TEST REPORT

Reviewed by: Steven Hoke

Approved Signatory

Laboratory ID Submitter ID	Certification # 1367-01
PRODUCT SAFETY ENGINEERING, INC. 12955 Bellamy Brothers Boulevard Dade City, Florida 33525 USA PH (352) 588-2209 FX (352) 588-2544	XM Radio 7777 Glades Road Boca Raton, FL 33434
Report Issue Date: 68 mar 66 Sample Radio ID# 13 RDP1 -65 95	Test Report Number: 06F146B Model Designation: GEXINNO1
Sample Receipt Date: Dec 15, 2005	Product Description: Satellite Radio Receiver and FM Transmitter
Sample Test Date: see data sheets	Marketing Approval
Description of non-standard test method or test practice	: None
Estimated Measurement Uncertainty: Not Applicable	
Special limitations of use: None	
Traceability: reference standards of measurement have standards traceable to the NIST.	e heen calibrated by a competent body using
According to testing performed at Product Safety Engineering, Inc., the above requirements defined in regulations indicated on page (3) of the test report. Tabove. It is the manufacturer's responsibility to assure that additional product mechanical characteristics	The test results contained herein relate only to the model(s) identified
As the responsible EMC Project Engineer I hereby declare that the equipment page (3) of the test report.	nt tested as specified above conforms to the requirements indicated on
Signature Sold Tolotton Name	David Foerstner
Title Engineering Group Leader Date	OF MAR OF

This report may only be reproduced in full with written permission from Product Safety Engineering, Inc.

Ja Date \$8 mare \$6

DIRECTORY - EMISSIONS

A)	Documentation		Page(s)
	Test report Directory Test Regulations General Remarks Test-setups (Photos)		1 - 10 2 3 10 11 - 12
B)	Test data		
	Conducted emissions Radiated emissions Radiated emissions Interference power Equivalent Radiated emissions Antenna Disturbance Voltage	10/150 kHz - 30 MHz 10 kHz - 30 MHz 30 MHz - 1000 MHz 30 MHz - 300 MHz 1 GHz - 18 GHz 30 MHz - 1,000 MHz	5, 9 5, 9 6, 9 6, 9 7, 9 7,9
C)	Appendix A		
	Test Equipment Calibration Information Test Data Sheets		A2 A3 - A7
D)	Appendix B		
	System Under Test Description		B2 - B4
E)	Appendix C		
	Measurement Protocol		C1 - C2

EMISSIONS TEST REGULATIONS:

□ - FCC Part 18

The emissions tests were performed according to following regulations:

□ - EN 61000-6-3:2001		
□ - EN 61000-6-4:2001		
□ - EN 55011 : 1998 / A1:1999	□ - Group 1	□ - Group 2
	□ - Class A	□ - Class B
□ - EN 55013 : 1990 / A12:1994 / A13:1996 / A14:1999		
□ - EN 55014 -1: 2001	□ - Household appliances and □ - Portable tools	similar
	□ - Semiconductor devices	
□ - EN 55022 : 1998	□ - Class A	□ - Class B
□ -AS/NZS 3548:1995	□ - Class A	□ - Class B
□ - ICES-003	□ - Class A	□ - Class B
□ - CNS 13438	□ - Class A	□ - Class B
□ - VCCI : 1999	□ - Class A	□ - Class B
■ - FCC Part 15	□ - Class A	□ - Class B
	 Certification (Intentional Ra Verification Declaration of Conformity 	diator portion only)

Environmental conditions during testing:

		LAB	OATS			
Temperature: *			:			
Relative Humidity: **			:			
* The ambient temperature during the testin ** The humidity levels during the testing was	g was within the s within the rang	e range of (5 ge of (10% -	0° - 104° F) ս 90%) relative	inless indicted humidity unle	above. ess indicated a	above.
Power supply system	: 110	_Volts6	0 Hz	SINGLE	_ phase	
Sign Explanations:						

oıgıı ⊏xpıanations:

□ - not applicable

applicable

Product Description -

This product has (3) variations as follows:

- 1) Home dock AC powered docking station
- 2) Mobile dock 12 DC powered docking station
- 3) Portable Internal battery powered operation

The three versions were tested separately and the worst case configuration's data is included within the test report. The only version that connects to the mains is the home dock version. The mobile dock receives power from the car (12) volts and the mobile version is powered by an internal battery.

