

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No	MWR151101103 RQQHLT-L50SCM	
Compiled by		4
(position+printed name+signature):	File administrators Martin Ao	Montin
Supervised by	_	
(position+printed name+signature):	Test Engineer Yuchao Wang	yuchao.wahg
Approved by (position+printed name+signature):	Manager Dixon Hao	yuchao.wang Dixon
Date of issue	Nov. 01, 2015	
Representative Laboratory Name .:	Maxwell International Co., Ltd.	
Address	Room 509, Hongfa center building, Guangdong, China	, Baoan District, Shenzhen,
Testing Laboratory Name	Shenzhen CTL Testing Technolo	ogy Co., Ltd.
Address	Floor 1-A, Baisha Technology Nanshan District, Shenzhen, China	
Applicant's name	HYUNDAI CORPORATION	
Address	140-2, Kye-dong, Chongro-ku, Sec	oul, South Korea
Test specification:		
Standard	ECC Dort 45 247. Operation with	
	2400-2483.5 MHz and 5725-5850	nin the bands 902-928 MHz, MHz
TRF Originator	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd.	
	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re-	MHz purposes as long as the erial. Maxwell International Co.,
TRF Originator Maxwell International Co., Ltd. All This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages re ial due to its placement and context.	MHz purposes as long as the erial. Maxwell International Co.,
TRF Originator Maxwell International Co., Ltd. All This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages ri ial due to its placement and context. Mobile Phone	MHz purposes as long as the erial. Maxwell International Co.,
TRF Originator: Maxwell International Co., Ltd. All This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Test item description	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial pyright owner and source of the material ill not assume liability for damages re- ial due to its placement and context. Mobile Phone HYUNDAI	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator. : Maxwell International Co., Ltd. All of This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materiation Test item description : Trade Mark :	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the material ill not assume liability for damages re- ial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the material ill not assume liability for damages re- ial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator. : Maxwell International Co., Ltd. All n This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Test item description Trade Mark Manufacturer Model/Type reference.	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages rial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co L505	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator. : Maxwell International Co., Ltd. All of This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Trade Mark Manufacturer Model/Type reference. Listed Models	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial pyright owner and source of the material not assume liability for damages re- ial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co L505 N/A	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator. : Maxwell International Co., Ltd. All of This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi Test item description Trade Mark Model/Type reference. Listed Models Modulation Type	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the material ill not assume liability for damages re- ial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co L505 N/A GFSK,8DPSK,π/4DQPSK	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator. : Maxwell International Co., Ltd. All n This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Test item description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Type Operation Frequency	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages rial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co L505 N/A GFSK,8DPSK,π/4DQPSK From 2402MHz to 2480MHz	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's
TRF Originator. : Maxwell International Co., Ltd. All n This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Test item description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Type Qperation Frequency	2400-2483.5 MHz and 5725-5850 Maxwell International Co., Ltd. rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages ri- ial due to its placement and context. Mobile Phone HYUNDAI Skycom Telecommunications Co L505 N/A GFSK,8DPSK,π/4DQPSK From 2402MHz to 2480MHz DC 3.80V	MHz purposes as long as the erial. Maxwell International Co., esulting from the reader's

TEST REPORT

Test Report No. :	MWR151101103		Nov. 01, 2015	
Equipment under Test	:	Mobile Phone		
Model /Type	:	L505		
Listed Models	:	N/A		
Applicant	:	HYUNDAI CORPORAT	ION	
Address	:	140-2, Kye-dong, Chon	gro-ku, Seoul, South Korea	
Manufacturer	:	Skycom Telecommuni	cations Co., Limited	
Address	:		engtang Bldg., No.1, Tairan 9 Rd., istrict, Shenzhen, China	

Test Result: PASS

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	TEST STANDARDS	. 4
<u>2</u>	SUMMARY	. 5
2.1	General Remarks	5
2.2	Product Description	5
2.3		6
2.4	Short description of the Equipment under Test (EUT)	6
2.5	EUT operation mode	6
2.6	Internal Identification of AE used during the test	7
2.7	Related Submittal(s) / Grant (s)	7
2.8	Modifications	7
<u>3</u>	TEST ENVIRONMENT	. 8
3.1	Address of the test laboratory	8
3.2		8
3.3		8
3.4		8
3.5		9
3.6	Equipments Used during the Test	10
<u>4</u>	TEST CONDITIONS AND RESULTS	11
4.1	AC Power Conducted Emission	11
4.2	Radiated Emission	14
4.3	Maximum Peak Output Power	20
4.4	20dB Bandwidth	21
4.5	Band Edge	25
4.6	Frequency Separation	33
4.7	Number of hopping frequency	35
4.8	Time of Occupancy (Dwell Time)	37
4.9	Spurious RF Conducted Emission	41
4.10	Pseudorandom Frequency Hopping Sequence	65
4.11	Antenna Requirement	66
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	<u>67</u>
<u>6</u>	EXTERNAL PHOTOS OF THE EUT	<u>67</u>
7_	INTERNAL PHOTOS OF THE EUT	67

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2009</u>: American National Standard for Testing Unlicensed Wireless Devices

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	Oct. 10, 2015
Testing commenced on	:	Oct. 11, 2015
Testing concluded on	:	Nov. 01, 2015

2.2 Product Description

The **HYUNDAI CORPORATION**'s Model: L505 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	L505
	GMSK for GSM/GPRS, 8-PSK for EDGE,QPSK for UMTS, QPSK,
Modilation Type	16QAM for LTE
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS FDD Band II/IV/V
	IEEE 802.11b:2412-2462MHz
	IEEE 802.11g:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT FCC Operation frequency	2402MHz-2480MHz
HSDPA Release Version	Release 10
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
LTE Release Version	R8
LTE Operation Frequency Band	Device supported FDD band 2, FDD band 4, FDD band 7, FDD band
	17
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEAN FEE Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	WW818-MB-V0.5
Software version	HYUNDAI_L505_V4.0.3
Android version	Android 4.4.2
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/ PCS1900:Power Class 1
GSM/EDGE/GPRS Operation	GSM850 :824.2MHz-848.8MHz/PCS1900:1850.2MHz-1909.8MHz
Frequency	G310050 .024.210112-048.010112/FC31900.1650.210112-1909.010112
GSM/EDGE/GPRS Operation	GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900
Frequency Band	
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.80VDC)
GPRS operation mode	Class B

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow))

DC 3.80V

2.4 Short description of the Equipment under Test (EUT)

2.4.1 General Description

L505 is subscriber equipment in the WCDMA/GSM /LTE system. The HSPA/UMTS frequency band is Band II, Band IV and Band V, LTE frequency band is band 2, band 4, band 7,band 17; The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS ,LTE and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5 EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR

(Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying

in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried

out at the lowest channel, middle channel and highest channel .

