

	SAR TEST REPORT		
Report Reference No	MWR151101111		
FCC ID:	RQQHLT-L50SCM		
Compiled by	File administrators Martin Ao	Manain	
(position+printed name+signature):		100000	
Supervised by (position+printed name+signature):	Test Engineer Kevin Liu	Montin kevin Lin Dixon	
Approved by		D'YON	
(position+printed name+signature):	Manager Dixon Hao	DINO	
Date of issue	Nov. 01, 2015		
Representative Laboratory Name .:	Maxwell International Co., Ltd.		
Address	Room 509, Hongfacenter building,	Baoan District, Shenzhen,	
	Guangdong, China Shenzhen Sunway Communicat	tion Co. Ltd. Tooting	
Testing Laboratory Name	Center	ion co., Ltd. resting	
Address	1/F., Building A, SDG Info Port, Ke Nanshan District, Shenzhen, Guar		
Applicant's name	HYUNDAI CORPORATION		
Address	140-2, Kye-dong, Chongro-ku, Seoul,	South Korea	
Test specification:			
Standard	ANSI C95.1–1999		
	47CFR §2.1093		
TRF Originator	Maxwell International Co., Ltd.		
Maxwell International Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. Maxwell International Co., Ltd. takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.			
Test item description	•		
Trade Mark	HYUNDAI		
Manufacturer	Skycom Telecommunications C	o., Limited	
Model/Type reference	L505		
Listed Models	1		
Operation Frequency	GSM 850/PCS1900,WCDMA Band II/IV/V,LTE Band2/4/7/17,WLAN2.4G,Bluetooth		
Modulation Type	GSM(GMSK,8PSK),WCDMA/HSDPA/HSUPA(QPSK),LTE(QPSK,1 6QAM),WIFI(DSSS,OFDM),Bluetooth(GFSK,8DPSK,Π/4DQPSK),		
Hardware version	WW818-MB-V0.5		
Software version:	HYUNDAI_L505_V4.0.3		
Rating	DC 3.80V		
Result	PASS		

TEST REPORT

Test Report No. : MWR151101111		Nov. 01, 2015	
			Date of issue
Equipment under Test	:	Mobile Phone	
Model /Type	:	L505	
Listed Models	:	N/A	
Applicant	:	HYUNDAI CORPORATI	ON
Address	:	140-2, Kye-dong, Chong	ro-ku, Seoul, South Korea
Manufacturer	:	Skycom Telecommunications Co., Limited	
Address	:	Rm604, East Block, Shengtang Bldg., No.1, Tairan 9 Rd., Chegongmiao, Futian District, Shenzhen, China	

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Statement of Compliance	6
<u>3.</u>	TEST ENVIRONMENT	7
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	SAR Limits	7
3.5.	Equipments Used during the Test	8
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	9
4.1.	SAD Macaurament Set un	0
4.1. 4.2.	SAR Measurement Set-up	9
4.2. 4.3.	DASY4 E-field Probe System Phantoms	10 11
4.4.	Device Holder	11
4.5.	Scanning Procedure	12
4.6.	Data Storage and Evaluation	14
4.7.	Tissue Dielectric Parameters for Head and Body Phantoms	15
4.8.	Tissue equivalent liquid properties	15
4.9.	System Check	16
4.10.	SAR measurement procedure	17
<u>5.</u>	TEST CONDITIONS AND RESULTS	23
5.1.	Conducted Power Results	23
5.2.	Transmit Antennas and SAR Measurement Position	40
5.3.	SAR Measurement Results	41
5.4.	Simultaneous TX SAR Considerations	46
5.5.	SAR Measurement Variability	48
5.6.	General description of test procedures	48
5.7.	Measurement Uncertainty (300MHz-3GHz)	50
5.8.	System Check Results	53
5.9.	SAR Test Graph Results	65
<u>6.</u>	CALIBRATION CERTIFICATE	85
6.1.	Probe Calibration Certificate	85
6.2.	D750V2 Dipole Calibration Certificate	96
6.3.	D900V2 Dipole Calibration Certificate	104
6.4.	D1750V2 Dipole Calibration Certificate	113
6.5.	D1900V2 Dipole Calibration Certificate	122
6.6.	D2450V2 Dipole Calibration Ceriticate	130
6.7.	D2600V2 Dipole Calibration Ceriticate	138
6.8.	DAE4 Calibration Certificate	147
7.	TEST SETUP PHOTOS	150

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v05r02 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04, Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting v01r01:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR v02r01: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB941225 D01 3G SAR Procedures v03: 3G SAR MEAUREMENT PROCEDURES

KDB 941225 D06 Hotspot Mode v02: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

KDB941225 D05 SAR for LTE Devices v02r03: SAR Evaluation Considerations for LTE Devices

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Oct 10, 2015
Testing commenced on	:	Oct 10,2015
Testing concluded on	:	Oct 20,2015

2.2. Product Description

The **HYUNDAI CORPORATION's** Model: L505 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Model Number	L505	
Modilation Type	GMSK for GSM/GPRS and 8PSK for EGPRS;QPSK for WCDMA;QPSK/16QAM for LTE;DSSS/OFDM for WIFI2.4G; GFSK/8DPSK/II/4DQPSK for Bluetooth	
Antenna Type	Internal	
Device category	Portable Device	
Exposure category	General population/uncontrolled environment	
EUT Type	Production Unit	
Rated Vlotage	DC 3.80 Battery	
Hotsopt Supported, power not reduced when Hotspot open		
The EUT is GSM,WCDMA,LTE, mobile phone. the mobile phone is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS/EDGE class 12 for GSM850, PCS1900, WCDMA Band II, Band IV, Band V,LTE Band2, Band4, Band7, Band17 and Bluetooth, WiFi, and camera functions. For more information see the following datasheet		

Technical Characteristics		
2G		
Support Networks	GSM, GPRS, EDGE	
Support Band	GSM850/PCS1900	
Fraguanay	GSM850: 824.2~848.8MHz	
Frequency	GSM1900: 1850.2~1909.8MHz	
Type of Modulation	GMSK, 8PSK	
Antenna Type	Internal Antenna	
GPRS/EDGE Class	Class 12	
HSDPA UE Category	7	
HSUPA UE Category	6	
GSM Release Version	R99	
GPRS operation mode	Class B	
DTM Mode	Not Supported	
3G		
Support Networks	WCDMA RMC12.2K,HSDPA,HSUPA	
Support Band	WCDMA Band II, Band IV, Band V	
	WCDMA Band II: 1852.4~1907.6MHz	
Frequency Range	WCDMA Band IV: 1712.4~1752.6MHz	
	WCDMA Band V: 826.4~846.6MHz	
Type of Modulation	QPSK	
Antenna Type	Internal Antenna	
4G		
Support Networks	LTE	
Support Band	LTE Band2, Band4, Band7, Band17	
	LTE Band2:1850.7~1909.3MHz	
Frequency Range	LTE Band4:1710.7~1754.3MHz	
	LTE Band7:2502.5~2567.5MHz	
	LTE Band17:706.5~713.5MHz	
Type of Modulation	QPSK,16QAM	

Antenna Type	Internal Antenna
WiFi	
Support Standards	802.11b, 802.11g, 802.11n
Frequency Range	2412-2462MHz for 11b/g/n(HT20)
	2422-2452MHz for 11n(HT40)
Type of Modulation	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Data Rate	1-11Mbps, 6-54Mbps, up to 150Mbps
Quantity of Channels	11 for 11b/g/n(HT20), 7 for 11n(HT40)
Channel Separation	5MHz
Antenna Type	Internal Antenna
Bluetooth	
Bluetooth Version	V3.0+EDR/V4.0
Frequency Range	2402-2480MHz
Data Rate	1Mbps, 2Mbps, 3Mbps
Modulation	GFSK, π/4 QDPSK, 8DPSK
Quantity of Channels	79/40
Channel Separation	1MHz/2MHz
Antenna Type	Internal Antenna

2.3. Statement of Compliance

The maximum of results of SAR found during testing for L505 are follows:

Classment Class	Frequency Band	Head (Report 1g SAR(W/Kg)	Hotspot (Report 1g SAR(W/Kg)	Body-worn (Report 1g SAR(W/Kg)
	GSM 850	0.141	0.744	0.473
	GSM1900	0.060	0.783	0.650
	WCDMA Band V	0.098	0.245	0.245
	WCDMA Band IV	0.111	0.210	0.210
PCE	WCDMA Band II	0.069	0.796	0.796
	LTE Band2	0.050	0.761	0.761
	LTE Band4	0.040	0.186	0.186
	LTE Band7	0.031	0.248	0.248
	LTE Band17	0.341	0.636	0.636
DTS	WIFI2.4G	0.531	0.042	0.042