All versions may have the output frequency set at any standard broadcast FM frequency between (88.1 - 107.9) MHz. The testing was completed while the output frequency was set to a low, medium and high operating frequency. While operating at each of these (3) frequencies, the spurious emissions were measured up to the (10 th) harmonic.

Emissions Test Conditions: CONDUCTED EMISSIONS (Interference Voltage)

The CONDUCTED EMISSIONS (INTERFERENCE VOLTAGE) measurements were performed at the following test location:

□ - Test not applicable

- □ Darby Test Site (Open Area Test Site)■ Darby Laboratory

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
-	8028-50	Solar	50 Ω LİSN	829012, 829022
□ -	3825/2	Solar	50 Ω LISN	924840
I -	EMC-30	Electro-Metrics	EMI Receiver	191
□ -	8566B	Hewlett-Packard	Spectrum Analyzer	2421A00526
□ -	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
□ -	85662A	Hewlett Packard	Analyzer Display	2403A07352
□ -	8028-50	Solar	50 Ω LISN	903725, 903726
□ -	FCC-TLISN-T4	Fisher Custom Com.	Telecom ISN	20072

Emissions Test Conditions: RADIATED EMISSIONS (Magnetic Field)

The RADIATED EMISSIONS (MAGNETIC FIELD) measurements were performed at the following test location:

□ - Darby Test Site	(Open Area Test Site)
---------------------	-----------------------

□ -

at a test distance of:

□ - 3 meters

□ - 30 meters

Test not applicable

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
□ -	96005	Eaton	Log Periodic Antenna	1099
□ -	BIA-25	Electro-Metrics	Biconical Antenna	4283
□ -	8566B	Hewlett-Packard	Spectrum Analyzer	2421A00526
□ -	85662A	Hewlett-Packard	Analyzer Display	2403A07352
□ -	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
□ -	ALR-30M	Electro-Metrics	Loop Antenna	824
□ -	8447D	Hewlett Packard	Preamplifier	2944A06832
□ -	EMC-30	Electro-Metrics	EMI Receiver	191
□ -	ALA-130/A	Antenna Research	Loop Antenna	106

Emissions Test Conditions: RADIATED EMISSIONS (Electric Field)

The RADIATED EMISSIONS (ELECTRIC FIELD) measurements, in the frequency range of 30 MHz-1000 MHz, were tested in a horizontal and vertical polarization at the following test location:

□ - Test not applicable

- - Darby Site (Open Area Test Site)
- □ Darby Lab

п.

at a test distance of:

- - 3 meters
- □ 10 meters
- □ 30 meters

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
■ -	LPA30	eElectro-Metrics	Log Periodic Antenna	2280
-	BIA-30	Electro-Metrics	Biconical Antenna	3852
-	8566B	Hewlett-Packard	Spectrum Analyzer	2421A00526
-	85662A	Hewlett-Packard	Analyzer Display	2403A07352
-	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
■ -	8447D	Hewlett-Packard	Preamplifier (26dB)	2944A06832
□ -	EMC-30	Electro-Metrics	EMI Receiver	191
□ -	8568B	Hewlett Packard	Spectrum Analyzer	2407A03213
□ -	85650A	Hewlett Packard	Quasi-Peak Adapter	2043A00358
□ -	85662A	Hewlett Packard	Analyzer Display	2340A05806
□ -	96005	Eaton	Log Periodic	1099
□ -	BIA 25	Electro-Metrics	Biconical Antenna	4283

Emissions Test Conditions): INTERFERENCE POWER

The INTERFERENCE POWER measurements were performed by using the absorbing clamp on the mains and interface cables in the frequency range 30 MHz - 300 MHz at the following test location:

Test not applicable

□ - Darby Lab

□ -

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
□ -	MDS-21	Rhode&Schwarz	Absorbing Clamp	8608447020
□ -	8566B	Hewlett-Packard	Spectrum Analyzer	2421A00526
□ -	85662A	Hewlett-Packard	Analyzer Displáy	2403A07352
□ -	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
□ -	8447D	Hewlett-Packard	Amplifier (26 dB)	2944A06832
□ -	EMC-30	Electro-Metrics	EMÍ Receiver	191

