

DFS TEST REPORT

REPORT NO.: RF950710H05A

MODEL NO.: WMP-D16SN

RECEIVED: May 11, 2007

TESTED: May 17, 2007

ISSUED: May 21, 2007

APPLICANT: Alpha Networks Inc.

ADDRESS: No.8 Li-shing 7th Rd., Science-based
Industrial Park, Hsinchu, Taiwan, R.O.C.

ISSUED BY: Advance Data Technology Corporation

TEST LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung
Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien,
Taiwan, R.O.C.

This test report consists of 21 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1. CERTIFICATION.....	3
2. SUMMARY OF TEST RESULTS.....	4
2.1 DYNAMIC FREQUENCY SELECTION	4
2.1.1 OPERATING FREQUENCY OF U-NII DEVICE.....	5
2.1.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS.....	5
2.1.3 TEST INSTRUMENTS	8
2.1.4 DESCRIPTION OF SUPPORT UNITS	8
2.1.5 SOFTWARE AND FIRMWARE	9
2.1.6 DESCRIPTION OF AVAILABLE ANTENNAS	9
2.1.7 MAXIMUM AND MINIMUM CONDUCTED POWER	10
2.1.8 MAXIMUM AND MINIMUM E.I.R.P. POWER	10
2.1.9 STATEMENT OF MANUFACTURER	11
2.1.10 TEST PROCEDURE	11
2.1.11 DEVIATION FROM TEST STANDARD	13
2.1.12 CONDUCTED TEST SETUP CONFIGURATION	13
2.1.13 LIST OF MEASUREMENTS	14
2.1.14 TEST RESULTS	15
2.2 ANTENNA REQUIREMENT	19
2.2.1 STANDARD APPLICABLE	19
2.2.2 ANTENNA CONNECTED CONSTRUCTION	19
3 INFORMATION ON THE TESTING LABORATORIES	20
APPENDIX-A	A-1

1. CERTIFICATION

PRODUCT: 802.11a/g Mini-PCI Card

BRAND NAME: Alpha

MODEL NO.: WMP-D16SN

TEST SAMPLE: ENGINEERING SAMPLE

TESTED: May 17, 2007

APPLICANT: Alpha Networks Inc.

STANDARDS: FCC Part 15, Subpart E (Section 15.407)

FCC 06-96

The above equipment (Model: WMP-D16SN) has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Midoli Peng
PREPARED BY : _____, **DATE:** May 21, 2007
(Midoli Peng)

Moris Lin
TECHNICAL ACCEPTANCE : _____, **DATE:** May 21, 2007
Responsible for RF (Moris Lin)

Hank Chung
APPROVED BY : _____, **DATE:** May 21, 2007
(Hank Chung, Deputy Manager)

2. SUMMARY OF TEST RESULTS

2.1 DYNAMIC FREQUENCY SELECTION

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Table 1: Applicability of DFS requirements prior to use a channel

Requirement	Operational Mode		
	Master	Client without radar detection	Client with radar detection
Non-Occupancy Period	✓	Not required	✓
DFS Detection Threshold	✓	Not required	✓
Channel Availability Check Time	✓	Not required	Not required
Uniform Spreading	✓	Not required	Not required
U-NII Detection Bandwidth	✓	Not required	✓

Table 2: Applicability of DFS requirements during normal operation.

Requirement	Operational Mode		
	Master	Client without radar detection	Client with radar detection
DFS Detection Threshold	✓	Not required	✓
Channel Closing Transmission Time	✓	✓	✓
Channel Move Time	✓	✓	✓
U-NII Detection Bandwidth	✓	Not required	✓

2.1.1 OPERATING FREQUENCY OF U-NII DEVICE

Table 3: Operating frequency range of UUT.

Operational Mode	Operating Frequency Range	
	5250~5350MHz	5470~5725MHz
Master	✓	✓
Client without radar detection	Not Apply	Not Apply
Client with radar detection	✓	✓

2.1.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

Table 4: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 5: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the UNII 99% transmission power bandwidth. See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 6: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120

Table 7: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 8: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (μsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

2.1.3 TEST INSTRUMENTS

Table 9: Test instruments list.

DESCRIPTION & MANUFACTURER	MODEL NO.	BRAND	CALIBRATED UNTIL
R&S Spectrum analyzer	FSP40	R&S	Aug. 15, 2007
Signal generator	8645A	Agilent	May. 26, 2008
Oscilloscope	TDS 5104	Tektronix	Apr. 16. 2008

2.1.4 DESCRIPTION OF SUPPORT UNITS

Table 10: Support Unit information.