<highest re<="" th=""><th>ported standalone SAR Summary></th></highest>	ported standalone SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Reported 1-g SAR (W/kg)	Classment Class	Highest Reported Simultaneous Transmission 1-g SAR (W/kg)
Right Cheek	LTE Band 17	0.341	PCE	0.872
Right Cheek	WLAN2.4G	0.531	DTS	0.072

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Sunway Communication Co., Ltd. Testing Center

1/F., Building A, SDG Info Port, Kefeng Road, Hi-Tech Park, Nanshan District, Shenzhen, Guangdong, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L6487

The Shenzhen Sunway Communication Co., Ltd. Testing Center has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Oct 29, 2013. Valid time is until Oct 28, 2016.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)						
	SAR (W/kg)					
EXPOSURE LIMITS	(General Population /Uncontrolled Exposure Environment)	(Occupational /Controlled Exposure Environment)				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0				

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.5. Equipments Used during the Test

			Opriol	Calib	oration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	905	2015/07/07	1
E-field Probe	SPEAG	ES3DV3	3028	2014/10/22	1
System Validation Dipole D750V2	SPEAG	D750V2	1133	2015/01/05	3
System Validation Dipole D900V2	SPEAG	D900V2	1d086	2013/08/09	3
System Validation Dipole D1750V2	SPEAG	D1750V2	1021	2013/08/02	3
System Validation Dipole 1900V2	SPEAG	D1900V2	5d194	2015/01/07	3
System Validation Dipole 2450V2	SPEAG	D2450V2	955	2015/01/08	3
System Validation Dipole 2600V2	SPEAG	D2600V2	1058	2014/06/23	3
Network analyzer	Agilent	8753E	US37390562	2015/03/15	1
Universal Radio Communication Tester	R&S	CMU200	112012	2014/10/22	1
Communication Tester	R&S	CMW500	116581	2015/7/7	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Dual Directional Coupler	Agilent	778D	50127	2014/10/23	1
Dual Directional Coupler	Agilent	772D	50348	2014/10/23	1
Attenuator	PE	PE7005-10	E048	2014/10/23	1
Attenuator	PE	PE7005-3	E049	2014/10/23	1
Attenuator	Woken	WK0602-XX	E050	2014/10/23	1
Power meter	Agilent	E4417A	GB41292254	2014/10/22	1
Power Meter	Agilent	E7356A	GB54762536	2014/10/25	1
Power sensor	Agilent	8481H	MY41095360	2014/10/22	1
Power Sensor	Agilent	E9327A	Us40441788	2015/03/18	1
Signal generator	IFR	2032	203002/100	2014/10/22	1
Amplifier	AR	75A250	302205	2014/10/22	1

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated values;
 - c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

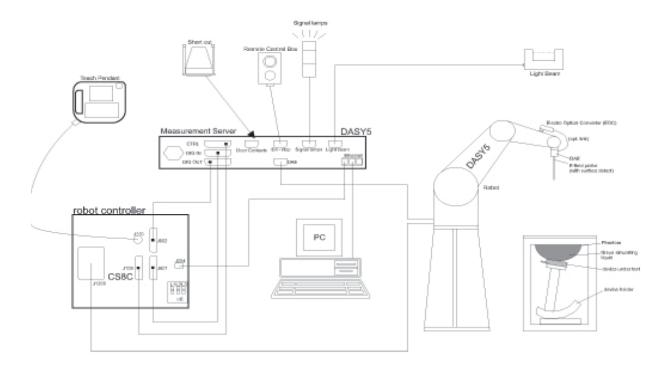
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.

The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY4 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

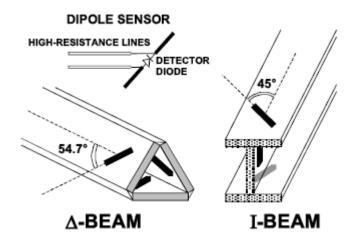
The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.


Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	 ± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$		
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	gnu	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	_m (n-1) mm
Minimum zoom scan volume	X, Y, Z		\geq 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
 Diode compression point 	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i	(i = x, y, z)
Ui = input signal of channel i	(i = x, y, z)
cf = crest factor of exciting field	(DASY parameter)
dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

		E – fieldprobes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$
		H – fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$
With	Vi	= compensated signal of channel i $(i = x, y, z)$
	Normi	= sensor sensitivity of channel i (i = x, y, z)
		[mV/(V/m)2] for E-field Probes
	ConvF	= sensitivity enhancement in solution
	aij	= sensor sensitivity factors for H-field probes
	f	= carrier frequency [GHz]
	Ei	= electric field strength of channel i in V/m
	Hi	= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR	= local specific absorption rate in mW/g
	Etot	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

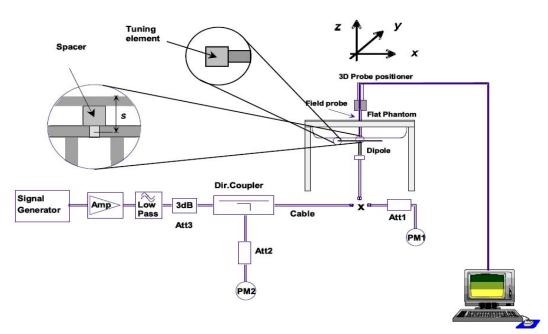
Ingredient	835MHz		1900MHz		1750 MHz		2450MHz		2600MHz	
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	41.45	52.5	55.242	69.91	55.782	69.82	62.7	73.2	62.3	72.6
Salt	1.45	1.40	0.306	0.13	0.401	0.12	0.50	0.10	0.20	0.10
Sugar	56	45.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Preventol	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.452	29.96	43.817	30.06	36.8	26.7	37.5	27.3

The composition of the tissue simulating liquid

Target Frequency	He	ad	В	ody
(MHz)	ε _r	σ(S/m)	٤ _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid


Tissue	Measured	Target	Tissue	Measured Tissue Liquid					
Туре	Frequency (MHz)	٤ _r	σ	٤r	Dev.	σ	Dev.	Temp.	Test Data
750H	750	0.89	41.9	0.91	2.3%	41.79	0.2%	22.2	10/10/2015
900H	900	0.97	41.5	0.97	0%	42.09	-1.5%	22.3	10/10/2015
1750H	1750	1.37	40.1	1.38	0.73%	39.79	0.7%	22.8	10/11/2015
1900H	1900	1.40	40.0	1.41	0.71%	40.29	-0.7%	22.6	10/12/2015
2450H	2450	1.80	39.2	1.83	1.7%	38.19	2.6%	22.4	10/13/2015
2600H	2600	1.96	39.0	1.96	0%	38.09	2.3%	22.3	10/14/2015
750B	750	0.96	55.5	0.97	1.1%	55.99	-0.9%	22.4	10/16/2015
900B	900	1.05	55.0	1.01	-3.8%	54.69	0.5%	22.6	10/16/2015
1750B	1750	1.49	53.4	1.53	2.7%	54.59	-2.3%	22.4	10/18/2015
1900B	1900	1.52	53.3	1.54	1.3%	53.69	-0.8%	22.6	10/18/2015
2450B	2450	1.95	52.7	1.9	-2.6%	50.59	4.0%	22.7	10/20/2015
2600B	2600	2.16	52.5	2.2	1.9%	51.09	2.7%	22.5	10/20/2015