The Equivalent Radiated Emissions measurements in the frequency range 1 GHz - 1.1 GHz	
were performed in a horizontal and vertical polarization at the following test location:	

■ - Darby Test Site (Open Area Test Site)

□ -

□ -

□ -

at a test distance of:

□ - 1 meters

■ - 3 meters

□ - 10 meters

□ - Test not applicable

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
-	8566B	Hewlett-Packard	Spectrum Analyzer	2421A00526
-	85662A	Hewlett-Packard	Analyzer Displáy	2403A07352
-	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
-	8449B	Hewlett-Packard	Preamplifier ·	3008A00320
-	3115	Electro-Mechanics	Double Ridge Guide Horn	3810

The Antenna Terminal Disturbance Voltage in the frequency range 30 MHz - 1,000 MHz were performed.

□ - Darby Test Site (Open Area Test Site)

□ - Laboratory

□ **-**

■ - Test not applicable

	Model Number	Manufacturer	Description	Serial Number
□ -	2F9-3C4-3C5	Wavecom	UHF PAL TV Modulator	185879
□ -	2F1-3C4-3C5	Wavecom	VHF PAL TV Modulator	157728
□ -	A-8000	IFR	Spectrum Analyzer	1306
□ -	8648B	Hewlett-Packard	Signal Generator	3623A01433
□ -	8648B	Hewlett-Packard	Signal Generator	3623A01477
-	LMV-182A	Leader	RMS Milli-Voltmeter	8010091
□ -	3202	Krhon-Hite	Active filter	5899
□-	FMT115	Leaming	FM Modulator	NONE
□ -	371	UDT	Optical power meter	06657
□ -	TSG95	Tektronix	PAL video / Audio generator	B028883
_			_	

Emission Test Results:

Conducted emissions 150 kHz - 30 MHz		
The requirements are	■ - MET	□ - NOT MET
Minimum limit margin Remarks: Against Average Limit	6.4 dB	at 0.23 MHz
Radiated emissions (magnetic field) 10 kHz - 3 The requirements are	0 MHz □ - MET	□ - NOT MET
Minimum limit margin Remarks:	dB	at MHz
Radiated emissions (electric field) 30 MHz - 10		
The requirements are	■ - MET	□ - NOT MET
Minimum limit margin Remarks: Measured in the mobile configuration	0.8 dB	at 107.5 MHz
Interference Power at the mains and interface of		
The requirements are	□ - MET	□ - NOT MET
Minimum limit margin Remarks:	dB	at MHz
Radiated emissions 1 GHz - 1.08 Gl	Hz	
The requirements are	■ - MET	□ - NOT MET
Minimum limit margin Remarks:	> 10 dB	at all GHz
	Hz - 1,000 MHz	
The requirements are	□ - MET	□ - NOT MET
Minimum limit margin Remarks:	dB	at MHz

GENERAL REMARKS:

The EUT's were tested in (3) orthogonal planes.

Measurements were made up to the tenth harmonic of the highest frequency transmitted.

There are (3) separate configurations that were tested.

- (1) Home installation, uses home style antenna and "home style" docking cradle
- (2) Mobile installation, uses vehicle style antenna and "vehicle style" docking cradle
- (3) Portable installation uses the short built in antenna attached to device and no docking station.

The EUT transmits at 200 KHz intervals starting at 88.1 MHz and ending at 107.9 MHz.

We tested all (3) configurations at 88.7, 98.5 & 107.5 MHz. Data is reported for the worst case configuration.

The line out port was never cabled during this "intentional radiator" testing because if cabled, it shuts off the transmitter.

SUMMARY:

The rec	quirements	according	to the	technical	regulations	are

- met
- □ **not** met.

The device under test does

- - fulfill the general approval requirements mentioned on page 3.
- \Box **not** fulfill the general approval requirements mentioned on page 3.

