker	NA						

Configuration Diagram – Conducted Emissions (Home Dock)

Configuration Diagram – Radiated Emissions (Home Dock)

Configuration Diagram – Conducted Emissions (Portable)

Configuration Diagram – Radiated Emissions (Portable)

Configuration Diagram – Radiated Emissions (CLA Adapter)

5.0 Transmitter Information for equipment operating under Parts 11, 15 and 18 of the rules (Transmitter Info - Unlicensed)

FCC Rule Part				
		Company Name:	Sirius XM Satellite Radio, Inc.	
		A data and	3161 S.W. 10th Street,	
	Applicant	Address:	Deerfield Beach, FL 33442	
		Phone:	202-680-4288	
2.1033(b)(1)		Contact Name:	Beejay Jolayemi	
		Company Name:	Same	
	Manufacturor	Address:	Same	
	Equipment	Phone:	Same	
		Contact Name:	Same	
		FCC ID:	RS2SXI1	
2.1033(b)(2)		EUT Model Number:	SXi1	
		EUT Serial Number:	NA	
2.1033(b)(3)		User Manual	Attach as separate exhibit.	
2.1033(b)(4)	Brief de	scription of circuit functions	Attach as separate exhibit.	
2.1033(b)(5)	Block diagram show	wing frequency of oscillators	Attach as separate exhibit.	
2.1033(b)(6)		Test report	Incorporated with this document	
2.1033(b)(7)	Inter	nal and external photographs	Attach as separate exhibit.	
2 1033(b)(8)	Peripheral Equipment	Can be used?	N/A	
2.1000(0)(0)	i empirerar Equipment	Comercially available?	N/A	
2.1033(b)(9)		Transition rules apply?	No	
2.1033(b)(10)		Scanning receiver?	No	
2.1033(b)(11)	Tra	nsmitter in 59-64 GHz band?	No	
2.1033(b)(12)		Software defined radio?	No	

6.0 Occupied Bandwidth (FCC 15C - 15.239 (a))

Method:

Test Requirement: Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.

Test Procedure: ANSI C63.4: 2003, Section 13.1.7 and Annex H.6

Results: The sample tested was found to Comply

Channel 88.1 – 155.717kHz

Lower Channel – 88.1MHz

Issued: 09/26/2011

25 kHz/

Upper Channel – 107.9MHz

Span 250 kHz

Channel 96.9 - 138.746kHz

EMC Report for Sirius XM Radio Inc on the SXi1

-12

-13

-14

Date:

Center 107.9 MHz

24.AUG.2011 13:01:50

7.0 § 15.107(a) / RSS-Gen 7.2.2 Conducted Emissions – Home Cradle

Method:

Equipment setup for conducted disturbance tests shall follow the guidelines of ANSI C63.4.

Measurements in the frequency range of 150kHz to 30 MHz shall be performed with a quasi-peak or average detector instrument that meets the requirements of Section One of CISPR 16. An AMN shall be used to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN defined in CISPR 16 shall be used.

In the frequency range of 150 kHz to 30 MHz, a resolution/video bandwidth of 9kHz/30kHz or greater shall be used.

The EUT shall be located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

If a flexible mains cord is provided by the manufacturer that is in excess of 1m, the excess cable shall be folded back and forth as far as possible to form a bundle not exceeding 0.4m in length.

The EUT shall be arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance shall be measured between each current carrying conductor and the reference ground. Each measured values shall be reported.

If EUT is intended for tabletop use, the EUT shall be placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is be placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table shall be constructed of non-conductive materials. Its dimensions are at least 1m by 1.5m, but may be extended for larger EUT.

If EUT is floor standing, the floor standing EUT shall be placed on a horizontal metal ground plane and isolated from the ground plane by up to 12 mm of insulating material. The metal ground plane shall extend at least 0.5m beyond the boundaries of the EUT and had minimum dimensions of 2m by 2m.

TEST SITE

The test site for conducted emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. The VCCI Registration Number for this site is C-2818.

MEASUREMENT UNCERTAINTY

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes. The values given are the measurement uncertainty values with an expanded uncertainty of k=2. 150 kHz to 30 MHz: +/- 2.8 dB

Results: The sample tested was found to Comply.