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41 2443	
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466

25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.6 Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1 Model: TPA-5950100UU INPUT: 100-240V~ 50/60Hz 0.2A OUTPUT: DC 5.0V 1.0A

*AE ID: is used to identify the test sample in the lab internally.

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: RQQHLT-L50SCM filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Conditions

Test Case	Test Conditions			
Test Case	Configuration	Description		
	Meas. Method	ANSI C63.10:2009		
20dB Emission	Test Environment	NTNV		
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78, TM3_3DH5_Ch00,TM3_3DH5_Ch39,TM3_3DH5_Ch78,		
Carrier Frequency	Meas. Method	ANSI C63.10:2009		
Carrier Frequency	Test Environment	NTNV		
Separation	EUT Conf.	TM1_DH5_Hop, TM3_3DH5_Hop,		
Number of Henning	Meas. Method	ANSI C63.10:2009		
Number of Hopping Channel	Test Environment	NTNV		
Channel	EUT Conf.	TM1_DH5_Hop ,TM3_3DH5_Hop,		
Time of Occupancy	Meas. Method	ANSI C63.10:2009		
Time of Occupancy (Dwell Time)	Test Environment	NTNV		
	EUT Conf.	TM1_DH5_Ch39 ,TM3_3DH5_Ch39.		
	Meas. Method	ANSI C63.10:2009		
Maximum Peak	Test Environment	NTNV		
Conducted Output Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78,TM2 _2DH3_Ch00,TM2_2DH3_Ch39,TM2_2DH3_Ch78,TM3		
	Maga Mathad	_3DH3_Ch00,TM3_3DH3_Ch39,TM3_3DH3_Ch78,		
Bandedge spurious	Meas. Method	ANSI C63.10:2009		
emission	Test Environment	NTNV		
(Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78, TM3_3DH3_Ch00,TM3_3DH3_Ch78,		

	Meas. Method	ANSI C63.10:2009
Conducted RF Spurious	Test Environment	NTNV
Emission	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78, TM3_3DH5_Ch39, TM3_3DH5_Ch39, TM3_3DH5_Ch78.
Radiated Emissions in the Restricted Bands	Meas. Method	ANSI C63.10:2009 30 MHz to 1 GHz: Pre: RBW=100kHz; VBW=300kHz; Det. = Peak. Final: RBW=120kHz; Det. = CISPR Quasi-Peak. 1 GHz to 26.5GHz: Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak; Sweep-time= Auto; Trace = Single. Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep- time= Auto; Trace≥ MaxHold * 100.
	Test Environment	NTNV
		30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
	EUT Conf.	1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch39,
		TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions	
Test Case	Configuration	Description
AC Dewer Line Conducted	Measurement Method	AC mains conducted.
AC Power Line Conducted	Test Environment	NTNV
	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).

Note:

1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

2. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-					Not applicable for FHSS!
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	🛛 Full	GFSK 8DPSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\mathbb{X}				complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK 8DPSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.205	Band edge compliance	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest					complies

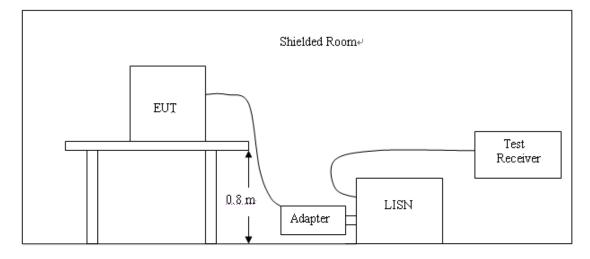
Page 10 of 67

Report No.: MWR151101103

	radiated							
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes		complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes		complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	\boxtimes		complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies

Remark:

- The measurement uncertainty is not included in the test result. NA = Not Applicable; NP = Not Performed 1.
- 2.
- 3. We tested all test mode and recorded worst case in report


3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.12	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	N9030A	MY49430428	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	SCHWARZBECK	FMZB1519	1519-037	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Temperature/ Humidity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
High-Pass Filter	K&L	9SH10- 2700/X12750-O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	K&L	41H10- 1375/U12750-O/O	N/A	2015/05/20	2016/05/19
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2015/06/02	2016/06/01
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/06/02	2016/06/01
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/06/02	2016/06/01
RF Cable	Megalon	RF-A303	N/A	2015/06/02	2016/06/01
Power Sensor	R&S	NRP-Z4	823.3618.03	2015.06.02	2016.06.01
Power Meter	R&S	NRVS	1020.1809.02	2015.06.02	2016.06.01

4 TEST CONDITIONS AND RESULTS

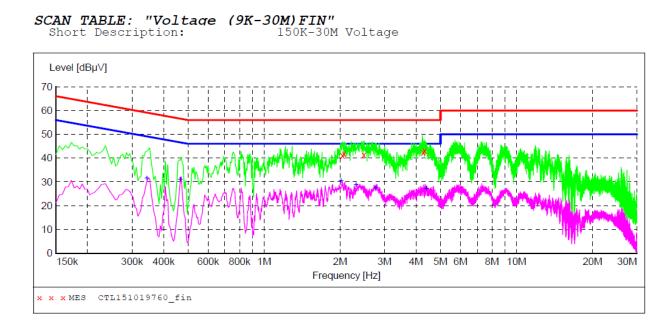
4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency	Maximum RF Line Voltage (dBµV)						
Frequency (MHz)	CLA	SS A	CLA	SS B			
	Q.P.	Ave.	Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

* Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: We tested Conducted Emission of GFSK, $\pi/4$ DQPSK and 8DPSK mode from 0.15 KHz to 30MHz (DH1, DH3 and DH5) and all channels (low, middle and high), recorded the worst case data at GFSK DH5 middle channel.