Testing Start Date

Dec 15, 2005

Testing End Date:

Dec 16, 2005

- PRODUCT SAFETY ENGINEERING INC -

Test Report Number 05F440B

Test Report Number 05F440B

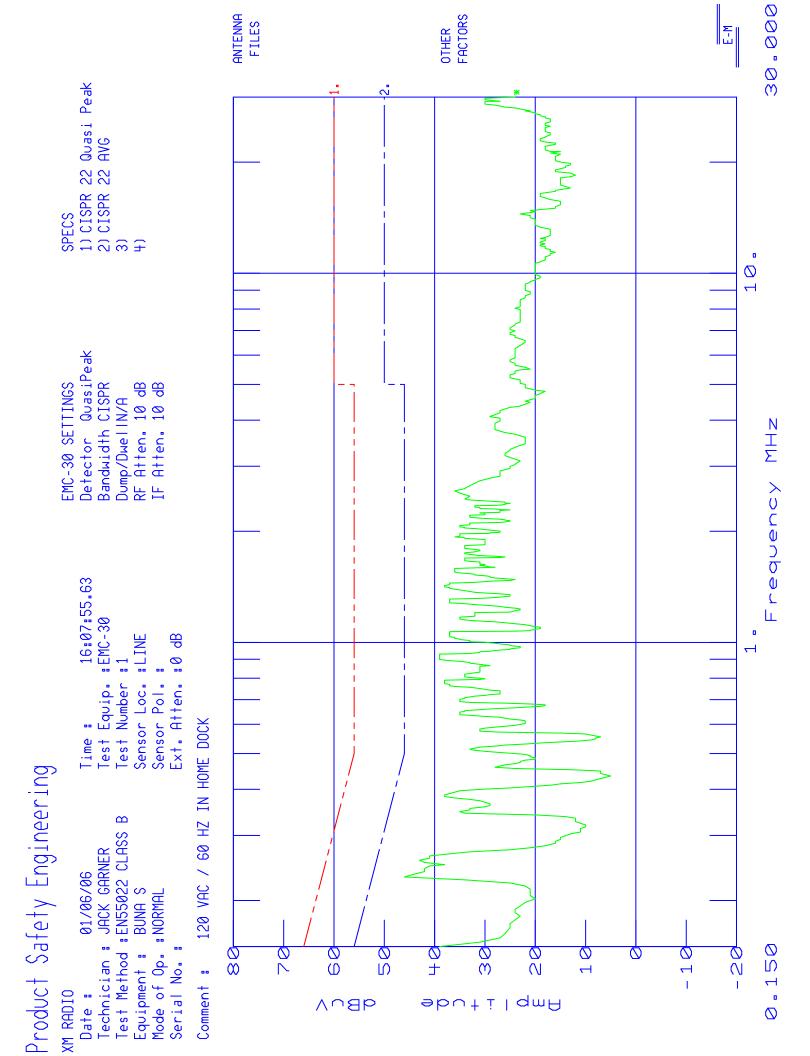
APPENDIX

A

Test Equipment Calibration Information

&

Test Data Sheets

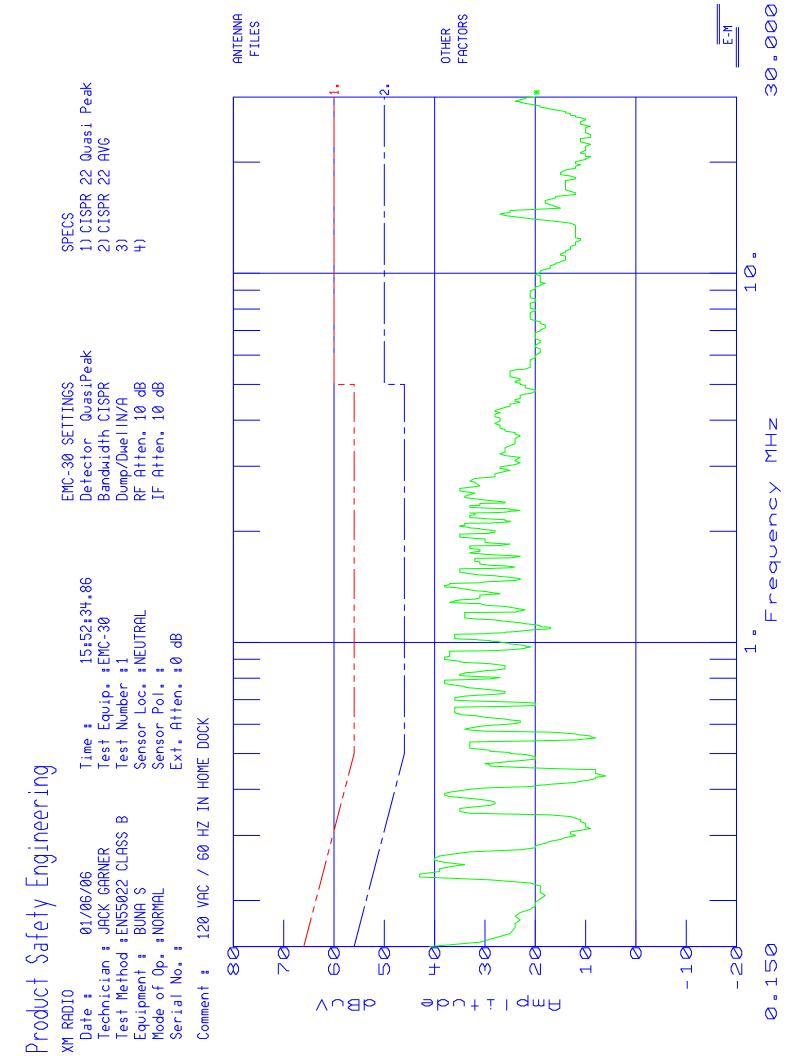

TEST EQUIPMENT CALIBRATION INFORMATION

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	07/18/06
Hewlett Packard	85662A	Display	2403A07352	07/18/06
Hewlett Packard	85650A	Quasi-Peak Adapter	2043A00209	07/18/06
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	12/08/06
Hewlett Packard	8568B	Spectrum Analyzer	2407A03213	08/03/06
Hewlett Packard	85662A	Display	2340A05806	08/03/06
Hewlett Packard	85650A	Quasi-Peak Adapter	2043A00358	08/03/06
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06901	08/03/06
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	1937A03247	08/03/06