Specific Setup Details for Home Dock

- Home cradle connected to Home Sirius Satellite Antenna
- Home cradle connected to speaker set with supplied RCA audio cables
- Home cradle powered by AC home plug adapter
- Receiver configured to receive live Sirius Satellite programming
- Receiver configured for the Max audio output level.

7.0 § 15.107(a) / RSS-Gen 7.2.2 Conducted Emissions – Home Cradle

Peak Plot – 150kHz-30MHz

3 5 110

Tabular Data

Frequency Range (MHz): 0.15-30 Input power: 120VAC, 60Hz

Limit: CISPR Class B

- -

Modifications for compliance (y/n): n								
А	В	С	D	E	F	G	Н	Ι
LISN				Cable	LISN Ins.			
Number	Detector	Frequency	Reading	Loss	Loss	Net	Limit	Margin
1,2	(P , QP , A)	MHz	dBuV	dB	dB	dBuV	dBuV	dB
			Но	ome dock mo	ode			
1	QP	0.150	30.4	0.0	7.6	38.0	66.0	-28.0
1	А	0.150	10.0	0.0	7.6	17.6	56.0	-38.4
1	QP	0.189	32.8	0.0	7.3	40.1	64.3	-24.2
1	А	0.189	23.6	0.0	7.3	30.9	54.3	-23.4
1	QP	0.259	33.0	0.0	6.8	39.8	61.6	-21.8
1	А	0.259	19.6	0.0	6.8	26.4	51.6	-25.2
1	QP	0.318	30.1	0.0	6.6	36.7	59.8	-23.1
1	А	0.318	19.8	0.0	6.6	26.4	49.8	-23.4
1	QP	0.474	31.5	0.0	6.4	37.9	56.5	-18.6
1	А	0.474	20.2	0.0	6.4	26.6	46.5	-19.9
1	QP	0.663	32.4	0.0	6.4	38.8	56.0	-17.2
1	А	0.663	20.4	0.0	6.4	26.8	46.0	-19.2
2	QP	0.150	32.9	0.0	7.6	40.5	66.0	-25.5
2	А	0.150	11.2	0.0	7.6	18.8	56.0	-37.2
2	QP	0.189	32.9	0.0	7.2	40.1	64.3	-24.2
2	А	0.189	17.9	0.0	7.2	25.1	54.3	-29.2
2	QP	0.259	27.8	0.0	6.7	34.5	61.6	-27.1
2	А	0.259	12.5	0.0	6.7	19.2	51.6	-32.4
2	QP	0.318	24.1	0.0	6.7	30.8	59.8	-29.0
2	А	0.318	9.0	0.0	6.7	15.7	49.8	-34.1
2	QP	0.474	21.9	0.0	6.3	28.2	56.5	-28.3
2	А	0.474	5.0	0.0	6.3	11.3	46.5	-35.2
2	QP	0.663	26.7	0.0	6.3	33.0	56.0	-23.0
2	А	0.663	14.0	0.0	6.3	20.3	46.0	-25.7
Calculations		G=D-	+E+F	I=C	G-H			

8.0 § 15.109(a) Unintentional Radiated Emissions – Home Cradle

Method:

Measurements in the frequency range of 30 MHz to 1000 MHz shall be performed with a quasi-peak detector instrument that meets the requirements of Section One of CISPR 16. Above 1000 MHz, a peak detector shall be used. Peak values converted to average by applying the duty cycle correction factor, when applicable. When an average detector is used, it shall meet the requirements of Section One of CISPR 16. The measuring antenna shall correlate to a balanced dipole.

Bandwidths:

30 MHz to 1000 MHz: 120 kHz RBW and 1 MHz VBW

Above 1000 MHz: 1 MHz RBW and 3 MHz VBW

Measurements of the radiated field are made with the antenna located at a distance of 3 or 10 meters from the EUT. The limit applied to the measurement shall be appropriate for the test distance. The test distance shall be indicated in the results section.

The EUT shall be arranged and connected with cables terminated in accordance with the product specification.