4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

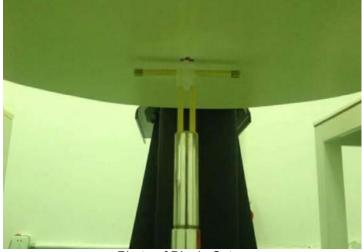


Photo of Dipole Setup

Page 17 of 153

Frequency (MHz)	Description	SAR(1g) W/Kg	SAR(10g) W/Kg	Tissue Temp. (℃)	Date	
750 (Head)	Reference	8.02±10% (7.218~8.822)	5.27±10% (4.743~5.797)	NA	10/10/2015	
(Head)	Measurement	7.68	4.92	22.2		
900	Reference	10.7±10% (9.63~11.77)	6.87±10% (6.18~7.49)	NA	10/10/2015	
(Head)	Measurement	10.68	6.88	22.3		
1750	Reference	34.6±10% (31.14~38.06)	18.3±10% (16.47~20.13)	NA	10/11/2015	
(Head)	Measurement	35.28	18.24	22.8		
1900	Reference	40.6±10% (36.54~44.66)	21.3±10% (19.17~23.43)	NA	10/12/2015	
(Head)	Measurement	39.48	21.04	22.6		
2450 (Hood)	Reference	52.4±10% (47.16~57.64)	24.4±10% (21.96~26.84)	NA	10/13/2015	
(Head)	Measurement	53.2	25.84	22.4		
2600	Reference	57.9±10% (52.11~63.69)	26.2±10% (23.58~28.82)	NA	10/14/2015	
(Head)	Measurement	57.6	25.88	22.3		
750	Reference	erence 8.46±10% 5.63±10% (7.614~9.306) (5.067~6.193)		NA	10/16/2015	
(Body)	Measurement	8.84	5.88	22.4		
900	Reference	10.7±10% (9.63~11.77)	6.94±10% (6.246~7.634)	NA	10/16/2015	
(Body)	Measurement	9.8	6.4	22.6		
1750 (Dodu)	Reference	37.5±10% (33.75~41.25)	20.1±10% (18.09~22.11)	NA	10/18/2015	
(Body)	Measurement	36.24	19.4	22.4		
1900	Reference	40.1±10% (36.09~44.11)	21.3±10% (19.17~23.43)	NA	10/18/2015	
(Body)	Measurement	40.4	21.68	22.6		
2450 (Radiv)	Reference	53.7±10% (48.33~59.07)	25±10% (22.5~27.5)	NA	10/20/2015	
(Body)	Measurement	54.0	25.36	22.7		
2600 (Rody)	Reference	56.8±10% (51.12~62.48)	25.3±10% (22.77~27.83)	NA	10/20/2015	
(Body)	Measurement	58.4	25.92	22.5		

4.10. SAR measurement procedure

The measurement procedures are as follows:

4.10.1 Conducted power measurement

- a) For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- b) Read the WWAN RF power level from the base station simulator.
- c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

4.10.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class

is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

4.10.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR

body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(βc , βd), and HS-DPCCH power offset parameters (ΔACK , $\Delta NACK$, ΔCQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size. number of HS-PDSCHs and modulation used in the H-set.

Sub-set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0		
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0		
3	15/15	8/15	64	15/8	30/15	1.5	0.5		
4	15/15	4/15	64	15/4	30/15	1.5	0.5		
Note1: △	_{аск} , $ riangle_{NACK}$ ar	nd ∆ _{CQI} = 8 (=	$A_{hs} = \beta_{hs}/$	/β _c =30/15⇔ βr	_s =30/15*β _c				
Note2: CN	Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.								
Note3: Fo	or subtest 2 th	e $\beta_c \beta_d$ ratio	of 12/15 fo	r the TFC duri	ng the measurement	period(TF1,T	F0) is		
	alough by act	ling the sign	alad aaia f	aatara far tha r	oforonoo TEC (TEC	1 TE 1) to 0 -1	1/1E and		

Table 2: Subtests for UMTS Release 5 HSDPA

achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and $\beta_d = 15/15$.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

				Table J.	Sub-le	si s seiup		60113	UFA				
Sub- set	β _c	β _d	β_d (SF)	β_c/β_d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81
							5 <u>⇔</u> <u>β_{hs}= 30/</u> ther combina		of DPDCH,	DPCC	CH, HS-	DPCCH	ł, E-

Table 3: Sub-Test 5 Setur for Release 6 HSUPA

DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the \u03b3c/\u03b3d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the βc/βd ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

4.10.4 LTE Test Configuration

QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.8 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.9

QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4.10.5 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. Channels with measured maximum output power within ¼ dB are considered to have the same maximum output.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions . a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.
 The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test

configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within 1/4 dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.

- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 4. Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

5. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - 2) replace "initial test configuration" with "all tested higher output power configurations"

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

	Conducted Power Measurement Results(GSM 850/1900)											
		Burst Co	nducted pov	ver (dBm)		Aver	age power (d	dBm)				
GSN	1 850	Chann	el/Frequenc	y(MHz)	1	Chann	el/Frequency	y(MHz)				
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8				
GS	SM	32.98	33.05	33.10	-9.00dB	23.98	24.05	24.10				
	1TX slot	32.90	33.04	33.06	-9.00dB	23.90	24.04	24.06				
GPRS	2TX slot	30.22	30.36	30.22	-6.00dB	24.22	24.36	24.22				
(GMSK)	3TX slot	28.41	28.50	28.34	-4.26dB	24.15	24.24	24.08				
	4TX slot	27.67	27.84	27.31	-3.00dB	24.67	24.84	24.31				
	1TX slot	27.68	27.75	27.71	-9.00dB	18.68	18.75	18.71				
EGPRS	2TX slot	25.25	25.42	25.55	-6.00dB	19.25	19.42	19.55				
(8PSK)	3TX slot	23.32	23.29	23.42	-4.26dB	19.06	19.03	19.16				
	4TX slot	22.15	22.09	22.46	-3.00dB	19.15	19.09	19.46				
		Burst Co	nducted pov	ver (dBm)			age power (d					
GSM	1900		el/Frequenc	y(MHz)	1	Channel/Frequency(MHz)						
0.0141	1300	512/	661/	810/	'	512/	661/	810/				
		1850.2	1880	1909.8		1850.2	1880	1909.8				
GS	SM	29.87	29.94	29.89	-9.00dB	20.87	20.94	20.89				
	1TX slot	29.90	30.02	29.97	-9.00dB	20.90	21.02	20.97				
GPRS	2TX slot	27.64	27.88	27.65	-6.00dB	21.64	21.88	21.65				
(GMSK)	3TX slot	26.33	26.26	26.34	-4.26dB	22.07	22.00	22.08				
	4TX slot	25.41	25.43	25.47	-3.00dB	22.41	22.43	22.47				
	1TX slot	25.85	25.89	25.80	-9.00dB	16.85	16.89	16.80				
EGPRS	2TX slot	24.63	24.54	24.30	-6.00dB	18.63	18.54	18.30				
(8PSK)	3TX slot	23.29	23.36	23.65	-4.26dB	19.03	19.10	19.39				
(0. 0.)	4TX slot	22.41	22.44	22.41	-3.00dB	19.41	19.44	19.41				

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB 2. According to the conducted power as above, the GPRS measurements are performed with 4Txslots for GPRS850 and GPRS1900.

	band	WCDMA	Band II resul	lt (dBm)	WCDMA	Band V resu	lt (dBm)	
ltem	Danu	Chanr	nel/Frequency	(MHz)	Channel/Frequency(MHz)			
	ARFCN	9262/1852.4	9400/1880	9538/1907.6	4132/826.4	4183/836.6	4233/846.6	
RMC	12.2kbps RMC	23.29	23.39	23.46	22.39	22.86	22.80	
	Sub - Test 1	22.23	22.31	22.48	21.39	21.88	21.80	
HSDPA	Sub - Test 2	21.51	21.59	21.60	20.55	21.18	21.11	
HSDFA	Sub - Test 3	21.49	21.43	21.57	20.48	21.10	21.00	
	Sub - Test 4	21.46	21.46	21.52	20.39	21.04	20.89	
	Sub - Test 1	20.12	20.20	20.28	19.12	19.66	19.59	
	Sub - Test 2	19.99	20.10	20.26	19.14	19.64	19.58	
HSUPA	Sub - Test 3	21.10	21.16	21.33	20.15	20.67	20.62	
	Sub - Test 4	19.54	19.56	19.71	18.58	19.07	19.01	
	Sub - Test 5	20.51	20.61	20.37	19.24	20.10	20.03	

Conducted Power Measurement Results(WCDMA Band II/V)

Conducted Power Measurement Results(WCDMA Band IV)

Conducted Fower measurement Results(WCDMA Band IV)									
	band	WCDMA	WCDMA Band IV result (dBm)						
Item	Danu	Channel/Frequency(MHz)							
	ARFCN	1312/1712.4	1413/1732.6	1513/1752.6					
RMC	12.2kbps RMC	23.61	23.44	23.62					
	Sub - Test 1	22.62	22.47	22.57					
HSDPA	Sub - Test 2	21.89	21.78	21.69					
HOUFA	Sub - Test 3	21.82	21.53	21.54					
	Sub - Test 4	21.77	21.55	21.56					
	Sub - Test 1	20.50	22.16	20.46					
	Sub - Test 2	20.40	20.20	20.32					
HSUPA	Sub - Test 3	21.52	21.35	21.46					
	Sub - Test 4	19.84	19.69	19.78					
	Sub - Test 5	19.40	21.74	20.58					