Hewlett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	12/08/06
Hewlett Packard	8648B	Signal Generator	3443U00312	05/26/06
Hewlett Packard	8672A	Signal Generator	2211A02426	12/13/05
Eaton	96005	Log Periodic Antenna	1099	01/26/06
Electro-Metrics	LPA 30	Log Periodic Antenna	2280	01/11/06
Electro-Metrics	BIA 30	Biconical Antenna	3852	01/11/06
Electro-Metrics	BIA 25	Biconical Antenna	4283	01/27/06
Electro-Mechanics	3115	Double Ridge Guide Ant.	3810	11/28/07
Electro-Metrics	ALR30M	Magnetic Loop Antenna	824	01/10/06
Solar	8012	LISN	924840	03/10/06
Solar	8028	LISN	829012/809022	12/12/06
Solar	8028	LISN	903725/903726	11/22/06
Schwartzbeck	MDS-21	Absorbing Clamp	02581	12/09/06
Leader	LFG1310	Function Generator	8060233	05/26/06
Electro-Metrics	EMC-30	EMI Receiver	191	05/26/06
Antenna Research		Loop Antenna	106	06/02/06
Radio Shack	63-867	Temp/Hygrometer	N/A	05/27/06
Radio Shack	63-867A	Temp/Hygrometer	N/A	05/27/06