Exploratory tests should be carried out while varying the cable positions to determine the maximum or near-maximum emission level. During manipulation, cables shall not be placed under or on top of the system test components unless such placement is required by the inherent equipment design.

The antenna shall be adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth shall be varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) shall be varied during the measurements to find the maximum field-strength readings.

If the EUT is intended for tabletop use, it shall be placed on a table whose top is 0.8m above the ground plane. The table shall be constructed of nonconductive materials. Its dimensions are at least 1m by 1.5m, but may be extended for larger EUT.

If EUT is floor standing, the EUT was placed on a horizontal metal ground plane and isolated from the ground plane by up to 12 mm of insulating material.

Equipment setup for radiated disturbance tests shall follow the guidelines of ANSI C63.4.

TEST SITE

The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

A2LA: 1455.01

IC: 2077-1

VCCI Registration Number: R-2570

MEASUREMENT UNCERTAINTY

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes. The values given are the measurement uncertainty values with an expanded uncertainty of k=2.

30 MHz to 1000 MHz at 3 meters: +/- 3.9 dB

30 MHz to 1000 MHz at 10 meters: +/- 3.6 dB

1 GHz to 18 GHz at 3 meters: +/- 4.2 dB

Specific Setup Details

- Home cradle connected to Home Sirius Satellite Antenna
- Home cradle connected to speaker set with supplied RCA audio cables
- Home cradle powered by AC home plug adapter
- Receiver configured to receive live Sirius Satellite Programming
- Receiver configured for the Max audio output level

8.0 § 15.109(a) Unintentional Radiated Emissions – Home Cradle

Peak Plot - 30MHz-1000MHz

Peak Plot - 1000MHz-18000MHz

Note: Peaks above the limit between 2.2 and 2.5GHz are signals transmitted into the chamber with the satellite signal and are not related to the DUT.

Peak Plot – 18000MHz-40000MHz

8.0 § 15.109(a) Unintentional Radiated Emissions – Home Cradle

Tabular Data

Fre	Frequency Range (MHz): 30-40000				Test Distance (m): 10					
	Ι	nput power:	120VAC, 60)Hz			Limit:	FCC15 Clas	s B-10m	
_]	Modificatio	ns for comp	liance (y/n):	n		
	А	В	С	D	Е	F	G	Н	Ι	J
ſ	Ant.			Antenna	Cable	Pre-amp		10m		Detectors /
	Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW
		-			Home	dock mode	-			
[V	41.535	33.2	12.1	1.2	28.6	17.9	29.5	-11.6	QP/120k/300k
	v	69.335	35.3	6.4	1.4	28.5	14.6	29.5	-14.9	QP/120k/300k
[v	167.999	44.1	9.9	2.1	28.3	27.9	33.0	-5.1	QP/120k/300k
[v	216.006	39.3	9.0	2.5	28.1	22.7	35.5	-12.8	QP/120k/300k
	v	281.100	38.3	13.1	2.9	28.2	26.1	35.5	-9.4	QP/120k/300k
[v	307.800	36.6	13.2	3.0	28.0	24.8	35.5	-10.7	QP/120k/300k
ſ	V	396.000	34.2	15.5	3.5	28.1	25.2	35.5	-10.3	QP/120k/300k
	v	424.600	35.6	16.3	3.6	27.9	27.5	35.5	-8.0	QP/120k/300k
ſ	v	454.300	31.7	16.8	3.7	28.0	24.2	35.5	-11.3	QP/120k/300k
	v	631.125	30.0	18.8	4.6	27.8	25.5	35.5	-10.0	QP/120k/300k
	v	647.775	29.2	18.9	4.7	27.8	25.0	35.5	-10.5	QP/120k/300k
[v	710.750	27.5	19.1	5.0	27.7	24.0	35.5	-11.5	QP/120k/300k
[v	982.800	21.2	21.3	5.9	27.3	21.1	43.5	-22.4	QP/120k/300k
	Calcu	lations	G=C+	D+E-F	I=C	G-H				

9.0 § 15.107(a) / RSS-Gen 7.2.2 Conducted Emissions – Portable

Method:

Equipment setup for conducted disturbance tests shall follow the guidelines of ANSI C63.4.