No.	Product	Brand	Model No.	ID	Spec.
1	LOCATIONFREE TV BOX	SONY	LF-BOX1	N/A	Inside with WMP-D16SN
2	802.11a/b/g Access Point	Atheros	AR5BAP-00032A	PPD-AR5BAP-00032	The maximum EIRP is 24.65 dBm, Antenna Gain is 4dBi
3	LOCATIONFREE Base Station	SONY	LF-B1JP	N/A	
4	DVD Player	LG	LGDVB418	N/A	
5	Alpha_TV	Alpha	N/A	N/A	

2.1.5 SOFTWARE AND FIRMWARE

Table 11: The software/firmware version for U-NII device.

No.	Product	Model No.	Software/Firmware Version
1	LOCATIONFREE TV BOX	LF-BOX1	Version 1.00.04
2	802.11a/b/g Access Point	AR5BAP-00032	Version 5.1.0.42

2.1.6 DESCRIPTION OF AVAILABLE ANTENNAS

Table 12: Antenna list.

Ant NO.	Antenna	Type	Operation Frequency Range	Max. Gain(dBi)
1	MAIN: C037S510729-A (Black)	PCB	5.15 – 5.35 GHz	3.5
2	Auxiliary: C037S510730-A (Gray)	PCB	5.15 – 5.35 GHz	3

2.1.7 MAXIMUM AND MINIMUM CONDUCTED POWER

Table 13: The measured conducted output power.

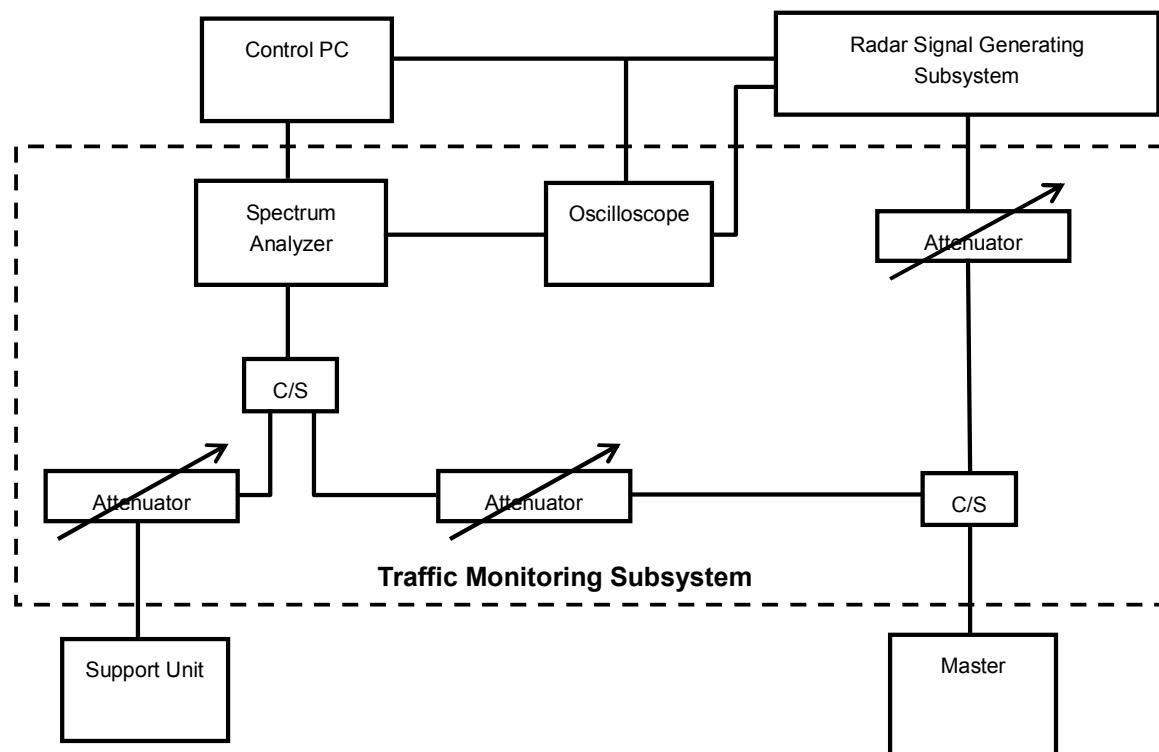
Ant NO.	Frequency Band(MHZ)	MAX. Power		MIN. Power	
		Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
1	5250~5350MHz	21.85	153.1087462	14.28	26.79168325

2.1.8 MAXIMUM AND MINIMUM E.I.R.P. POWER

Table 14: The E.I.R.P output power list.