PRODUCT EMISSIONS

PRODUCT SAFETY ENGINEERING Data File: BUNA S MOBILE FCC-B 12-16-05

No	EMISSION FREQUENCY MHz		ABS	ASUREME dLIM dB	NTS MODE	POL	cm	AZM	đВ	COMMENTS
1	88.706	43.5	43.8	0.3	QP	н	300	1	-19.2	
2	98.286	43.5	46.5		QP	H	300	1	-16.2	
3	107.503	43.5	47.2		QP	V	100	1	-14.8	* ************************************
4	177.400	43.5		-17.2	PK	V	100	1	-10.2	20
5	196.601			-19.5	PK	V	100	1	-8.5	# Let 20
6	215.000			-26.0	PK	H	200		-13.8	
7	266.099			-29.0	PK	H	200		-12.1	
8	294.900			-26.9	PK	H	200		-10.6	
9	322.501	46.0		-24.0	PK	H	200	1	-10.4	
10	354.804	46.0		-23.6	PK	H	200		-10.5	2. 2.
11	392.703	46.0		-26.6	PK	H	200	1	-9.7	
12	430.000	46.0		-25.1	PK	H	200		-9.1	
13	443.500	46.0		-24.9	PK	H	200		-8.8	
14	491.500	46.0		-23.5	PK	H	200		-7.9	
15	532.200	46.0		-28.4	PK	H	200		-7.3	
16	537.499	46.0		-23.5	PK	H	200		-7.2	
17	589.800	46.0		-22.5	PK	H	200		-6.4	
18	620.900	46.0		-20.5	PK	H	200		-5.6	
19	645.000	46.0		-22.2	PK	H	200		-4.9	The section in
20	688.100	46.0		-30.8	PK	H	200		-3.8	
21	709.600	46.0		-20.1	PK	H	200		-3.4	
22	752.500	46.0		-20.0	PK	H	200		-3.1	
23	786.400	46.0		-19.6	PK	H	200		-2.8	
24	798.300	46.0		-19.1	PK	H	200		-2.7	
25	860.000	46.0		-17.0	PK	H	200		-0.9	
26	884.700	46.0	28.5	-17.5	PK	H	200		-0.3	
27	887.000	46.0	17.7	-28.3	PK	H	200		-0.2	
28	968.599	54.0		-24.0	PK	H	200		1.	
29	983.000	54.0	29.4	-24.7	PK	H	200		1.3	
30	999.999	54.0	29.4	-24.6	PK	H	200	1	1.6	Mkr @ 1075 MHz



TEST TITLE:XM RADIO
DATA FILE :BUNA_L.D30
Amplitude Units : dBuV

Threshold -7 dB

PAGE 1 Freq.(MHz) 0.1500

	Freq(MHz)	Amp	C22BQP.S30 vs Spec(dB)	c22BAVG.S30 vs Spec(dB)
1	0.2315	1 46.0	1	-6.396 * 1
i	0.8990	39.0		-7.000 * i
i	0.9024	39.0	i	-7.000 *
i	0.9058	39.0	i	-7.000 * (
1	0.9092	39.0	i	-7.000 *
İ	0.9126	39.0	i	-7.000 *
1	0.9160	39.0	i	-7.000 *
1	0.9194	39.0		-7.000 *
1	0.9228	39.0	i	-7.000 *
1	0.9262	39.0		-7.000 *
1	0.9296	39.0		-7.000 *

| TEST TITLE:XM RADIO | DATA FILE :BUNA_N.D30 | Amplitude Units : dBuV

Threshold -9 dB

PAGE 1 Freq.(MHz) 0.1500

0.7697	-	Freq(MHz)	Amp	C22BQP.S30 vs Spec(dB)	C22BAVG.S30 vs Spec(dB)
0.7765 38.0 -8.000 * 0.7799 38.0 -8.000 * 0.7833 38.0 -8.000 * 0.7967 38.0 -8.000 * 0.7901 38.0 -8.000 * 0.8956 37.0 -9.000 * 0.8990 38.0 -8.000 * 0.9024 38.0 -8.000 * 0.9058 38.0 -8.000 * 0.9092 38.0 -8.000 * 0.9126 38.0 -8.000 * 0.9126 38.0 -9.000 * 0.9126 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9339 37.0 -9.000 * 0.9433 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4245 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * -9.000 * -9.000 *	1	0.7697	37.0		-9.000 * }
0.7799	1		38.0	1	-8.000 *
0.7833	1				
0.7867	1			1	
0.7901	1				
0.8956	1		Chicago Company	1	
0.8990	1				
0.9024 38.0 -8.000 * 0.9058 38.0 -8.000 * 0.9092 38.0 -8.000 * 0.9126 38.0 -8.000 * 0.9160 37.0 -9.000 * 0.9194 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9399 37.0 -9.000 * 0.9433 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4341 37.0 -9.000 *	1			1	,
0.9058 38.0 -8.000 * 0.9092 38.0 -8.000 * 0.9126 38.0 -8.000 * 0.9160 37.0 -9.000 * 0.9194 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9433 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4341 37.0 -9.000 *	-				· · · · · · · · · · · · · · · · · · ·
0.9092 38.0 -8.000 * 0.9126 38.0 -9.000 * 0.9160 37.0 -9.000 * 0.9194 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4341 37.0 -9.000 *				1	1
0.9126 38.0 -8.000 * 0.9160 37.0 -9.000 * 0.9194 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4309 37.0 -9.000 *	1			1	
0.9160 37.0 -9.000 * 0.9194 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9399 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *					
0.9194 37.0 -9.000 * 0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9399 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4309 37.0 -9.000 *	1				
0.9228 37.0 -9.000 * 0.9262 37.0 -9.000 * 0.9296 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4309 37.0 -9.000 *	1				
0.9262 37.0 -9.000 * 0.9296 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	1				
0.9296 37.0 -9.000 * 0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9399 37.0 -9.000 * 0.9433 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *					
0.9330 37.0 -9.000 * 0.9365 37.0 -9.000 * 0.9399 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -9.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	1				
0.9365 37.0 -9.000 * 0.9399 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -9.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	!				
0.9399 37.0 -9.000 * 0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	!				
0.9433 37.0 -9.000 * 0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *					
0.9467 37.0 -9.000 * 1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *					
1.2831 37.0 -9.000 * 1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	1				
1.4145 38.0 -8.000 * 1.4212 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	-			,	
1.4212 38.0 -8.000 * 1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *					
1.4246 38.0 -8.000 * 1.4341 37.0 -9.000 * 1.4409 37.0 -9.000 *	-				· · · · · · · · · · · · · · · · · · ·
1.4341 37.0 -9.000 *	1				
1.4409 37.0 -9.000 *	-				
	-				
1 1.4443 (3/.0) -9.000 * [1	•			
,	1	1.4443	37.0	1	-9.000 *