Measurements in the frequency range of 150kHz to 30 MHz shall be performed with a quasi-peak or average detector instrument that meets the requirements of Section One of CISPR 16. An AMN shall be used to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN defined in CISPR 16 shall be used.

In the frequency range of 150 kHz to 30 MHz, a resolution/video bandwidth of 9kHz/30kHz or greater shall be used.

The EUT shall be located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

If a flexible mains cord is provided by the manufacturer that is in excess of 1m, the excess cable shall be folded back and forth as far as possible to form a bundle not exceeding 0.4m in length.

The EUT shall be arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance shall be measured between each current carrying conductor and the reference ground. Each measured values shall be reported.

If EUT is intended for tabletop use, the EUT shall be placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is be placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table shall be constructed of non-conductive materials. Its dimensions are at least 1m by 1.5m, but may be extended for larger EUT.

If EUT is floor standing, the floor standing EUT shall be placed on a horizontal metal ground plane and isolated from the ground plane by up to 12 mm of insulating material. The metal ground plane shall extend at least 0.5m beyond the boundaries of the EUT and had minimum dimensions of 2m by 2m.

TEST SITE

The test site for conducted emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. The VCCI Registration Number for this site is C-2818.

MEASUREMENT UNCERTAINTY

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes. The values given are the measurement uncertainty values with an expanded uncertainty of k=2. 150 kHz to 30 MHz: +/- 2.8 dB

Results: The sample tested was found to Comply.

Specific Setup Details for Portable

- Receiver configured to receive live Sirius Satellite programming
- Receiver configured for the Max audio output level.

9.0 § 15.107(a) / RSS-Gen 7.2.2 Conducted Emissions – Portable

Peak Plot - 150kHz-30MHz

Tabular Data

Frequency Range (MHz): 0.15-30 Input power: 120VAC, 60Hz

Limit: CISPR Class B

Modifications for compliance (y/n): n									
А	В	C	D	E	F	G	Н	Ι	
LISN				Cable	LISN Ins.				
Number	Detector	Frequency	Reading	Loss	Loss	Net	Limit	Margin	
1,2	$(\mathbf{P}, \mathbf{QP}, \mathbf{A})$	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	QP	0.150	38.8	0.0	7.6	46.4	66.0	-19.6	
1	А	0.150	12.8	0.0	7.6	20.4	56.0	-35.6	
1	QP	0.157	37.5	0.0	7.6	45.1	65.7	-20.6	
1	А	0.157	11.1	0.0	7.6	18.7	55.7	-37.0	
1	QP	0.178	43.3	0.0	7.3	50.6	64.7	-14.1	
1	А	0.178	32.4	0.0	7.3	39.7	54.7	-15.0	
1	QP	0.197	32.8	0.0	7.0	39.8	63.8	-24.0	
1	А	0.197	3.7	0.0	7.0	10.7	53.8	-43.1	
1	QP	2.024	27.0	0.0	6.2	33.2	56.0	-22.8	
1	А	2.024	24.6	0.0	6.2	30.8	46.0	-15.2	
1	QP	3.750	30.2	0.0	6.2	36.4	56.0	-19.6	
1	А	3.750	18.1	0.0	6.2	24.3	46.0	-21.7	
2	QP	0.150	39.5	0.0	7.6	47.1	66.0	-18.9	
2	А	0.150	11.6	0.0	7.6	19.2	56.0	-36.8	
2	QP	0.157	37.8	0.0	7.6	45.4	65.7	-20.3	
2	А	0.157	11.1	0.0	7.6	18.7	55.7	-37.0	
2	QP	0.177	43.1	0.0	7.2	50.3	64.7	-14.4	
2	А	0.177	32.5	0.0	7.2	39.7	54.7	-15.0	
2	QP	0.197	32.5	0.0	7.2	39.7	63.8	-24.1	
2	А	0.197	5.4	0.0	7.2	12.6	53.8	-41.2	
2	QP	1.965	27.1	0.0	6.3	33.4	56.0	-22.6	
2	А	1.965	24.0	0.0	6.3	30.3	46.0	-15.7	
2	QP	3.693	29.2	0.0	6.3	35.5	56.0	-20.5	
2	А	3.693	19.5	0.0	6.3	25.8	46.0	-20.2	
Calculations		G=D	+E+F	I=C	G-H				