MEASUREMENT RESULT: "CTL151019760 fin"

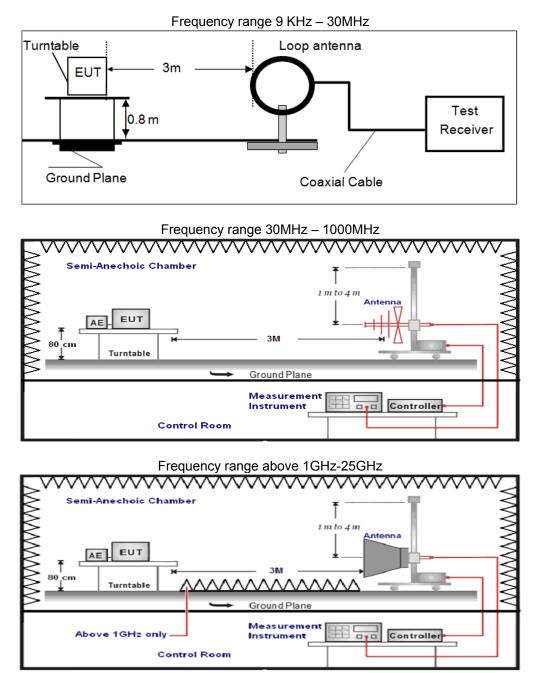
10/19/2015 7:56PM Level Transd Limit Margin Detector Line Frequency PE dBµV dB dBµV MHz dB 10.4 56 2.044501 41.00 15.0 QP Ν GND 10.4 2.071501 42.00 56 14.0 QP GND Ν 10.4 2.485501 41.30 56 14.7 QP Ν GND 4.267501 42.40 56 13.6 QP Ν GND 10.4 4.321501 Ν 43.10 56 12.9 QP GND

MEASUREMENT RESULT: "CTL151019760 fin2"

10/19/2015 7 Frequency MHz	:56PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.343501 0.465001 2.017501 2.314501 2.769001 4.384501	31.30 31.00 30.40 28.50 27.30 27.20	10.2 10.2 10.4 10.4 10.4 10.4	49 47 46 46 46 46	15.6 15.6	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

L SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage Level [dBµV] 70 ÷. 60 --+ ļ 50 MAN MARCE 40 30 20 10 0 -10 150k 3M 4M 5M 6M 20M 30M 300k 400k 600k 800k 1M 2M 8M 10M Frequency [Hz] x x x MES CTL151019761_fin

MEASUREMENT RESULT: "CTL151019761 fin"


10/19/2015 8 Frequency MHz	:00PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
1.338001 1.383001 1.671001 1.774501 1.783501	43.50 44.20 43.90 45.80 45.30	10.3 10.3 10.3 10.3 10.3	56 56 56 56	12.5 11.8 12.1 10.2 10.7	QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND
3.318001	41.40	10.4	56	14.6	QP	L1	GND

MEASUREMENT RESULT: "CTL151019761_fin2"

10/19/2015 8: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.460501	35.30	10.2	47	11.4	AV	L1	GND
1.320001	32.40	10.3	46	13.6		L1	GND
1.387501	32.50	10.3	46	13.5		L1	GND
1.716001	34.70	10.3	46	11.3		L1	GND
1.774501	34.70	10.3	46	11.3		L1	GND
1.792501	34.30	10.3	46	11.3		L1	GND

4.2 Radiated Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768 KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
1GHz-40GHz	Sweep time=Auto	(Receiver)
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=3MHz,	Average
	Sweep time=Auto	(Receiver)

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78).

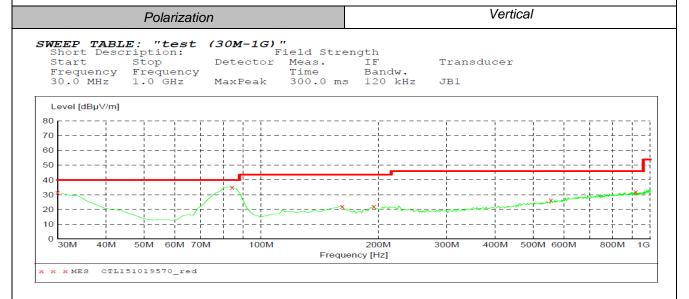
2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.

- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. We tested both battery powered and powered by adapter charging mode at three orientate ones, recorded worst case at powered by adapter charging mode.

5. "---" means not recorded as emission levels lower than limit.

6. Margin= Limit - Level

For 9KHz to 30MHz


Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
12.65	47.55	69.54	21.99	QP	PASS
20.45	42.69	69.54	26.85	QP	PASS

For 30MHz to 1000MHz

Polarizat	ion	Horizontal					
SWEEP TABLE: "test Short Description: Start Stop Frequency Frequency 30.0 MHz 1.0 GHz	Field Stre Detector Meas.	IF Transducer Bandw.					
Level [dBµ∀/m]							
80 70 60 50 40 30 20 10	*						
0 30M 40M 50M 60M 7		200M 300M 400M 500M 600M 800M 1G iency [Hz]					
× × × MES CTL151019571_red							

MEASUREMENT RESULT: "CTL151019571_red"

				_					
_ , _ ,	06PM								
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization	
30.000000	24.70	20.8	40.0	15.3		0.0	0.00	HORIZONTAL	
84.320000	19.40	8.8	40.0	20.6		0.0	0.00	HORIZONTAL	
158.040000	19.60	13.7	43.5	23.9		0.0	0.00	HORIZONTAL	
202.660000	20.30	14.1	43.5	23.2		0.0	0.00	HORIZONTAL	
532.460000	26.00	20.5	46.0	20.0		0.0	0.00	HORIZONTAL	
949.560000	31.90	26.5	46.0	14.1		0.0	0.00	HORIZONTAL	

MEASUREMENT RESULT: "CTL151019570_red"

10/19/2015 9	:04PM							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg	
30.000000	31.50	20.8	40.0	8.5		0.0	0.00	VERTICAL
84.320000	35.10	8.8	40.0	4.9		0.0	0.00	VERTICAL
161.920000	22.10	13.6	43.5	21.4		0.0	0.00	VERTICAL
194.900000	22.00	13.2	43.5	21.5		0.0	0.00	VERTICAL
555.740000	26.20	21.1	46.0	19.8		0.0	0.00	VERTICAL
918.520000	32.10	26.2	46.0	13.9		0.0	0.00	VERTICAL

For 1GHz to 25GHz

Note:We tested GFSK Mode and 8DPSK, rcorded the worst case at the GFSK (DH5) Mode.