Ant NO.	Frequency Band(MHZ)	MAX. Power		MIN. Power	
		Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)
1	5250~5350MHz	25.35	342.7677865	23.28	212.8139046

2.1.9 STATEMENT OF MANUFACTURER

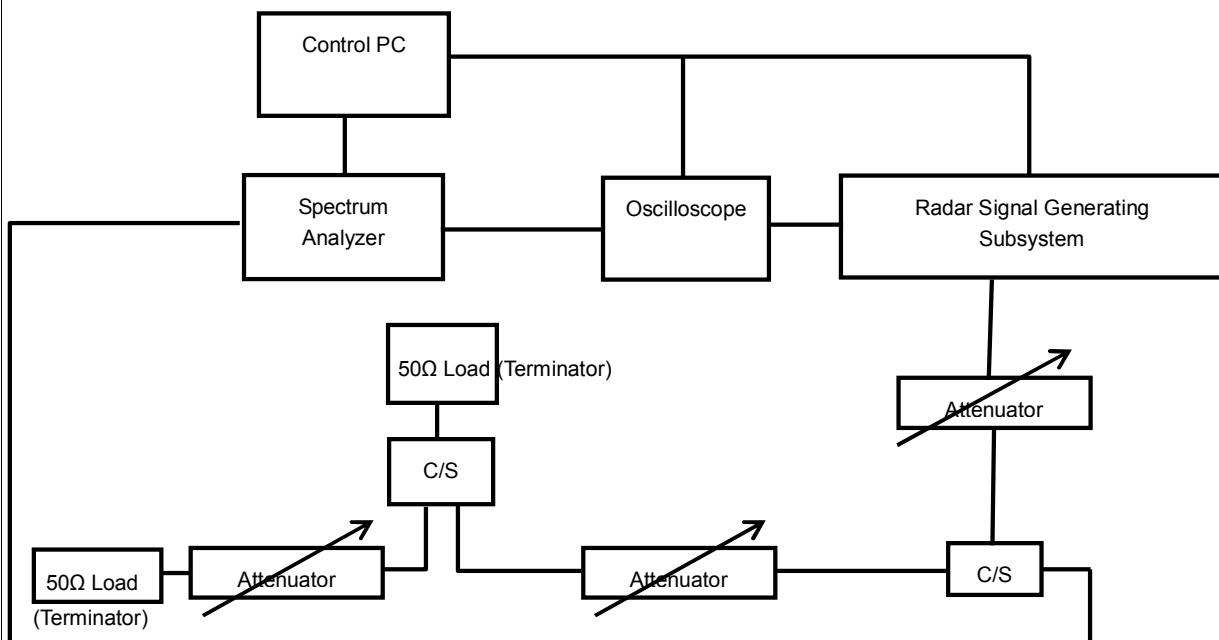

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

2.1.10 TEST PROCEDURE

ADT DFS Measurement System:

A complete ADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 6, 7 and 8. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Conducted setup configuration of ADT DFS Measurement System