10.0 § 15.109(a) Unintentional Radiated Emissions – Portable

Method:

Measurements in the frequency range of 30 MHz to 1000 MHz shall be performed with a quasi-peak detector instrument that meets the requirements of Section One of CISPR 16. Above 1000 MHz, a peak detector shall be used. Peak values converted to average by applying the duty cycle correction factor, when applicable. When an average detector is used, it shall meet the requirements of Section One of CISPR 16. The measuring antenna shall correlate to a balanced dipole.

Bandwidths:

30 MHz to 1000 MHz: 120 kHz RBW and 1 MHz VBW

Above 1000 MHz: 1 MHz RBW and 3 MHz VBW

Measurements of the radiated field are made with the antenna located at a distance of 3 or 10 meters from the EUT. The limit applied to the measurement shall be appropriate for the test distance. The test distance shall be indicated in the results section.

The EUT shall be arranged and connected with cables terminated in accordance with the product specification.

Exploratory tests should be carried out while varying the cable positions to determine the maximum or near-maximum emission level. During manipulation, cables shall not be placed under or on top of the system test components unless such placement is required by the inherent equipment design.

The antenna shall be adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth shall be varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) shall be varied during the measurements to find the maximum field-strength readings.

If the EUT is intended for tabletop use, it shall be placed on a table whose top is 0.8m above the ground plane. The table shall be constructed of nonconductive materials. Its dimensions are at least 1m by 1.5m, but may be extended for larger EUT.

If EUT is floor standing, the EUT was placed on a horizontal metal ground plane and isolated from the ground plane by up to 12 mm of insulating material.

Equipment setup for radiated disturbance tests shall follow the guidelines of ANSI C63.4.

TEST SITE

The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

A2LA: 1455.01

IC: 2077-1

VCCI Registration Number: R-2570

MEASUREMENT UNCERTAINTY

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes. The values given are the measurement uncertainty values with an expanded uncertainty of k=2.

30 MHz to 1000 MHz at 3 meters: +/- 3.9 dB

30 MHz to 1000 MHz at 10 meters: +/- 3.6 dB

1 GHz to 18 GHz at 3 meters: +/- 4.2 dB

Specific Setup Details

- Receiver configured to receive live Sirius Satellite Programming
- Receiver configured for the Max audio output level

10.0 § 15.109(a) Unintentional Radiated Emissions – Portable

Peak Plot - 30MHz-1000MHz

Note: Peaks above the limit at 299.993MHz are signals transmitted into the chamber with the satellite signal and are not related to the DUT.