	Frequency((MHz):		240	2		Polarity:		HORIZO	NTAL
No.	Frequency (MHz)	(MHz) (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4804.00	55.59	ΡK	74	18.41	51.08	33.49	6.91	35.89	4.51
1	4804.00	42.12	AV	54	11.88	37.61	33.49	6.91	35.89	4.51
2	5175.25	43.59	ΡK	74	30.41	36.27	34.49	7.13	34.29	7.32
2	5175.25		AV	54						
3	7206.00	46.87	ΡK	74	27.13	35.76	36.95	9.18	35.03	11.11
3	7206.00	-	AV	54						

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

	Frequency((MHz):		240	2		Polarity:		VERTICAL		
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4804.00	55.47	ΡK	74	18.53	50.96	33.49	6.91	35.89	4.51	
1	4804.00	42.87	AV	54	11.13	38.36	33.49	6.91	35.89	4.51	
2	5325.50	44.89	ΡK	74	29.11	37.36	34.67	7.22	34.35	7.53	
2	5325.50		AV	54							
3	7206.00	45.78	ΡK	74	28.22	34.67	36.95	9.18	35.03	11.11	
3	7206.00		AV	54							

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.
 5. The other emission levels were very low against the limit.

	Frequency(MHz):		244	1		Polarity:		HORIZO	NTAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	3158.75	40.22	ΡK	74	33.78	39.03	31.14	5.43	35.38	1.19
1	3158.75		AV	54						
2	4882.00	55.66	ΡK	74	18.34	49.30	33.60	6.95	34.19	6.36
2	4882.00	43.41	AV	54	10.59	37.05	33.60	6.95	34.19	6.36
3	5233.60	42.69	ΡK	74	31.31	35.05	34.57	7.16	34.10	7.64
3	5233.60		AV	54						
4	7323.00	46.32	ΡK	74	27.68	34.62	37.46	9.23	35.00	11.70
4	7323.00		AV	54						

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

	Frequency((MHz):		244	1		Polarity:		VERTIC	CAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	3157.75	40.44	ΡK	74	33.56	39.25	31.13	5.43	35.38	1.19
1	3157.75		AV	54						
2	4882.00	56.48	ΡK	74	17.52	50.12	33.60	6.95	34.19	6.36
2	4882.00	44.75	AV	54	9.25	38.39	33.60	6.95	34.19	6.36
3	5125.50	43.69	ΡK	74	30.31	36.36	34.38	7.10	34.16	7.33
3	5125.50		AV	54						
4	7323.00	47.78	ΡK	74	26.22	36.08	37.46	9.23	35.00	11.70
4	7323.00		AV	54						

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

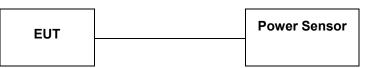
Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.
 5. The other emission levels were very low against the limit.

	Frequency((MHz):		2480			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4960.00	55.55	ΡK	74	18.45	50.63	33.84	7.00	35.92	4.92
1	4960.00	43.47	AV	54	10.53	38.55	33.84	7.00	35.92	4.92
2	5349.85	43.96	ΡK	74	30.04	36.40	34.69	7.23	34.36	7.56
2	5349.85		AV	54						
3	7440.00	46.51	ΡK	74	27.49	34.56	37.64	9.28	34.97	11.95
3	7440.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.


	Frequency	(MHz):		2480			Polarity:VERTINAntenna Factor (dB/m)Cable Factor (dB)Pre-amplifier (dB)33.847.0035.9233.847.0035.9234.337.0934.27		VERTICAL		
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Factor	Factor		Correction Factor (dB/m)	
1	4960.00	55.66	ΡK	74	18.34	50.74	33.84	7.00	35.92	4.92	
1	4960.00	42.98	AV	54	11.02	38.06	33.84	7.00	35.92	4.92	
2	5100.50	43.65	ΡK	74	30.35	36.49	34.33	7.09	34.27	7.16	
2	5100.50		AV	54							
3	7440.00	45.41	ΡK	74	28.59	33.46	37.64	9.28	34.97	11.95	
3	7440.00		AV	54							

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
 5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2009 Maximum peak conducted output power: Connent antenna port into power meter and reading Peak values.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	2.745	30	PASS
39	2441	2.801	30	PASS
78	2480	3.155	30	PASS

Note:

1. The test results including the cable lose.

4.3.2 $\pi/4$ DQPSK Test Mode

A. Test Verdict

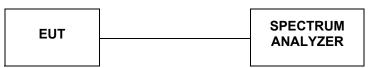
Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	2.250	30	PASS
39	2441	2.093	30	PASS
78	2480	2.198	30	PASS

Note:

1. The test results including the cable lose.

4.3.3 8DPSK Test Mode

A. Test Verdict


Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	1.439	30	PASS
39	2441	1.067	30	PASS
78	2480	2.040	30	PASS

Note:

1. The test results including the cable lose.

4.4 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

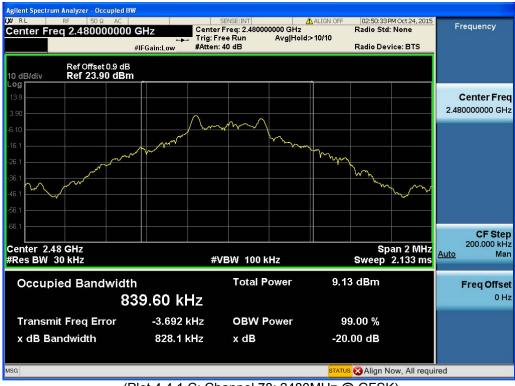
TEST RESULTS

4.4.1 GFSK Test Mode

A. Test Verdict


Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	0.8211	Plot 4.4.1 A	/	PASS
39	2441	0.8223	Plot 4.4.1 B	/	PASS
78	2480	0.8281	Plot 4.4.1 C	/	PASS

Note: 1. The test results including the cable lose.


B. Test Plots

(Plot 4.4.1 A: Channel 00: 2402MHz @ GFSK)

(Plot 4.4.1 B: Channel 39: 2441MHz @ GFSK)

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)

4.4.2 8DPSKTest Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.122	Plot 4.4.2 A	/	PASS
39	2441	1.107	Plot 4.4.2 B	/	PASS
78	2480	1.131	Plot 4.4.2 C	/	PASS

Note: 1.The test results including the cable lose.