Note : When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

LTE Band2					
Modulation	BW	Frequency	RB Conf	iguration	Average Dewer [dDm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.65
		1850.7	1	5	22.87
		1650.7	3	3	22.69
			6	0	21.59
			1	0	23.02
QPSK		1880.0	1	5	22.86
QFSK		1000.0	3	3	23.11
			6	0	22.35
		1909.3	1	0	22.41
			1	5	21.26
			3	3	21.48
	1.4		6	0	21.25
	1.4		1	0	21.56
		1850.7	1	5	21.87
		1650.7	3	3	21.62
			6	0	20.85
			1	0	22.46
16QAM		1880.0	1	5	22.52
TOQAIN		1000.0	3	3	22.63
			6	0	21.44
			1	0	21.21
		1909.3	1	5	21.26
		1909.3	3	3	21.63
			6	0	20.41

Modulation	BW	Frequency	RB Conf	iguration	Average Dewer [dDm]
wooulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	23.51
		1851.5	1	14	23.26
			8	7	21.69
			15	0	21.74
			1	0	22.26
QPSK		1851.5	1	14	23.74
QFSK		1001.0	8	7	22.26
			15	0	22.64
		1908.5	1	0	22.48
			1	14	22.10
			8	7	21.16
	3.0		15	0	21.69
	5.0	1851.5	1	0	22.22
			1	14	21.36
		1051.5	8	7	20.45
			15	0	20.87
			1	0	21.95
16QAM		1851.5	1	14	21.44
IUQAIN		1051.5	8	7	21.56
			15	0	21.48
			1	0	21.41
		1908.5	1	14	20.26
		1908.5	8	7	20.54
			15	0	20.33

Madulation	BW	Frequency	RB Conf	iguration	
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	23.01
		1852.5	1	24	23.22
			12	13	21.36
			25	0	21.41
		1880.0	1	0	23.55
QPSK			1	24	23.26
QFSK			12	13	22.41
			25	0	22.29
	5.0	1907.5	1	0	22.30
			1	24	22.01
			12	13	22.11
			25	0	21.98
			1	0	22.41
		1852.5	1	24	21.78
		1052.5	12	13	21.32
			25	0	21.45
			1	0	22.26
16QAM		1880.0	1	24	22.55
		1000.0	12	13	22.69
			25	0	22.87
			1	0	21.26
		1907.5	12	13	20.65
			25	0	20.41

Modulation	BW	Frequency	RB Conf	iguration	Average Dewer [dDm]
wouldtion	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.42
		1855.0	1	49	23.20
		1655.0	25	25	22.33
			50	0	22.45
		1880.0	1	0	23.26
QPSK			1	49	23.29
QFSK			25	25	22.36
			50	0	22.42
		1905.0	1	0	22.35
	10.0		1	49	22.10
			25	25	22.33
			50	0	22.15
			1	0	21.54
		1855.0	1	49	21.36
		1655.0	25	25	20.85
			50	0	20.96
			1	0	21.05
16QAM		1880.0	1	49	21.33
TOQAIVI		1000.0	25	25	20.87
			50	0	20.86
			1	0	20.53
		1905.0	1	49	20.15
			25	25	20.41
			50	0	20.26

Madulatian	BW	Frequency	RB Con	figuration	
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.06
		1857.5	1	74	22.15
			37	38	21.68
			75	0	21.74
			1	0	22.20
QPSK		1880.0	1	74	22.16
QFON		1000.0	37	38	21.36
			75	0	21.44
	15.0	1902.5	1	0	21.26
			1	74	21.75
			37	38	21.36
			75	0	22.05
	15.0		1	0	20.42
		1857.5	1	74	20.26
		1057.5	37	38	20.16
			75	0	20.63
			1	0	20.41
16QAM		1880.0	1	74	21.25
		1000.0	37	38	20.25
			75	0	20.64
			1	0	20.33
		1902.5	1	74	20.15
			37	38	21.02
			75	0	20.36

Modulation	BW	BW Frequency RB C		figuration	Average Dower [dDm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	23.20
		1860.0	1	99	22.85
		1000.0	50	50	23.36
			100	0	22.54
		1880.0	1	0	23.32
QPSK			1	99	23.41
QFSK			50	50	22.29
			100	0	22.45
		1900.0	1	0	22.76
			1	99	22.10
			50	50	22.63
	20.0		100	0	21.57
	20.0		1	0	22.11
		1860.0	1	99	22.65
		1000.0	50	50	21.12
			100	0	21.33
			1	0	22.52
16QAM		1880.0	1	99	22.31
TOQAIN		1000.0	50	50	21.26
			100	0	21.30
			1	0	21.75
		1000.0	1	99	21.66
		1900.0	50	50	20.84
			100	0	20.33

LTE Band4					
Modulation	BW	Frequency	RB Configuration		Average Dower [dDm]
Modulation (MHz)	(MHz)	Size	Offset	Average Power [dBm]	
			1	0	22.85
		1710 7	1	5	22.75
		1710.7	3	3	22.23
			6	0	21.44
			1	0	22.65
QPSK		1732.5	1	5	22.41
QFSK		1732.5	3	3	22.23
			6	0	21.45
			1	0	22.55
		1754.3	1	5	22.23
			3	3	22.26
	1.4		6	0	21.74
	1.4		1	0	21.59
		1710.7	1	5	21.45
		1710.7	3	3	21.54
			6	0	20.26
			1	0	21.23
16QAM		1732.5	1	5	21.11
IOQAIVI		1732.5	3	3	21.25
			6	0	20.11
			1	0	21.74
		1754.3	1	5	21.69
		1704.5	3	3	21.88
			6	0	20.74

Madulation	BW	Frequency	RB Con	figuration	Average Dever [dDm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.69
		1711.5	1	14	22.45
		1711.5	8	7	22.04
			15	0	22.45
			1	0	21.48
QPSK		1732.5	1	14	22.26
QFSK		1752.5	8	7	21.25
			15	0	22.15
			1	0	22.45
		1753.5	1	14	22.65
			8	7	21.68
	3.0		15	0	21.66
	5.0	1711.5	1	0	21.62
			1	14	21.40
		1711.5	8	7	21.26
			15	0	21.41
			1	0	20.20
16QAM		1732.5	1	14	21.42
TOQAIVI		1752.5	8	7	20.42
			15	0	21.55
			1	0	21.21
		1753.5	1	14	21.32
		1700.0	8	7	20.85
			15	0	20.65

Modulation	BW	Frequency	RB Conf	iguration	Average Dewer [dDm]
(MHz)	(MHz)	Size	Offset	Average Power [dBm]	
			1	0	22.75
		1712.0	1	24	22.52
		1712.0	12	13	21.54
			25	0	21.84
			1	0	22.69
QPSK		1732.5	1	24	22.74
		1752.5	12	13	22.05
			25	0	21.52
			1	0	22.26
		1752.5	1	24	22.41
			12	13	21.58
	5.0		25	0	22.22
	5.0		1	0	21.33
		1712.0	1	24	21.45
		1712.0	12	13	20.66
			25	0	20.74
			1	0	21.20
16QAM		1732.5	1	24	21.33
		1752.5	12	13	21.45
			25	0	20.85
			1	0	21.79
		1752.5	1	24	21.36
		1752.5	12	13	20.55
			25	0	21.24

Modulation	BW	Frequency	RB Conf	iguration	Average Dower [dDm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.41
		1715.0	1	49	22.36
		1715.0	25	25	22.20
			50	0	21.85
			1	0	22.15
QPSK		1732.5	1	49	22.36
QFON		1752.5	25	25	22.45
			50	0	21.52
			1	0	22.45
		1750.0	1	49	22.69
		1750.0	25	25	22.15
	10.0		50	0	21.78
	10.0		1	0	21.25
		1715.0	1	49	21.33
		1715.0	25	25	21.44
			50	0	20.25
			1	0	21.33
16QAM		1732.5	1	49	21.41
IUQAIN		1752.5	25	25	21.24
			50	0	20.30
			1	0	21.96
		1750.0	1	49	21.13
		1750.0	25	25	21.74
			50	0	20.34