Peak Plot – 1000MHz-18000MHz

Peak Plot - 18000MHz-40000MHz

10.0 § 15.109(a) Unintentional Radiated Emissions – Portable

Tabular Data

Frequency Range (MHz): 30-40000				Test Distance (m): 10							
	I	nput power:	120VAC, 60)Hz			Limit:	FCC15 Class	s B-10m		
]	Modification	ns for comp	liance (y/n):	n			_
	А	В	С	D	Е	F	G	Н	Ι	J	
	Ant.			Antenna	Cable	Pre-amp		10m		Detectors /	
	Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths	
	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW	
		-			File tr	ansfer mod	e			-	
	V	34.200	35.4	16.2	1.2	28.5	24.4	29.5	-5.1	QP/120k/300k	
	V	63.475	37.6	6.2	1.5	28.5	16.8	29.5	-12.7	QP/120k/300k	
ſ	V	144.000	42.4	10.9	2.2	28.5	27.0	33.0	-6.0	QP/120k/300k	
	v	150.825	38.8	10.3	2.3	28.4	22.9	33.0	-10.1	QP/120k/300k	
ſ	V	163.475	34.4	10.0	2.4	28.3	18.5	33.0	-14.5	QP/120k/300k	
	h	200.000	40.3	10.1	2.7	28.0	25.1	33.0	-7.9	QP/120k/300k	
- [V	287.994	43.1	13.1	3.2	28.1	31.4	35.5	-4.1	QP/120k/300k	
	V	299.993	45.5	13.0	3.3	28.0	33.8	35.5	-1.7	QP/120k/300k	
	h	573.875	21.4	18.4	4.8	27.9	16.7	35.5	-18.8	QP/120k/300k	NF
ſ	V	653.850	21.2	18.8	5.2	27.8	17.5	35.5	-18.0	QP/120k/300k	NF
	v	797.875	18.5	19.6	5.9	27.6	16.4	35.5	-19.1	QP/120k/300k	
ſ	h	899.965	25.6	20.7	6.4	27.5	25.2	35.5	-10.3	QP/120k/300k	
	h	951.149	20.8	20.7	6.5	27.4	20.6	35.5	-14.9	QP/120k/300k	NF
ſ	h	957.050	20.8	20.7	6.5	27.4	20.7	35.5	-14.8	QP/120k/300k	NF
	h	1001.357	42.4	24.2	1.4	33.4	34.5	54.0	-19.5	Avg/1M/3M	
ſ	h	1248.000	44.8	25.4	1.6	32.9	39.0	54.0	-15.0	Avg/1M/3M	
Γ	v	14000.060	28.1	41.5	6.7	31.7	44.6	54.0	-9.4	Avg/1M/3M	NF
Ī	h	17905.631	27.7	45.8	6.9	32.3	48.2	54.0	-5.8	Avg/1M/3M	NF
	Calcu	lations	G=C+	D+E-F	I=C	G-H					-

Note: NF = Noise Floor Reading

11.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 88.1MHz

Method:

Testing was performed using the emissions test methods described in the previous section

Results: The sample tested was found to Comply.

Specific Setup Details

- The Sirius SXi1 is positioned in a vertical position with at the back edge of the wooden testing table.
- Sirius SXi1 is powered by its 5V Power*Connect* adapter via a 12V DC battery placed on the floor and an 'iFMCLA' power socket.
- The Sirius satellite antenna is connected to the Sirius SXi1's 'Antenna' port.
- The 'Audio' port of the Sirius SXi1 is terminated with its 'Aux-In' audio cable.
- The FM Modulator button should be used to enable the FM signal from the RSR.
- The Sirius SXi1 is configured to receive live *Sirius* programming service.
- The Sirius SXi1 is configured for Max audio output level.

11.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 88.1MHz

Peak Plot – 30MHz-1000MHz

Peak Plot - 1000MHz-18000MHz

Note: Peaks above the limit between 2.2 and 2.5GHz are signals transmitted into the chamber with the satellite signal and are not related to the DUT.

Peak Plot - 18000MHz-40000MHz

11.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 88.1MHz

Tabular Data

Fr	equency Ra	inge (MHz):	30-40000		Test Distance (m): 3						
	Input power: 12VDC battery				Limit: 15_239-3m						
					Modifications for compliance (y/n): n						
	А	В	С	D	Е	F	G	Н	Ι	J	
	Ant.			Antenna	Cable	Pre-amp		3m		Detectors /	
	Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths	
	(V/H)	MHz	dB(uV)	dB (1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW	
				-	Lov	w channel					
	V	67.013	22.2	6.2	1.7	28.5	1.7	46.0	-44.3	Pk/120k/300k	
	v	88.100	61.4	8.9	1.9	28.4	43.8	68.0	-24.2	Pk/120k/300k	
	v	88.100	60.7	8.9	1.9	28.4	43.1	48.0	-4.9	Av/120k/100Hz	
	h	88.100	56.0	9.9	1.9	28.4	39.5	68.0	-28.5	Pk/120k/300k	
	h	88.100	55.6	9.9	1.9	28.4	39.1	48.0	-8.9	Av/120k/100Hz	
	v	168.005	50.4	10.3	2.6	28.3	35.0	43.5	-8.5	QP/120k/300k	
	v	281.150	43.9	13.6	3.5	28.2	32.8	46.0	-13.2	QP/120k/300k	
	v	397.850	41.2	16.6	4.2	28.0	33.9	46.0	-12.1	QP/120k/300k	
	v	425.150	40.6	17.2	4.4	27.9	34.2	46.0	-11.8	QP/120k/300k	
	v	627.625	35.7	19.7	5.5	27.8	33.0	46.0	-13.0	QP/120k/300k	
	Calcu	lations	G=C+	D+E-F	I=(G-H					