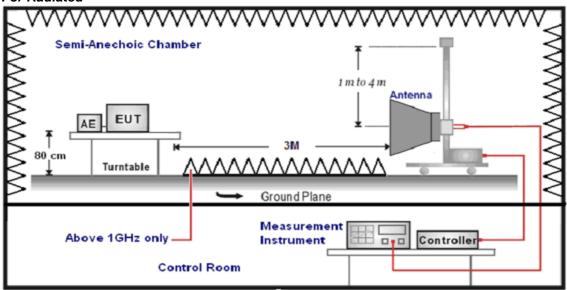
B. Test Plots

(Plot 4.4.2 A: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.4.2 C: Channel 78: 2480MHz @ 8DPSK)

4.5 Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.

Page 26 of 67

- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
104-1004-	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	(Receiver)
1GHz-40GHz	Average Value: RBW=1MHz/VBW=3MHz,	Average
IGHZ-40GHZ	Sweep time=Auto	(Receiver)

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

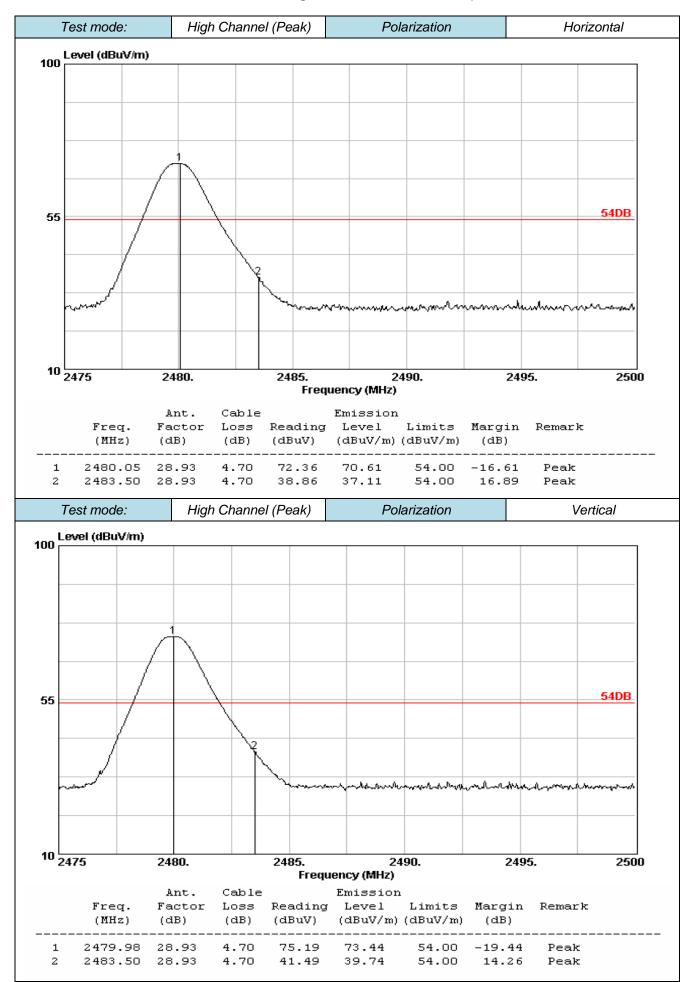
Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Remark:

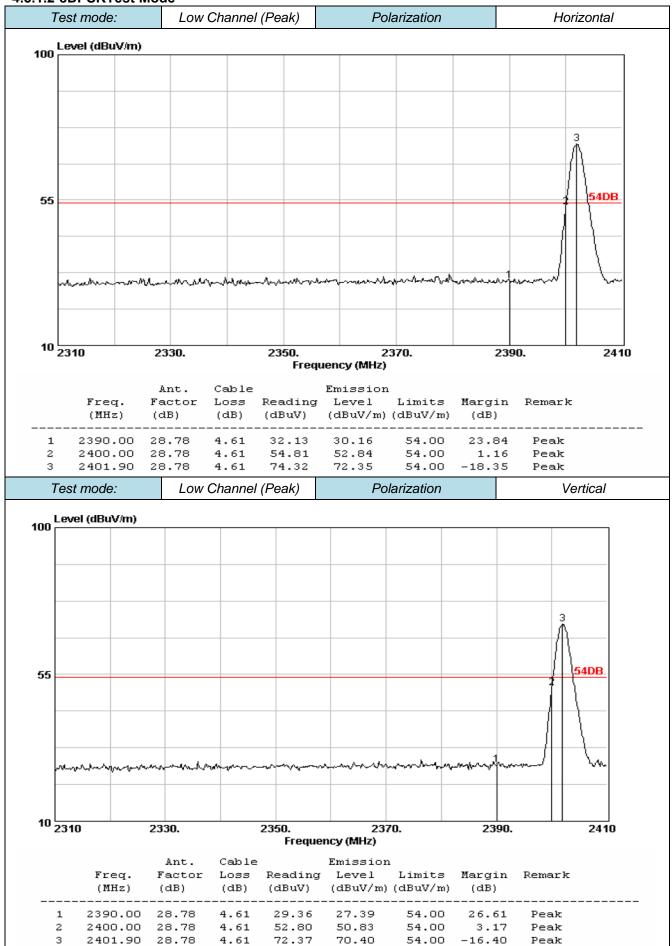
1. We test Band Edge at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5. 2. "---" means not recorded as emission levels lower than limit.