APPENDIX

B

System Under Test Description

SYSTEM COMPONENTS

DEVICE TYPE: EUT, XM RADIO MODEL#YX-M1 SATELLITE RECEIVER/ FM TRANSMITTER

DEVICE TYPE: EUT, XM RADIO MOBILE DOCK (YA-CP100)

DEVICE TYPE: EUT, XM RADIO HOME DOCK (YA-CD100)

DEVICE TYPE: EUT, XM RADIO AC POWER SUPPLY, MODEL# SMPS5V2A-XMR

DEVICE TYPE: EUT, XM RADIO SATELLITE RADIO ANTENNA (MOBILE USE)

DEVICE TYPE: EUT, XM RADIO SATELLITE RADIO ANTENNA (HOME USE)

INTERFACE CABLES

DEVICE TYPE: HOME ANTENNA

SHIELD: COAX

LENGTH: 7 METERS

CONNECTOR TYPE: DEDICATED TO COAXIAL PLUG PORT: ANTENNA IN ON HOME DOCKING STATION

DEVICE TYPE: MOBILE ANTENNA

SHIELD: COAX

LENGTH: 7 METERS

CONNECTOR TYPE: DEDICATED TO COAXIAL PLUG PORT: ANTENNA IN ON MOBILE DOCKING STATION

AC LINE CORDS

DEVICE TYPE: POWER SUPPLY (AC SIDE)

SHIELD: NO LENGTH: N/A

CONNECTOR TYPE: 2 PIN POLARIZED WALL PLUG

DEVICE TYPE: POWER SUPPLY (DC SIDE)

SHIELD: NO LENGTH: 8 FEET

CONNECTOR TYPE: DEDICATED TO MINI COAXIAL PLUG TO EITHER DOCK

APPENDIX

(

Measurement Protocol

The test methodology followed during the collection of the data included within this technical report was ANSI C63.4:1992.

The EUT was powered with (120) VAC / (60) Hz during the collection of data included within.

The data is compared to the FCC Part 15 Class B limits.

The "EMI" instrumentation is capable of calculating the final emission level based on the following formula:

Level at the receiver (dB μ V) + Antenna Correction Factor (dB/M) + Cable Loss (dB) - Preamp Gain (dB) = Actual Level in dB μ V/M.

The sample calculation below is based on the actual test data collected:

 Observed Level
 63.1 dBμV

 ACF
 + 8.7 dB/M

 Cable Loss
 + 1.4 dB

 Preamp Gain
 - 26.0 dB

 Actual Level
 47.2 dBμV/M
 @ MHz

Please have a company official review this report and sign.