Modulation	BW	Frequency	RB Conf	iguration	
(MHz)	(MHz)	Size	Offset	Average Power [dBm]	
			1	0	22.26
		1717.5	1	74	22.35
		1717.5	37	38	22.45
			75	0	22.50
			1	0	22.15
QPSK		1732.5	1	74	22.26
QFSK		1752.5	37	38	21.42
			75	0	21.50
			1	0	22.35
		1747.5	1	74	22.18
		1747.5	37	38	21.28
	15.0		75	0	22.04
	15.0		1	0	21.26
		1717.5	1	74	21.16
		1717.5	37	38	21.78
			75	0	21.22
			1	0	21.15
16QAM		1732.5	1	74	21.29
IOQAIN		1752.5	37	38	20.58
			75	0	20.44
			1	0	21.28
		1747.5	1	74	21.34
		1/4/.5	37	38	20.48
			75	0	21.33

Madulation	BW	Frequency	RB Conf	iguration	Average Dewer [dDm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.14
		1720.0	1	99	22.20
		1720.0	50	50	21.62
			100	0	21.48
			1	0	22.36
QPSK		1732.5	1	99	22.65
QFSK		1752.5	50	50	21.33
			100	0	21.41
			1	0	22.29
		1745.0	1	99	22.56
		1745.0	50	50	21.68
	20.0		100	0	21.65
	20.0		1	0	21.40
		1720.0	1	99	21.29
		1720.0	50	50	20.21
			100	0	20.39
			1	0	21.57
16QAM		1732.5	1	99	21.78
IUQAIVI		1752.5	50	50	20.62
			100	0	20.48
			1	0	21.75
		1745.0	1	99	21.54
		1745.0	50	50	20.58
			100	0	20.43

LTE Band7					
Modulation	BW	Frequency	RB Conf	iguration	Average Dower [dBm]
MODUIATION	(MHz)	(MHz)	Size Offset Average		Average Power [dBm]
			1	0	23.11
		2502.5	1	24	23.05
		2002.0	12	13	22.45
			25	0	22.26
			1	0	23.26
QPSK		2535.0	1	24	23.48
QFSK		2000.0	12	13	22.51
			25	0	22.62
			1	0	22.41
		2567.5	1	24	22.21
			12	13	21.69
	5.0		25	0	21.41
	5.0		1	0	22.59
		2502.5	1	24	22.66
		2002.0	12	13	21.54
			25	0	21.14
			1	0	22.33
16QAM		2535.0	1	24	22.41
IOQAIN		2000.0	12	13	21.21
			25	0	21.45
			1	0	21.87
		2567.5	1	24	21.65
		2307.3	12	13	20.58
			25	0	20.78

Madulation	BW	Frequency	RB Conf	iguration	
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	23.26
		2505.0	1	49	23.54
		2505.0	25	25	22.66
			50	0	22.45
			1	0	22.84
QPSK		2535.0	1	49	23.25
QFSK		2000.0	25	25	22.44
			50	0	22.32
			1	0	22.41
		2565.0	1	49	22.78
			25	25	21.41
	10.0		50	0	21.55
	10.0	2505.0	1	0	22.36
			1	49	22.41
		2303.0	25	25	21.33
			50	0	21.25
			1	0	22.14
16QAM		2535.0	1	49	22.54
TOQAIN		2000.0	25	25	21.21
			50	0	21.33
			1	0	21.74
		2565.0	1	49	21.65
		2565.0	25	25	20.87
			50	0	20.66

Modulation	BW	Frequency	RB Conf	iguration	Average Dewer [dBm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.41
		2507.5	1	74	22.69
		2507.5	37	38	22.69
			75	0	22.45
			1	0	23.05
QPSK		2535.0	1	74	23.11
QFOR		2555.0	37	38	22.41
			75	0	22.56
			1	0	22.41
		2562.5	1	74	22.69
			37	38	21.98
	15.0		75	0	21.78
	10.0		1	0	21.45
		2507.5	1	74	21.65
		2007.0	37	38	21.36
			75	0	21.44
			1	0	22.60
16QAM		2535.0	1	74	22.41
IUQAM		2000.0	37	38	21.33
			75	0	21.27
			1	0	21.54
		2562.5	1	74	21.45
		2002.5	37	38	20.65
			75	0	20.52

Modulation	BW	Frequency	RB Conf	iguration	Average Dewer [dDm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	22.85
		2510.0	1	99	23.55
		2510.0	50	50	22.41
			100	0	22.63
			1	0	23.44
QPSK		2535.0	1	99	23.52
QFSK		2555.0	50	50	22.41
			100	0	22.33
			1	0	22.25
		2560.0	1	99	23.04
			50	50	23.11
	20.0		100	0	22.26
	20.0		1	0	21.33
		2510.0	1	99	22.42
		2010.0	50	50	21.62
			100	0	21.78
			1	0	22.20
16QAM		2535.0	1	99	22.56
TOQAM		2000.0	50	50	21.21
			100	0	21.44
			1	0	21.63
		2560.0	1	99	22.41
		2000.0	50	50	22.30
			100	0	21.15

LTE Band17					
Modulation	BW	Frequency	RB Conf	iguration	Average Power [dBm]
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [ubiii]
			1	0	23.04
		706.5	1	24	23.22
		700.5	12	13	23.11
			25	0	22.85
			1	0	23.05
QPSK		710.0	1	24	22.14
QFSK		/ 10.0	12	13	22.26
			25	0	22.47
			1	0	23.06
		713.5	1	24	23.15
			12	13	22.86
	5.0		25	0	22.84
	5.0		1	0	22.45
		706.5	1	24	22.25
		700.5	12	13	22.30
			25	0	21.85
			1	0	22.41
16QAM		710.0	1	24	21.22
TOQAIM		/ 10.0	12	13	21.32
			25	0	21.45
			1	0	22.84
		713.5	1	24	22.63
		713.5	12	13	21.56
		<u> </u>	25	0	21.89

Madulation	BW	Frequency	RB Conf	iguration	
Modulation	(MHz)	(MHz)	Size	Offset	Average Power [dBm]
			1	0	23.13
		700.0	1	49	23.20
		709.0	25	25	22.69
			50	0	22.88
			1	0	23.14
QPSK		710.0	1	49	23.13
QFSK		710.0	25	25	22.59
			50	0	22.69
			1	0	23.11
		711.0	1	49	23.12
			25	25	22.78
	10.0		50	0	22.85
	10.0		1	0	22.66
		709.0	1	49	22.32
		709.0	25	25	21.57
			50	0	21.69
			1	0	22.25
16QAM		710.0	1	49	22.36
TOQAIVI		710.0	25	25	21.55
			50	0	21.78
			1	0	22.68
		711.0	1	49	22.74
		/ 11.0	25	25	21.32
			50	0	21.41

	WLAN					
Mode	Channel	Frequency (MHz)	Worst case Data rate of worst case	Conducted Average Output Power (dBm)		
	1	2412	1Mbps	12.06		
802.11b	6	2437	1Mbps	13.14		
	11	2462	1Mbps	13.44		
	1	2412	6Mbps	11.55		
802.11g	6	2437	6Mbps	10.90		
	11	2462	6Mbps	11.28		
	1	2412	6.5 Mbps	11.25		
802.11n HT20	6	2437	6.5 Mbps	11.31		
	11	2462	6.5 Mbps	11.13		
	3	2422	13.5 Mbps	9.99		
802.11n HT40	6	2437	13.5 Mbps	9.75		
	9	2452	13.5 Mbps	9.82		

Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Bluetooth				
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)	
	00	2402	-6.10	
BLE-GFSK	19	2440	-7.00	
	39	2480	-5.60	
	00	2402	1.21	
GFSK	39	2441	1.52	
	78	2480	1.84	
	00	2402	0.72	
8DPSK	39	2441	0.59	
	78	2480	0.81	
	00	2402	0.11	
π/4DQPSK	39	2441	0.08	
	78	2480	0.25	

Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

• f(GHz) is the RF channel transmit frequency in GHz

• Power and distance are rounded to the nearest mW and mm before calculation

· The result is rounded to one decimal place for comparison

Bluetooth Turn up Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
2	0	2.48	0.5

Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.5 which is <= 3, SAR testing is not required.