4.5.1 For Radiated Bandedge Measurement


Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at no-hopping mode

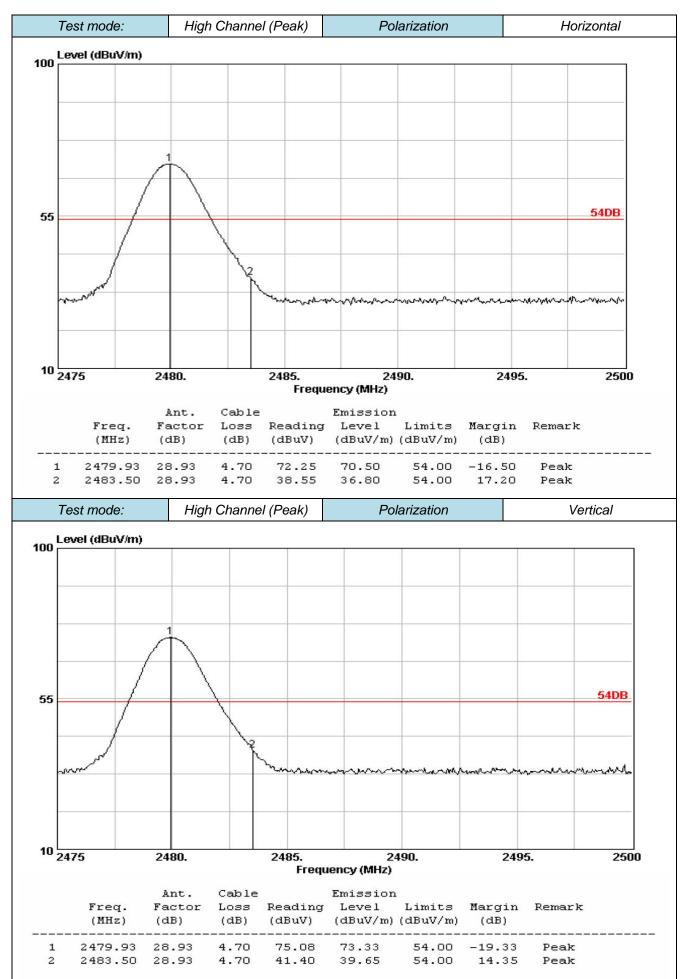
4.5.1.1 GFSK Test Mode Polarization Test mode: Low Channel (Peak) Horizontal 100 Level (dBuV/m) 3 54DB 55 much have been and with the more for more thank a have will write the 10 2310 2390. 2330. 2350. 2370. 2410 Frequency (MHz) Ant. Cable Emission Factor Loss Reading Level Limits Margin Remark (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) Freq. (MHz) _____ _____ _____ 30.77 23.23 2390.00 28.78 4.61 32.74 54.00 1 Peak 2 2400.00 28.78 4.61 50.05 48.08 54.00 5.92 Peak 71.39 2402.20 28.78 4.61 69.42 54.00 -15.42 Peak з Test mode: Polarization Low Channel (Peak) Vertical Level (dBuV/m) 3 54DB 55 and and march marker when ahaan wu 10 2310 2330. 2350. 2370. 2390. 2410 Frequency (MHz) Ant. Cable Emission Freq. Factor Loss Reading Level Limits Margin Remark (MHz) (dB) (dB) (dBuV) (dBuV/m)(dBuV/m) (dB) _____ _____ ____ _____ 2390.00 28.78 4.61 35.60 33.63 54.00 20.37 Peak 1 4.61 51.02 2 2400.00 28.78 52.99 54.00 2.98 Peak 2402.20 28.78 4.61 74.30 72.33 54.00 -18.33 Peak з

Remark: For the peak measured value complies with the average limit, the average measurement not performed


Page 28 of 67

Report No.: MWR151101103

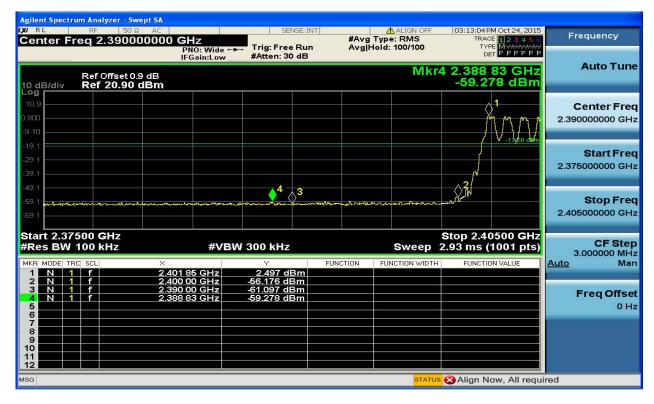
Remark: For the peak measured value complies with the average limit, the average measurement not performed


4.5.1.2 8DPSKTest Mode

Remark: For the peak measured value complies with the average limit, the average measurement not performed

Page 30 of 67

Report No.: MWR151101103


Remark: For the peak measured value complies with the average limit, the average measurement not performed


4.5.2 For Conducted Bandedge Measurement

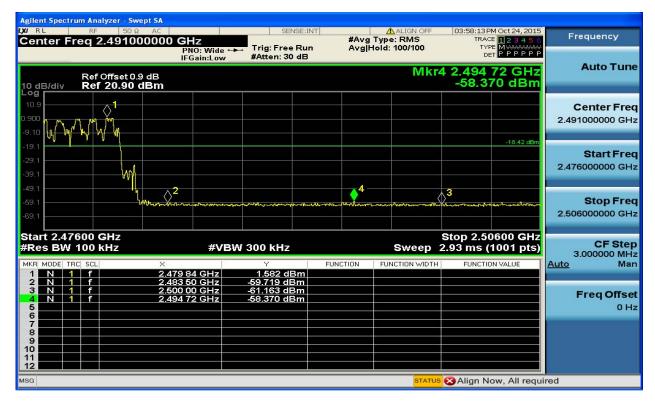
4.5.2.1 GFSK Test Mode

We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

A. Test Plots

Agilent Spectrum Analyzer - Swept SA					
X// RL RF 50 Ω AC Center Freq 2.491000000 Γ <thγ< th=""> Γ Γ</thγ<>			ALIGN OFF 7g Type: RMS 1Hold: 100/100	03:22:04 PM Oct 24, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
Ref Offset 0.9 dB		Free Run Avş n: 30 dB		4 2.484 13 GHz -58.698 dBm	Auto Tune
					Center Freq 2.491000000 GHz
-19.1				-17.06 dBm	Start Freq 2.476000000 GHz
-49.1	· 4 muchanneterment	al-name-strandingto-strandingto-strandingto-		3 Automourum particular and an anti-	Stop Freq 2.506000000 GHz
Start 2.47600 GHz #Res BW 100 kHz	#VBW 300 k	HZ		Stop 2.50600 GHz 2.93 ms (1001 pts)	CF Step 3.000000 MHz Auto Man
1 N 1 f 2.47 2 N 1 f 2.48 3 N 1 f 2.50	3 50 GHz -61.06 0 00 GHz -60.71	7 dBm 9 dBm 5 dBm 8 dBm			Freq Offset 0 Hz
7 8 9 10 11 12					
MSG			STATUS	🔀 Align Now, All requ	ired

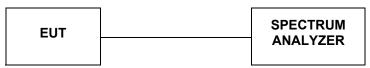

(Plot 4.5.2.1 B: Hopping Mode @ GFSK)