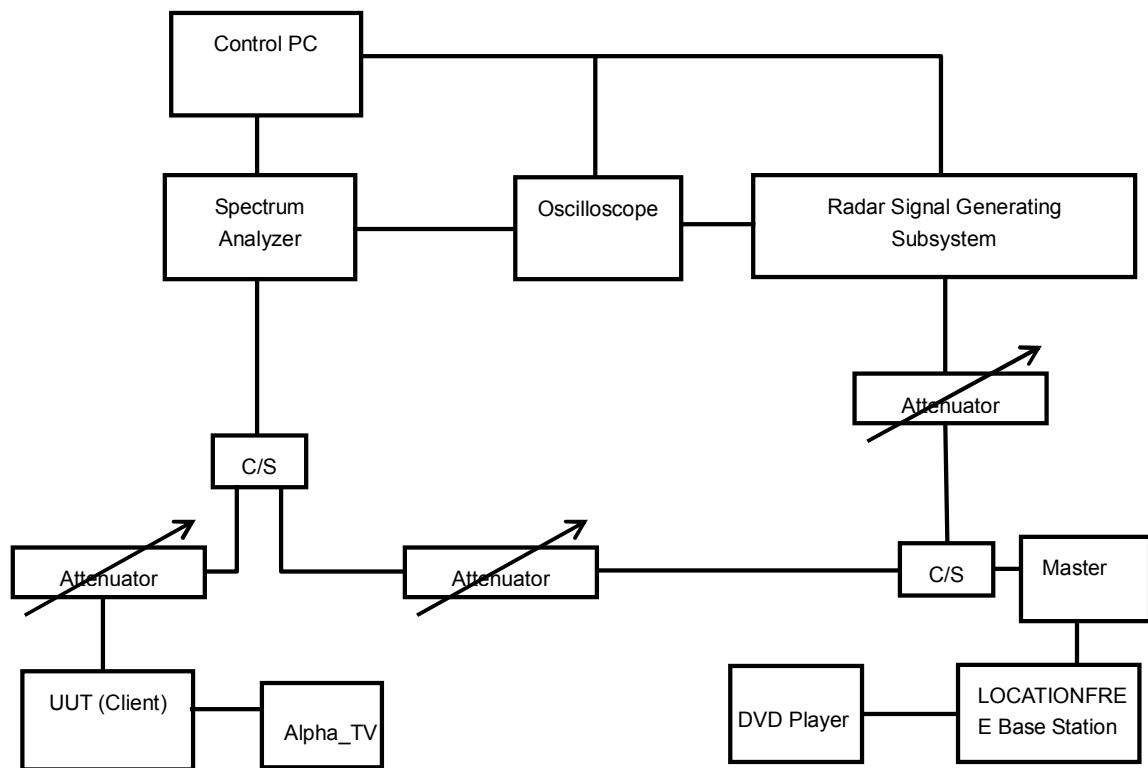

The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 $\frac{1}{2}$ Magic Hours) from Master device, the designated MPEG test file and instructions are located at:

<http://ntiacsd.ntia.doc.gov/dfs/>.

Calibration of DFS Detection Threshold Level:

The measured channel is 5320MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master), measured the channel closing transmission time and channel move time. The Required detection threshold is -59dBm ($= -64 + 1 + 4$)dBm. The calibrated conducted detection threshold level is set to -59dBm. The tested level is lower than required level hence it provides margin to the limit.

Conducted setup configuration of Calibration of DFS Detection Threshold Level



2.1.11 DEVIATION FROM TEST STANDARD

No deviation.

2.1.12 CONDUCTED TEST SETUP CONFIGURATION

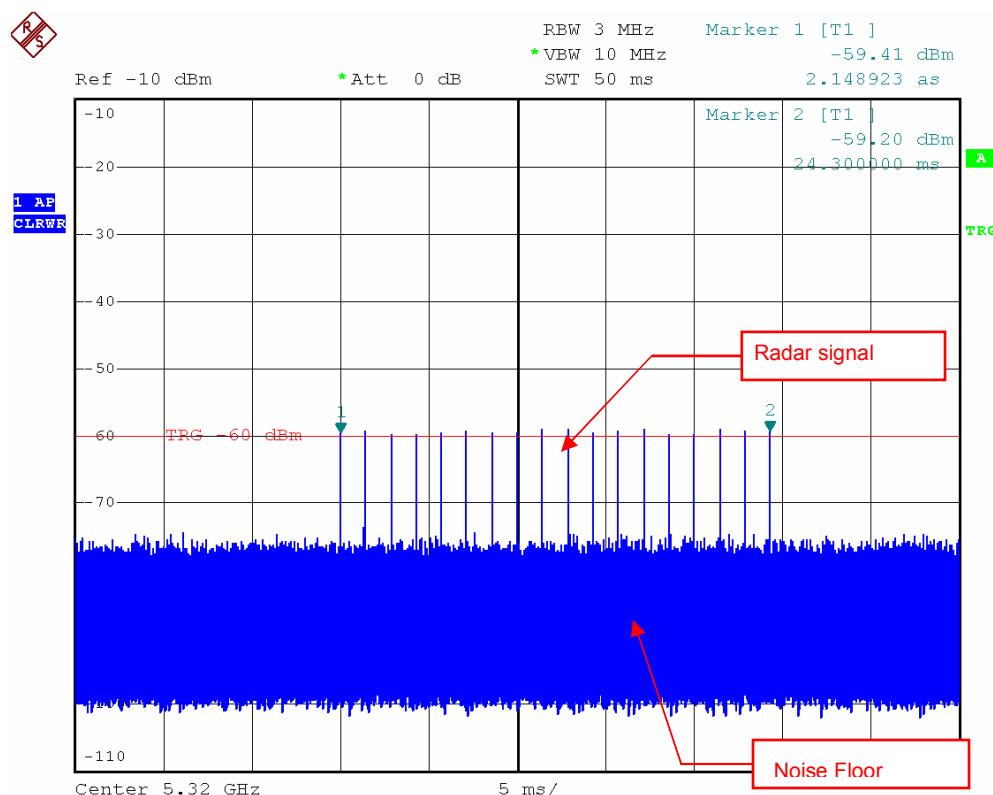
Client without radar detection mode (Radar injected into Master)