12.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 96.9MHz

Method:

Testing was performed using the emissions test methods described in the previous section

Results: The sample tested was found to Comply.

Specific Setup Details

- The Sirius SXi1 is positioned in a vertical position with at the back edge of the wooden testing table.
- Sirius SXi1 is powered by its 5V PowerConnect adapter via a 12V DC battery placed on the testing table and an 'iFMCLA' power adapter.
- The Sirius satellite antenna is connected to the Sirius SXi1's 'Antenna' port.
- The 'Audio' port of the Sirius SXi1's dock is terminated with its 'Aux-In' audio cable.
- The FM Modulator menu should be used to enable the FM signal from the Sirius SXi1.
- The Sirius SXi1 is configured to receive live Sirius programming service.
- The Sirius SXi1 is configured for Max audio output level.

12.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 96.9MHz

Peak Plot - 30MHz-1000MHz

Peak Plot – 1000MHz-18000MHz

Note: Peaks above the limit between 2.2 and 2.5GHz are signals transmitted into the chamber with the satellite signal and are not related to the DUT.

Peak Plot – 18000MHz-40000MHz

12.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) - 96.9MHz

Tabular Data

Fre	Frequency Range (MHz): 30-40000					Test Distance (m): 3					
	Input power: 12VDC battery				Limit: 15_239-3m						
_					Modifications for compliance (y/n): n						
	А	В	С	D	Е	F	G	Н	Ι	J	
	Ant.			Antenna	Cable	Pre-amp		3m		Detectors /	
	Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths	
	(V/H)	MHz	dB(uV)	dB (1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW	
					Mi	d channel					
	v	96.900	60.9	10.5	2.0	28.4	45.0	68.0	-23.0	Pk/120k/300k	
	v	96.900	59.1	10.5	2.0	28.4	43.2	48.0	-4.8	Av/120k/100Hz	
	h	96.900	53.4	11.8	2.0	28.4	38.8	68.0	-29.2	Pk/120k/300k	
	h	96.900	52.8	11.8	2.0	28.4	38.2	48.0	-9.8	Av/120k/100Hz	
	v	168.003	50.4	10.3	2.6	28.3	35.0	43.5	-8.5	QP/120k/300k	
	v	280.850	43.8	13.6	3.4	28.2	32.7	46.0	-13.3	QP/120k/300k	
	v	398.500	41.1	16.6	4.2	28.0	33.9	46.0	-12.1	QP/120k/300k	
	v	425.450	40.5	17.2	4.4	27.9	34.1	46.0	-11.9	QP/120k/300k	
	v	629.750	35.7	19.7	5.5	27.8	33.0	46.0	-13.0	QP/120k/300k	
	Calculations		G=C+	D+E-F	I=0	G-H					

13.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 107.9MHz

Method:

Testing was performed using the emissions test methods described in the previous section

Results: The sample tested was found to Comply.

Specific Setup Details

- The Sirius SXi1 is positioned in a vertical position with at the back edge of the wooden testing table.
- Sirius SXi1 is powered by its 5V PowerConnect adapter via a 12V DC battery placed on the testing table and an 'iFMCLA' power adapter.
- The Sirius satellite antenna is connected to the Sirius SXi1's 'Antenna' port.
- The 'Audio' port of the Sirius SXi1's dock is terminated with its 'Aux-In' audio cable.
- The FM Modulator menu should be used to enable the FM signal from the Sirius SXi1.
- The Sirius SXi1 is configured to receive live Sirius programming service.
- The Sirius SXi1 is configured for Max audio output level.