4.5.2.2 8DPSK Test Mode

We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

A. Test Plots

Agilent Spectrum Analyzer - Swe					
Center Freq 2.39000		SENSE:INT	ALIGN OFF #Avg Type: RMS	03:49:22 PM Oct 24, 2015 TRACE 1 2 3 4 5 5	Frequency
	PNO: Wide ← IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg[Hold: 100/100		
Ref Offset 0.9 10 dB/div Ref 20.90 d			Mkr	4 2.387 21 GHz -59.077 dBm	Auto Tune
Log 10.9 0.900 -9.10				1 1 19 09 dbm	Center Freq 2.390000000 GHz
-19.1 -29.1 -39.1 -49.1					Start Freq 2.375000000 GHz
-59.1 	n, manang fasa an	4 3 	mander at the second second		Stop Freq 2.405000000 GHz
Start 2.37500 GHz #Res BW 100 kHz	#VB	W 300 kHz		Stop 2.40500 GHz 2.93 ms (1001 pts)	CF Step 3.000000 MHz
MKR MODE TRC SCL	× 2.402 15 GHz	ץ 0.911 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 3 N 1 f	2.400 00 GHz 2.390 00 GHz	-53.328 dBm -61.215 dBm			Freq Offset
4 N 1 f	2.387 21 GHz	-59.077 dBm			0 Hz
6 7 8					
9					
11 12					
MSG			STATU	s 🐼 Align Now, All requi	red



(Plot 4.5.2.2 B: Hopping Mode @ 8DPSK)

4.6 Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.6.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	1 000	Plot 4.6.1 A	0 9702	PASS
39	2441	1.000	PIOL 4.0. I A	0.8702	FA33

B. Test Plots

(Plot 4.6.1 A: Channel 39: 2441MHz @ GFSK)

4.6.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	0.000	Plot 4.6.2 A	0 94036	DASS
39	2441	0.982		0.84936	PASS

B. Test Plots

RL Fre	RF 50 Ω		SENSE:INT	ALIGN OFF #Avg Type: RMS	03:38:27 PM Oct 24, 2015 TRACE 1 2 3 4 5 6	Frequency
	q 2. 110000	PNO: Wide ↔ IFGain:Low	 Trig: Free Run #Atten: 40 dB 	Avg[Hold: 100/100		
	Ref Offset 0.9 d Ref 30.00 dB				∆Mkr1 982 kHz 0.031 dB	Auto Tui
					1Δ2	Center Fr 2.479500000 G
	www.		manny	m And a second	- Martin Martin	Start Fr 2.478500000 G
1.0 1.0 1.0						Stop Fr 2.480500000 G
art 2.4785 Res BW 10		#VBV	/ 300 kHz		Stop 2.480500 GHz 1.00 ms (1001 pts)	CF Sto 200.000 k
ADDE TRC 1 A2 1 2 F 1	f (∆)	× 982 kHz (Δ) 2.479 162 GHz		UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
						Freq Offs 0
7 B B B 9 B						
1						

(Plot 4.6.2 A: Channel 39: 2441MHz @ 8DPSK)

4.7 Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100 KHz and VBW=300 KHz.

<u>LIMIT</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS


Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

B. Test Plots

(Plot 4.7.1 A1: @ GFSK)

4.7.2 8DPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A1	≥15	PASS

B. Test Plots

RL RF enter Freq 2.4	50 Ω AC 41750000 GHz	SENSE:INT	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100	03:47:16 PM Oct 24, 2015 TRACE 12 3 4 5 6 TYPE MWWWWW	Frequency
	PNO: Fa IFGain:L set 0.9 dB	at		DET PPPPPP 1 77.905 5 MHz -0.241 dB	Auto Tur
0 dB/div Ref 30	0.00 dBm	WWW.MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	wwwwwww	162	Center Fre 2.441750000 GH
а.о 1.0 1.0 1.0 1.0	48494 - 441144	<u>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>	dddwedda is sduddhodd	MR(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Start Fre 2.400000000 GH
J.O					Stop Fre 2.483500000 GF
art 2.40000 GH Res BW 100 KH	z #		Sweep	Stop 2.48350 GHz 8.00 ms (1001 pts) FUNCTION VALUE	CF Ste 8.350000 MI <u>Auto</u> Mi
	2.402 087 5 GH	z 0.722 dBm			Freq Offs 0 I

(Plot 4.7.2 A1: @ 8DPSK)

4.8 Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz, Span=0Hz.

<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hop/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

A. Test Verdict

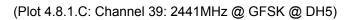
Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict	
DH1	2441	0.370	0.118	0.4	Plot 4.8.1 A	PASS	
	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second						
DH3	2441	1.626	0.260	0.4	Plot 4.8.1 B	PASS	
DHS	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second						
DH5	2441	2.873	0.307	0.4	Plot 4.8.1 C	PASS	
DHD	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second						


4.8.1 GFSK Test Mode

4.8.2 8DPSK Test Mode

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict		
DH1	2441	0.378	0.121	0.4	Plot 4.8.2 A	PASS		
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	ond			
DH3	2441	1.628	0.260	0.4	Plot 4.8.2 B	PASS		
DH3	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second							
DH5	2441	2.878	0.307	0.4	Plot 4.8.2 C	PASS		
DHS	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Se	cond			

B. Test Plots


	um Analyzer - Swept SA					
DU RL	RF 50 Ω AC reg 2.441000000	GH7	SENSE:INT #A		03:59:06 PM Oct 24, 2015 TRACE 1 2 3 4 5 6	Frequency
Genter m	eq 2.44 100000	PNO: Wide Tr	ig: Free Run tten: 30 dB	3 . ,,	DET P P P P P	
		II Gam.cow		N	lkr3 1.447 ms	Auto Tune
10 dB/div	Ref 20.00 dBm				-4.83 dBm	
Log 10.0						
	1∆23					Center Freq 2.441000000 GHz
-10.0						2.441000000 GH2
-20.0						
-30.0						Start Freq
-40.0						2.441000000 GHz
-50.0	Lines to b	datette astanadet a cadata			10.00 · · · · · · · · · · · · · · · · · ·	
-60.0	All AND A LARGENING		han dela deve de propio de la composición de la		<mark>li</mark> kineten kineten ale da. Tarriar barrar barrar	Stop Freq
-70.0	. In a state for a state	In the part of the second	a series and a series of the s	n at an in the	liktinatak pilatak bi	2.441000000 GHz
Center 2.4	41000000 GHz				Span 0 Hz	
Res BW 1	.0 MHz	#VBW 3.0	MHz	Sweep 6.4	00 ms (8001 pts)	CF Step 1.000000 MHz
MKR MODE TR			Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 <u>Δ2</u> 1 2 F 1	t (∆) t		-2.54 dB 2.69 dBm			
3 N 1	t	1.447 ms	4.83 dBm			Freq Offset
5						0 Hz
7						
8 9						
10						
12						4
MSG				STATUS S	Align Now, All requi	red