Manufacturing tolerance

	GSM S	Speech				
	GSM 850 (GMSK) (B	Surst Average Power)				
Channel	Channel 251	Channel 190	Channel 190			
Target (dBm)	32.50	32.50	32.50			
Tolerance ±(dB)	1.0	1.0	1.0			
	GSM 1900 (GMSK) (Burst Average Power)					
Channel	Channel 810	Channel 661	Channel 512			
Target (dBm)	29.50	29.50	29.50			
Tolerance ±(dB)	1.0	1.0	1.0			

	GSM 850 GPI	RS (GMSK) (Burst Av	verage Power)	
C	hannel	251	190	128
1 Txslot	Target (dBm)	32.50	32.50	32.50
TIXSIOL	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	30.0	30.0	30.0
ZIXSIOL	Tolerance ±(dB)	1.0	1.0	1.0
2 Type	Target (dBm)	28.0	28.0	28.0
3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
1 Tuelet	Target (dBm)	27.0	27.0	27.0
4 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
	GSM 850 ED	GE (8PSK) (Burst Av	erage Power)	
C	hannel	251	190	128
1 Type	Target (dBm)	27.0	27.0	27.0
1 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
0 Type	Target (dBm)	25.0	25.0	25.0
2 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
0 Tuelet	Target (dBm)	23.0	23.0	23.0
3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
4 Tuelet	Target (dBm)	22.0	22.0	22.0
4 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
	GSM 1900 GP	RS (GMSK) (Burst A	verage Power)	
С	Channel		661	512
1 Txslot	Target (dBm)	29.5	29.5	29.5
TIXSIOL	Tolerance ±(dB)	1.0	1.0	1.0
0 Type	Target (dBm)	27.0	27.0	27.0
2 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
2 Type	Target (dBm)	26.0	26.0	26.0
3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
1 Tuelet	Target (dBm)	25.0	25.0	25.0
4 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
	GSM 1900 ED	GE (8PSK) (Burst Av	verage Power)	
C	Channel		661	512
1 Tuelet	Target (dBm)	26.0	26.0	26.0
1 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
0 Type	Target (dBm)	24.0	24.0	24.0
2 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
0 Tuelet	Target (dBm)	23.0	23.0	23.0
3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0
4 T 1 - 4	Target (dBm)	22.0	22.0	22.0
4 Txslot	Tolerance ±(dB)	1.0	1.0	1.0

UI	И	T	5	5	
 -0	-				

UMTS Band V						
Channel	Channel 4132	Channel 4182	Channel 4233			
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	UMTS Band V HSDPA(sub-test 1)					
Channel	Channel Channel 4132 Channel 4182 Channel 4233					
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1.0	1.0	1.0			

	UMTS Band V I	HSDPA(sub-test 2)	
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	21.0	21.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSDPA(sub-test 3)	1.0
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	21.0	21.0	21.0
	1.0	1.0	1.0
Tolerance ±(dB)			1.0
		HSDPA(sub-test 4)	
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	21.0	21.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSUPA(sub-test 1)	
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	20.0	20.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0
	UMTS Band V I	HSUPA(sub-test 2)	I.
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	20.0	20.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSUPA(sub-test 3)	1.0
Channel	Channel 4132		Channel 4222
Channel		Channel 4182	Channel 4233
Target (dBm)	20.0	20.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSUPA(sub-test 4)	
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	20.0	20.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0
	UMTS Band V I	HSUPA(sub-test 5)	
Channel	Channel 4132	Channel 4182	Channel 4233
Target (dBm)	20.0	20.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0
		Band IV	1.0
Channel	Channel 1312	Channel 1413	Channel 1513
	23.0		
Target (dBm)		23.0	23.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSDPA(sub-test 1)	
Channel	Channel 1312	Channel 1413	Channel 1513
Target (dBm)	22.0	22.0	22.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSDPA(sub-test 2)	
Channel	Channel 1312	Channel 1413	Channel 1513
Target (dBm)	21.0	21.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSDPA(sub-test 3)	
Channel	Channel 1312	Channel 1413	Channel 1513
Target (dBm)	21.0	21.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0
			1.0
Channal		HSDPA(sub-test 4)	Chernel 4540
Channel	Channel 1312	Channel 1413	Channel 1513
Target (dBm)	21.0	21.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSUPA(sub-test 1)	
Channel	Channel 1312	Channel 1413	Channel 1513
Target (dBm)	22.0	22.0	22.0
Tolerance ±(dB)	1.0	1.0	1.0
		HSUPA(sub-test 2)	
Channel			Channel 1513
	Channel 1312	Channel 1413	
	Channel 1312 20.0	Channel 1413	
Target (dBm)	20.0	20.0	20.0
	20.0 1.0	20.0 1.0	
Target (dBm)	20.0 1.0	20.0	20.0

01.0	01.0	04.0
		21.0
		1.0
		01 14540
		Channel 1513
		19.0
	_	1.0
		Channel 1513
		20.0
	_	1.0
Channel 9262	Channel 9400	Channel 9538
23.0	23.0	23.0
1.0	1.0	1.0
UMTS Band II H	SDPA(sub-test 1)	
Channel 9262	Channel 9400	Channel 9538
22.0	22.0	22.0
	1.0	1.0
UMTS Band II H	SDPA(sub-test 2)	
		Channel 9538
		21.0
		1.0
	_	
		Channel 9538
		21.0
		1.0
	_	1.0
		Channel 9538
		21.0
		1.0
	_	1.0
		Channel 0529
		Channel 9538
		20.0
	_	1.0
	· /	01 10500
		Channel 9538
		20.0
		1.0
		Channel 9538
		21.0
		1.0
		Channel 9538
	19.0	19.0
1.0	1.0	1.0
UMTS Band II H	SUPA(sub-test 5)	
Channel 9262	Channel 9400	Channel 9538
20.0	20.0	20.0
1.0	1.0	1.0
	Channel 1312 19.0 1.0 UMTS Band IV H Channel 1312 20.0 1.0 UMTS Channel 9262 23.0 1.0 UMTS Band II H Channel 9262 22.0 1.0 UMTS Band II H Channel 9262 21.0 1.0 UMTS Band II H Channel 9262 21.0 1.0 UMTS Band II H Channel 9262 21.0 1.0 UMTS Band II H Channel 9262 20.0 1.0 UMTS Band II H	1.0 1.0 UMTS Band IV HSUPA(sub-test 4) Channel 1312 Channel 1413 19.0 19.0 1.0 1.0 UMTS Band IV HSUPA(sub-test 5) Channel 1312 Channel 1312 Channel 1413 20.0 20.0 1.0 1.0 UMTS Band II Channel 9262 Channel 9262 Channel 9400 23.0 23.0 1.0 1.0 UMTS Band II HSDPA(sub-test 1) Channel 9262 Channel 9400 22.0 22.0 21.0 1.0 1.0 1.0 UMTS Band II HSDPA(sub-test 2) Channel 9262 Channel 9400 21.0 21.0 1.0 1.0 UMTS Band II HSDPA(sub-test 3) Channel 9262 Channel 9400 21.0 1.0 1.0 1.0 UMTS Band II HSUPA(sub-test 4) Channel 9262 Channel 9400 20.0

	LTE Band 2							
	LTE E	Band2 (BW:20MHz)						
Modulation	Modulation QPSK 16QAM							
RB size	≤18	>18	≤18	>18				
Target (dBm)	23.0	22.5	22.0	22.0				
Tolerance ±(dB)	1.0	1.0	1.0	1.0				
	LTE E	Band2 (BW:15MHz)						
Modulation	QP	SK	160	AM				
RB size	≤16	>16	≤16	>16				
Target (dBm)	23.0	22.5	22.0	22.0				
Tolerance ±(dB)	1.0	1.0	1.0	1.0				