13.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) @ 107.9MHz

Peak Plot – 30MHz-1000MHz

Peak Plot – 1000MHz-18000MHz

Note: Peaks above the limit between 2.2 and 2.5GHz are signals transmitted into the chamber with the satellite signal and are not related to the DUT.

Peak Plot – 18000MHz-40000MHz

13.0 § 15.239(b) / (c) Field strength requirements (FCC 15C - 15.239 (b)) - 107.9MHz

Tabular Data

Fre	Frequency Range (MHz): 30-40000				Test Distance (m): 3						
Input power: 12VDC battery				ery	Limit: 15_239-3m						
]	Modifications for compliance (y/n): n						
	А	В	С	D	Е	F	G	Н	Ι	J	
	Ant.			Antenna	Cable	Pre-amp		3m		Detectors /	
	Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths	
	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW	
					Hig	gh channel					
	v	107.900	59.7	12.3	2.1	28.2	45.8	68.0	-22.2	Pk/120k/300k	
	v	107.900	59.5	12.3	2.1	28.2	45.6	48.0	-2.4	Av/120k/100Hz	
	h	107.900	50.5	13.0	2.1	28.2	37.3	68.0	-30.7	Pk/120k/300k	
	h	107.900	48.2	13.0	2.1	28.2	35.0	48.0	-13.0	Av/120k/100Hz	
	v	168.001	50.8	10.3	2.6	28.3	35.4	43.5	-8.1	QP/120k/300k	
	v	281.150	43.5	13.6	3.5	28.2	32.4	46.0	-13.6	QP/120k/300k	
	v	397.750	40.9	16.6	4.2	28.0	33.6	46.0	-12.4	QP/120k/300k	
	v	426.000	40.2	17.2	4.4	27.9	33.8	46.0	-12.2	QP/120k/300k	
	v	628.250	36.4	19.7	5.5	27.8	33.7	46.0	-12.3	QP/120k/300k	
	Calculations		G=C+	D+E-F	I=(G-H					

14.0 Test Equipment List

Description	Manufacturer	Model	Serial Number	Cal Due
Bilog Antenna	Chase	CBL6112A	2622	10/13/2011
Cable E205	Megaphase	TM18 NKNK 118	9053201 003	05/12/2012
Cable E206	Megaphase	TM18 NKNK 118	9053201 004	05/12/2012
Cable MP3	Megaphase	G919-NKNK-394	MP3	05/12/2012
Cable ST-3	Storm Products Co.	PR90-195-7MTR	09-07-601	08/19/2012
Cable E401	Megaphase	TR40	E401	07/07/2012
Cable E402	Megaphase	TR40	E402	07/07/2012
Cable E403	Megaphase	TR40	E403	07/07/2012
Cable TT4	Andrews	TT4	TT4	05/24/2012
EMI Receiver	Hewlett Packard	8546A	213109	10/26/2011
EMI Receiver RF Preselector	Hewlett Packard	85460A	213108	10/26/2011
Horn Antenna (1-18GHz)	EMCO	3115	9208-3919	05/07/2012
Horn Antenna (18-40GHz)	EMCO	3116	9310-2222	07/07/2012
LISN	Fischer	FCC-LISN-50-50-M	2019	11/12/2011
Preamplifier, 10 MHz to 2000 MHz	Mini-Circuits	ZKL-2	D052005	08/16/2012
Preamplifier (1-18GHz)	Miteq	AMF-4D-001180-24-10P	1020106	10/04/2011
Preamplifier (18-40GHz)	Miteq	JS4	965178	07/06/2012
Preamplifier (18-40GHz)	Miteq	JS4	818197	07/06/2012
Spectrum Analyzer	Rohde & Schwartz	FSEK30	100253	10/22/2011

15.0 Revision History

Revision Level	Date	Report Number	Notes
Original issue	August 25, 2011	100455091ATL-001	
1	August 28, 2011	100455091ATL-001	Page 18, included statement about 299.993MHz signal viewed on the graph.
2	September 26, 2011	100455091ATL-001	Page 4, included support equipment table for CLA Adapter. Page 7, included Configuration diagram for CLA Adapter. Page 22 & 28, changed typo in detector section.