RL	RF 50 Ω AC		SENSE:INT		ALIGN OFF	03:59:34 PM Oct 24, 20	
nter Fre	q 2.44100000	0 GHz PNO: Wide ↔ IFGain:Low	 Trig: Free Run #Atten: 30 dB 	#Avg Type	: RMS	TRACE 12345 TYPE WWWWW DET PPPP	M+
lB/div	Ref 20.00 dBm	IFGain:Luw	Whiten of all			Mkr3 3.764 m -4.15 dBr	
	X2		1∆2	3			Center 2.441000000
)							Start 2.441000000
	an daadad amaa daa Taraha ahaa ahaa ahaa		tratikostat Abada a aluta talar estat pak			da na sing dala dalam da na si Parting Tapara da Anja (14) a	Stop 2.441000000
nter 2.44 5 BW 1.0	1000000 GHz MHz	#VBN	(3.0 MHz	s	weep 6.	Span 0 H 400 ms (8001 pt	z s) 1.000000
MODE TRC	scl X	1.626 ms (Δ)	Y F 0.86 dB	UNCTION FUN	CTION WIDTH	FUNCTION VALUE	Auto
F 1 N 1	t	1.264 ms 3.764 ms	-4.15 dBm -4.15 dBm				Freq O

(Plot 4.8.1.B: Channel 39: 2441MHz @ GFSK @ DH3)

Agilent Spectrum Analyzer - Swept SA W RL RF 50 Ω AC Center Freq 2.44100000		SENSE:IM	#Avg Type: RM	IS TRACE	1 Oct 24, 2015	Frequency
10 dB/div Ref 10.00 dBm	IFGain:Low	#Atten: 20 dB		Mkr3 7.	PPPPP	Auto Tune
-10.0	X2		<u></u>			Center Freq 2.441000000 GHz
-30.0						Start Freq 2.441000000 GHz
-80.0 -70.0 -80.0	<mark>u ballida Aldala</mark> Aprilan su da <mark>b</mark>		tinterial produces in Proceeding (1997)			Stop Freq 2.441000000 GHz
Center 2.441000000 GHz Res BW 1.0 MHz		√ 3.0 MHz		ep 10.13 ms (8		CF Step 1.000000 MHz Auto Man
MR MODE THC XL Y 1 Δ2 1 t (Δ) Z T t (Δ) Z T t (Δ) Z T t (Δ) Z T t T	2.873 ms (∆) 3.504 ms 7.254 ms	0.41 dB -1.14 dBm -0.65 dBm			VALUE	<u>Auto</u> Man Freq Offsel 0 Hz
7 8 9 10 11 12						
MSG				STATUS 🐼 Align No	w, All require	ed

RL	RF 50 Ω	AC	SENSE:INT	🚹 ALIGN OFF	04:00:59 PM Oct 24, 2015	
enter Fre	eq 2.44100	0000 GHz PNO: Wide - IFGain:Low	Trig: Free Run #Atten: 30 dB	#Avg Type: RMS	TRACE 123456 TYPE WWWWWWW DET PPPPP	Frequency
) dB/div	Ref 20.00 d	IBm			Mkr3 2.303 ms -2.84 dBm	Auto Tur
	X3			P1		Center Fre 2.441000000 GH
0.0						Start Fr 2.441000000 G
0.0 hithey				davati od konstanti od podu <mark>, jugi konstanti dina potos, in p</mark> o		Stop Fr 2.441000000 G
enter 2.44 es BW 1.0	41000000 G 0 MHz		W 3.0 MHz	Sweep 6	Span 0 Hz i.400 ms (8001 pts)	CF St 1.000000 M
KR MODE TRC	scl	× 378.4 µs (∆		UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> N
2 F 1 3 N 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1.053 ms 2.303 ms	-4.72 dBm -2.84 dBm			Freq Offs 0
7 8 9 0 1						
2						

(Plot 4.8.2.A: Channel 39: 2441MHz @ 8DPSK @ DH1)

Agilent Spectrum Analyzer - Swept SA				
KF 50 Ω AC Center Freq 2.441000000	GHz SENSE:INT	ALIGN OFF #Avg Type: RMS	04:01:25PM Oct 24, 2015 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Frequency
10 dB/div Ref 20.00 dBm	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB		Mkr3 3.584 ms -3.03 dBm	Auto Tune
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1Δ2	3		Center Freq 2.441000000 GHz
-20.0 				Start Freq 2.441000000 GHz
-50.0 -60.0 Uppeden in higher -70.0 Uppeden in higher			u filmi ali an da filmi an Mang ta, taj pel diplanta	Stop Freq 2.441000000 GHz
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 6	Span 0 Hz i.400 ms (8001 pts)	CF Step 1.000000 MHz
MKR MODE TRC SCL X	Y 1.628 ms (Δ) -1.36 dB	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 F 1 t 3 N 1 t 4	1.084 ms -3.02 dBm 3.584 ms -3.03 dBm			Freq Offset 0 Hz
7 8 8 9 10 11				
12 MSG		STATU	s 🔀 Align Now, All requi	ired

RL	RF 50 Ω AC		SENSE:INT		ALIGN OFF	03:00:36 PM O	ct 24, 2015	
enter Fred	q 2.441000000	GHz PNO: Wide ++- IFGain:Low	Trig: Free Run #Atten: 26 dB	#Avg T	ype: RMS	TRACE 1 TYPE V DET P	23456 WWWWWW PPPPP	Frequency
) dB/div	lef 15.00 dBm					Mkr3 6.64 -2.25	11 ms dBm	Auto Tur
og .00 .00 5.0		X ₂						Center Fre 2.441000000 GF
5.0 5.0 5.0								Start Fr 2.441000000 G
5.0 5.0 5.0							NG 464 1103/041	Stop Fr 2.441000000 G
enter 2.44 es BW 1.0		#VBW	3.0 MHz	FUNCTION	Sweep 1	Spa 0.13 ms (80 FUNCTION V		CF Sto 1.000000 M Auto M
2 F 1	t	2.878 ms (Δ) 2.892 ms 6.641 ms	-1.00 dB -1.71 dBm -2.25 dBm					Freq Offs 0

(Plot 4.8.2.C: Channel 39: 2441MHz @ 8DPSK @ DH5)