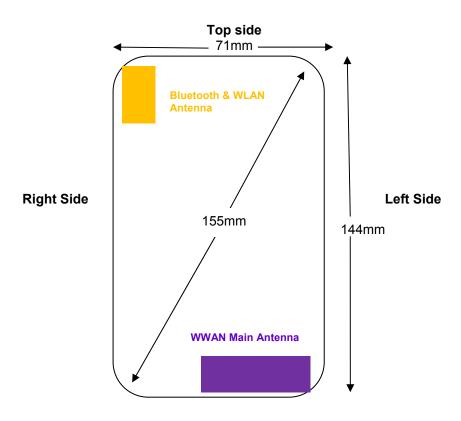
	LTEI	Band2 (BW:10MHz)			
Modulation	QF	PSK	16Q	AM	
RB size	≤12	>12	≤12	>12	
Target (dBm)	23.0	22.5	22.0	22.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE	Band2 (BW:5MHz)			
Modulation	QF	PSK	16Q	AM	
RB size	≤8	>8	≤8	>8	
Target (dBm)	23.0	22.5	22.0	22.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE	Band2 (BW:3MHz)			
Modulation	QF	PSK	16QAM		
RB size	≤4	>4	≤4	>4	
Target (dBm)	23.0	22.5	22.0	22.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE E	Band2 (BW:1.4MHz)			
Modulation	Modulation QPSK		16QAM		
RB size	≤5	>5	≤5	>5	
Target (dBm)	23.0	22.5	22.0	22.0	
Tolerance ±(dB)	1.0	1.0	1.0 1.0		

		LTE Band4			
	LTE E	Band4 (BW:20MHz)			
Modulation	QP	SK	16C	(AM	
RB size	≤18	>18	≤18	>18	
Target (dBm)	22.0	21.0	21.5	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE E	Band4 (BW:15MHz)			
Modulation	QP	ŚK	160	(AM	
RB size	≤16	>16	≤16	>16	
Target (dBm)	22.0	21.0	21.5	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE E	Band4 (BW:10MHz)			
Modulation	QP	ŚK	160	(AM	
RB size	≤12	>12	≤12	>12	
Target (dBm)	22.0	21.0	21.5	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE	Band4 (BW:5MHz)			
Modulation	QP	ŚK	16QAM		
RB size	≤8	>8	≤8	>8	
Target (dBm)	22.0	21.0	21.5	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE	Band4 (BW:3MHz)			
Modulation	QP	ŚK	160	AM	
RB size	≤4	>4	≤4	>4	
Target (dBm)	22.0	21.0	21.5	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	
	LTE E	Band4 (BW:1.4MHz)			
Modulation	QP	SK	160	AM	
RB size	≤5	>5	≤5	>5	
Target (dBm)	22.0	21.0	21.5	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	

	LTE Band7							
	LTE	Band7 (BW:20MHz)						
Modulation	QF	PSK	16G	QAM				
RB size	≤18	>18	≤18	>18				
Target (dBm)	23.0	22.5	23.0	22.5				
Tolerance ±(dB)	1.0	1.0	1.0	1.0				
	LTE Band7 (BW:15MHz)							
Modulation	QPSK		160	QAM				
RB size	≤16	>16	≤16	>16				

ITE Donda

Page 39 of 153


Target (dBm)	23.0	22.5	23.0	22.5					
Tolerance ±(dB)	1.0	1.0	1.0	1.0					
	LTE Band7 (BW:10MHz)								
Modulation	Modulation QPSK 16QAM								
RB size	≤12	>12	≤12	>12					
Target (dBm)	23.0	22.5	23.0	22.5					
Tolerance ±(dB)	1.0	1.0	1.0	1.0					
	LTE	Band7 (BW:5MHz)							
Modulation	Modulation QPSK			AM					
RB size	≤8	>8	≤8	>8					
Target (dBm)	23.0	22.5	23.0	22.5					
Tolerance ±(dB)	1.0	1.0	1.0	1.0					

		LTE Band17		
	LTE E	Band17 (BW:10MHz)		
Modulation	QF	PSK	16Q	AM
RB size	≤12	>12	≤12	>12
Target (dBm)	22.5	22.0	22.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0
	LTE I	Band17 (BW:5MHz)		
Modulation	Modulation QPSK		16QAM	
RB size	≤8	>8	≤8	>8
Target (dBm)	22.5	22.0	22.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0

WiFi							
	802.11b (Average)					
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	13.0	13.0	13.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	802.11g (Average)					
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	802.11n HT2	20 (Average)					
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				
802.11n HT40 (Average)							
Channel	Channel 3	Channel 6	Channel 9				
Target (dBm)	9.0	9.0	9.0				
Tolerance ±(dB)	1.0	1.0	1.0				

Bluetooth								
	BLE-GFSK (Average)							
Channel	Channel 00	Channel 19	Channel 39					
Target (dBm)	-6.0	-6.0	-6.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	GFSK (A	Average)						
Channel	Channel 00	Channel 39	Channel 78					
Target (dBm)	1.0	1.0	1.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	8DPSK (Average)						
Channel	Channel 00	Channel 39	Channel 78					
Target (dBm)	1.0	1.0	1.0					
Tolerance ±(dB)	1.0	1.0	1.0					
π/4DQPSK (Average)								
Channel	Channel 00	Channel 39	Channel 78					
Target (dBm)	1.0	1.0	1.0					
Tolerance ±(dB)	1.0	1.0	1.0					

5.2. Transmit Antennas and SAR Measurement Position

Bottom Side

Back View

Distance of The Antenna to the EUT surface and edge								
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side							
WWAN	/	/	>25mm	/	/	<25mm		
BT&WLAN	/	/	/	>25mm	>25mm	/		

Positions for SAR tests; Hotspot mode								
Antennas Front Back Top Side Bottom Side Left Side Right Side								
WWAN	Yes	Yes	No	Yes	Yes	Yes		
BT&WLAN	Yes	Yes	Yes	No	No	Yes		

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are \geq 9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

5.3. SAR Measurement Results

5.3.1 SAR Results

	SAR Values [GSM 850]									
		Conducted Maximum SAR _{1-g} results(W/k		Conducted Maximum SAR _{1-g}		SAR ₁₋		ults(W/kg)		
Ch.	Freq. (MHz)	Time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
				measured / re	ported SAR nu	ımbers -	Head			
251	848.8	GSM	Right Cheek	33.10	33.50	-0.05	1.096	0.113	0.124	
251	848.8	GSM	Right Tilt	33.10	33.50	-0.04	1.096	0.073	0.080	
251	848.8	GSM	Left Cheek	33.10	33.50	-0.06	1.096	0.129	0.141	Plot 1
251	848.8	GSM	Left Tilt	33.10	33.50	0.02	1.096	0.056	0.061	
		m	easured / repo	orted SAR nun	nbers - Body (l	otspot o	pen, dista	nce 10mm)		
251	848.8	4Txslots	Front	27.31	28.00	0.06	1.172	0.459	0.538	
251	848.8	4Txslots	Back	27.31	28.00	-0.04	1.172	0.635	0.744	Plot 2
251	848.8	4Txslots	Left Side	27.31	28.00	-0.12	1.172	0.154	0.181	
251	848.8	4Txslots	Right Side	27.31	28.00	-0.11	1.172	0.186	0.218	
251	848.8	4Txslots	Bottom Side	27.31	28.00	-0.09	1.172	0.56	0.656	
measured / reported SAR numbers – Body worn (distance 10mm)										
251	848.8	GSM	Front	33.10	33.50	0.03	1.096	0.246	0.270	
251	848.8	GSM	Back	33.10	33.50	-0.10	1.096	0.431	0.473	

SAR Values [GSM 1900]

				Conducted	Maximum	_		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
				measured / re	ported SAR nu	mbers -	Head			
661	1880.0	GSM	Right Cheek	29.94	30.50	-0.05	1.138	0.053	0.060	Plot 3
661	1880.0	GSM	Right Tilt	29.94	30.50	-0.09	1.138	0.021	0.024	
661	1880.0	GSM	Left Cheek	29.94	30.50	0.00	1.138	0.029	0.033	
661	1880.0	GSM	Left Tilt	29.94	30.50	-0.05	1.138	0.015	0.017	
		m	easured / repo	orted SAR nun	nbers – Body (h	otspot o	pen, dista	nce 10mm)		
661	1880.0	4Txslots	Front	25.43	26.00	-0.12	1.140	0.458	0.522	
661	1880.0	4Txslots	Back	25.43	26.00	-0.07	1.140	0.687	0.783	Plot 4
661	1880.0	4Txslots	Left Side	25.43	26.00	0.13	1.140	0.212	0.242	
661	1880.0	4Txslots	Right Side	25.43	26.00	0.02	1.140	0.274	0.312	
661	1880.0	4Txslots	Bottom Side	25.43	26.00	-0.11	1.140	0.471	0.537	
			measured /	reported SAR	numbers – Bo	dy worn	(distance	10mm)		
661	1880.0	GSM	Front	29.94	30.50	-0.09	1.138	0.278	0.316	
661	1880.0	GSM	Back	29.94	30.50	-0.06	1.138	0.571	0.650	