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

(The UUT operate on special configuration, maybe reference APPENDIX-B.)

2.1.13 LIST OF MEASUREMENTS

The UUT is capable of operating as a Client without radar detection.

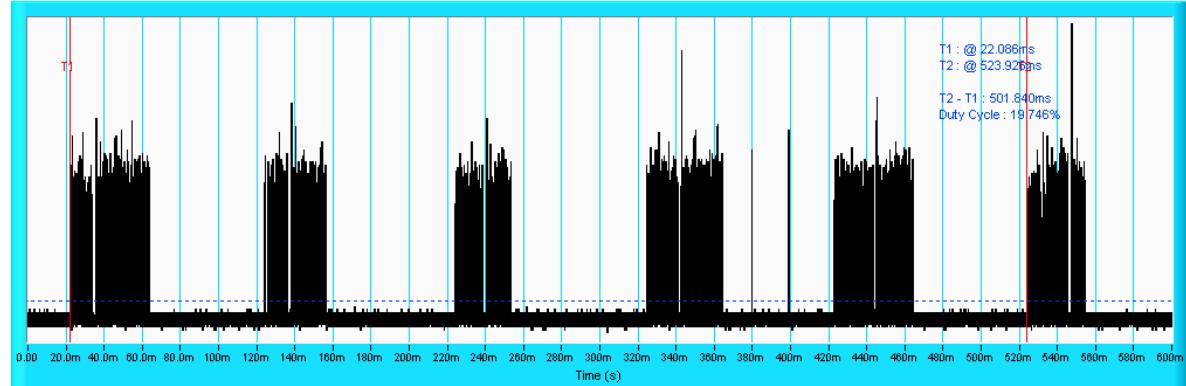

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Not Applicable	NA
15.407	Channel Availability Check Time	Not Applicable	NA
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Not Applicable	NA
15.407	Uniform Spreading	Not Applicable	NA
15.407	U-NII Detection Bandwidth	Not Applicable	NA

2.1.14 TEST RESULTS

The UUT is a U-NII Device operating in Client without Radar Detection mode. The radar test signals are injected into the Master Device.

1. DFS DETECTION THRESHOLD

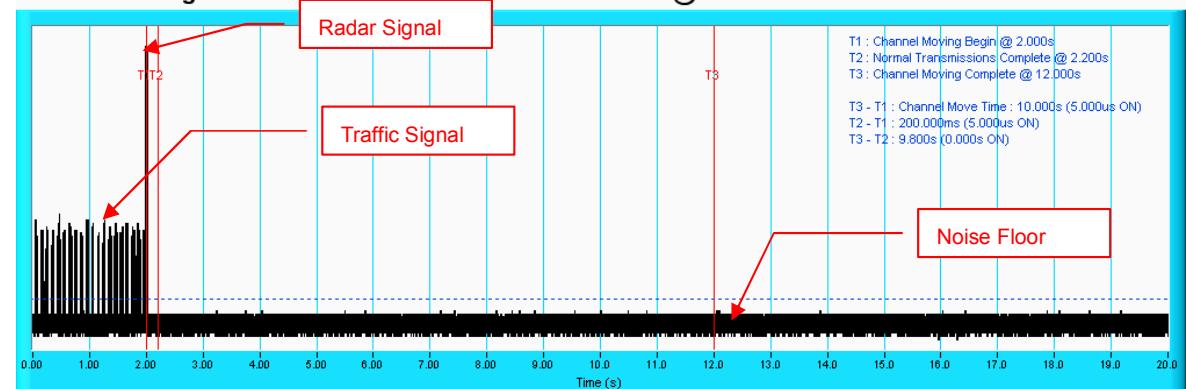
For a detection threshold level of -64dBm and the Master antenna gain is 4dBi . The Required detection threshold is -59dBm ($= -64 +1+4\text{dBm}$). The conducted radar burst level is set to -59dBm .


Date: 15.MAY.2007 21:34:04

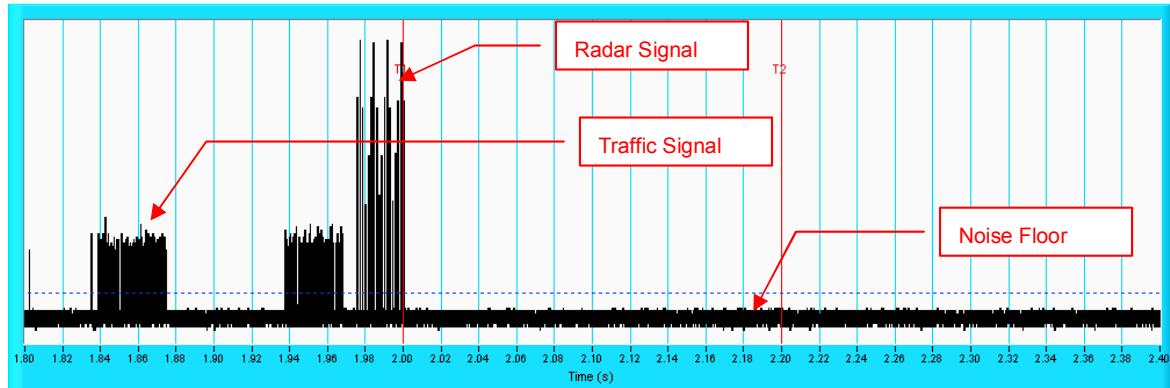
Radar Signal 1

2. Channel Closing Transmission and Channel Move Time

WLAN TRAFFIC


Duty Cycle @ CH064 - 5320MHz

NOTE: T1 denotes the start of duty cycle period is 0.022086th second. T2 denotes the end of duty cycle period is 0.523926th second. T2 – T1= 0.50184 seconds. Duty Cycle = 19.746%


Radar signal 1

Channel Closing Transmission Time & Channel Move Time @ CH064 - 5320MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

Channel Closing Transmission Time & Channel Move Time @ CH064 - 5320MHz

NOTE: An expanded plot for the device vacates the channel in the required 200ms.

Type 1 Radar Statistical Performances

Trial #	Pulses per Burst	Pulse Width (s)	PRI (s)	Detection
1	18	1.0u	1.428m	Yes
2	18	1.0u	1.428m	Yes
3	18	1.0u	1.428m	Yes
4	18	1.0u	1.428m	Yes
5	18	1.0u	1.428m	Yes
6	18	1.0u	1.428m	Yes
7	18	1.0u	1.428m	Yes
8	18	1.0u	1.428m	Yes
9	18	1.0u	1.428m	Yes
10	18	1.0u	1.428m	Yes
11	18	1.0u	1.428m	Yes
12	18	1.0u	1.428m	Yes
13	18	1.0u	1.428m	Yes
14	18	1.0u	1.428m	Yes
15	18	1.0u	1.428m	Yes
16	18	1.0u	1.428m	Yes
17	18	1.0u	1.428m	Yes
18	18	1.0u	1.428m	Yes
19	18	1.0u	1.428m	Yes
20	18	1.0u	1.428m	Yes
21	18	1.0u	1.428m	Yes
22	18	1.0u	1.428m	Yes
23	18	1.0u	1.428m	Yes
24	18	1.0u	1.428m	Yes
25	18	1.0u	1.428m	Yes
26	18	1.0u	1.428m	Yes
27	18	1.0u	1.428m	Yes
28	18	1.0u	1.428m	Yes
29	18	1.0u	1.428m	Yes
30	18	1.0u	1.428m	Yes

Detection Rate: 100 %

2.2 ANTENNA REQUIREMENT

2.2.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407(a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

2.2.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is as below:

Main Antenna						
No.	Model No.	Gain (dBi)	Cable Loss (dB)	Net Gain (dB)	Antenna Type	Connector
1	C037S510729-A	3.5	0.15	3.35	PCB	IPEX
Auxiliary Antenna						
No.	Model No.	Gain (dBi)	Cable Loss (dB)	Net Gain (dB)	Antenna Type	Connector
2	C037S510730-A	3	0.3	2.7	PCB	IPEX

3 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA , CSA
R.O.C.	CNLA, BSMI, NCC
Netherlands	Telefication
Singapore	PSB , GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232
Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

APPENDIX-A

MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.