SAR Values [WCDMA Band V]

				Conducted	Maximum			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			m	easured / repo	orted SAR num	bers - He	ad			
4183	836.6	RMC	Right Cheek	22.86	23.00	-0.11	1.033	0.078	0.081	
4183	836.6	RMC	Right Tilt	22.86	23.00	-0.06	1.033	0.053	0.055	
4183	836.6	RMC	Left Cheek	22.86	23.00	-0.05	1.033	0.095	0.098	Plot 5
4183	836.6	RMC	Left Tilt	22.86	23.00	-0.08	1.033	0.041	0.042	
		mea	sured / report	ed SAR numb	ers - Body (hot	spot ope	n, distanc	e 10mm)		
4183	836.6	RMC	Front	22.86	23.00	-0.01	1.033	0.141	0.146	
4183	836.6	RMC	Back	22.86	23.00	0.05	1.033	0.237	0.245	Plot 6
4183	836.6	RMC	Left Side	22.86	23.00	-0.09	1.033	0.074	0.076	
4183	836.6	RMC	Right Side	22.86	23.00	-0.04	1.033	0.087	0.090	
4183	836.6	RMC	Bottom Side	22.86	23.00	0.08	1.033	0.117	0.121	
			measured / rej	ported SAR nu	ımbers – Body	worn (d	istance 10)mm)		
4183	836.6	RMC	Front	22.86	23.00	-0.01	1.033	0.141	0.146	
4183	836.6	RMC	Back	22.86	23.00	0.05	1.033	0.237	0.245	

SAR Values [WCDMA Band IV]

				Conducted	Maximum			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			me	easured / repo	orted SAR num	bers - He	ad			
1513	1752.6	RMC	Right Cheek	23.62	24.00	-0.11	1.091	0.102	0.111	Plot 7
1513	1752.6	RMC	Right Tilt	23.62	24.00	-0.06	1.091	0.045	0.049	
1513	1752.6	RMC	Left Cheek	23.62	24.00	-0.05	1.091	0.098	0.107	
1513	1752.6	RMC	Left Tilt	23.62	24.00	-0.08	1.091	0.037	0.040	
		mea	sured / reporte	ed SAR numb	ers - Body (hot	spot ope	n, distanc	e 10mm)		
1513	1752.6	RMC	Front	23.62	24.00	-0.01	1.091	0.107	0.117	
1513	1752.6	RMC	Back	23.62	24.00	0.05	1.091	0.192	0.210	Plot 8
1513	1752.6	RMC	Left Side	23.62	24.00	-0.09	1.091	0.087	0.095	
1513	1752.6	RMC	Right Side	23.62	24.00	-0.04	1.091	0.093	0.102	
1513	1752.6	RMC	Bottom Side	23.62	24.00	0.08	1.091	0.102	0.111	
			measured / rep	ported SAR nu	ımbers – Body	worn (d	istance 10)mm)		
1513	1752.6	RMC	Front	23.62	24.00	-0.01	1.091	0.107	0.117	
1513	1752.6	RMC	Back	23.62	24.00	0.05	1.091	0.192	0.210	

SAR Values [WCDMA Band II]

				Conducted	Maximum			SAR _{1-g} resi	ults(W/kg)	
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			me	easured / repo	rted SAR num	bers - He	ead			
9538	1907.6	RMC	Right Cheek	23.46	24.00	-0.11	1.132	0.061	0.069	Plot 9
9538	1907.6	RMC	Right Tilt	23.46	24.00	-0.06	1.132	0.024	0.027	
9538	1907.6	RMC	Left Cheek	23.46	24.00	-0.12	1.132	0.051	0.058	
9538	1907.6	RMC	Left Tilt	23.46	24.00	-0.15	1.132	0.021	0.024	
		mea	sured / reporte	ed SAR numbe	ers - Body (ho	tspot ope	en, distan	ce 10mm)		
9538	1907.6	RMC	Front	23.46	24.00	-0.02	1.132	0.652	0.738	
9538	1907.6	RMC	Back	23.46	24.00	-0.10	1.132	0.703	0.796	Plot 10
9538	1907.6	RMC	Left Side	23.46	24.00	-0.06	1.132	0.127	0.144	
9538	1907.6	RMC	Right Side	23.46	24.00	-0.06	1.132	0.133	0.151	
9538	1907.6	RMC	Bottom Side	23.46	24.00	0.11	1.132	0.661	0.749	
			neasured / rep	ported SAR nu	ımbers – Body	worn (a	listance 1	0mm)		
9538	1907.6	RMC	Front	23.46	24.00	-0.02	1.132	0.652	0.738	
9538	1907.6	RMC	Back	23.46	24.00	-0.10	1.132	0.703	0.796	

SAR Values [LTE Band 2]

		Channel		Conducted	Maximum			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			mea	asured / repor	ted SAR num	bers - He	ad			
18900	1880	1RB	Right Cheek	23.41	24.00	-0.11	1.146	0.031	0.036	
18900	1880	1RB	Right Tilt	23.41	24.00	-0.06	1.146	0.018	0.021	
18900	1880	1RB	Left Cheek	23.41	24.00	-0.12	1.146	0.044	0.050	Plot 11
18900	1880	1RB	Left Tilt	23.41	24.00	-0.15	1.146	0.023	0.026	
18700	1860	50%RB	Right Cheek	23.36	23.50	0.13	1.033	0.028	0.029	
18700	1860	50%RB	Right Tilt	23.36	23.50	0.11	1.033	0.011	0.011	
18700	1860	50%RB	Left Cheek	23.36	23.50	0.18	1.033	0.039	0.040	
18700	1860	50%RB	Left Tilt	23.36	23.50	-0.06	1.033	0.018	0.019	
		meas	ured / reported	d SAR number	rs - Body (hot	spot ope	n, distano	:e 10mm)		
18900	1880	1RB	Front	23.41	24.00	-0.02	1.146	0.53	0.607	
18900	1880	1RB	Back	23.41	24.00	-0.10	1.146	0.664	0.761	Plot 12
18900	1880	1RB	Left Side	23.41	24.00	-0.06	1.146	0.221	0.253	
18900	1880	1RB	Right Side	23.41	24.00	-0.06	1.146	0.241	0.276	
18900	1880	1RB	Bottom Side	23.41	24.00	0.11	1.146	0.621	0.711	
18700	1860	50%RB	Front	23.36	23.50	0.09	1.033	0.413	0.427	
18700	1860	50%RB	Back	23.36	23.50	0.08	1.033	0.640	0.661	
18700	1860	50%RB	Left Side	23.36	23.50	0.04	1.033	0.176	0.182	
18700	1860	50%RB	Right Side	23.36	23.50	-0.09	1.033	0.184	0.190	

Page 43 of 153

Report No.: MWR151101111

18700	1860	50%RB	Bottom Side	23.36	23.50	-0.07	1.033	0.531	0.548	
		n	neasured / repo	orted SAR nur	nbers – Body	worn (di	stance 10)mm)		
18900	1880	1RB	Front	23.41	24.00	-0.02	1.146	0.53	0.607	
18900	1880	1RB	Back	23.41	24.00	-0.10	1.146	0.664	0.761	
18700	1860	50%RB	Front	23.36	23.50	0.09	1.033	0.413	0.427	
18700	1860	50%RB	Back	23.36	23.50	0.08	1.033	0.640	0.661	

				SAR Valu	ies [LTE Band	d 4]				
		Channel		Conducted	Maximum			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			mea	asured / repor	ted SAR num	bers - He	ad			
20175	1732.5	1RB	Right Cheek	22.65	23.00	-0.11	1.084	0.037	0.040	Plot 13
20175	1732.5	1RB	Right Tilt	22.65	23.00	-0.06	1.084	0.011	0.012	
20175	1732.5	1RB	Left Cheek	22.65	23.00	-0.12	1.084	0.027	0.029	
20175	1732.5	1RB	Left Tilt	22.65	23.00	-0.15	1.084	0.01	0.011	
20300	1745	50%RB	Right Cheek	21.68	22.00	0.16	1.076	0.029	0.031	
20300	1745	50%RB	Right Tilt	21.68	22.00	0.03	1.076	0.012	0.013	
20300	1745	50%RB	Left Cheek	21.68	22.00	0.08	1.076	0.021	0.023	
20300	1745	50%RB	Left Tilt	21.68	22.00	0.06	1.076	0.011	0.012	
		meas	ured / reported	d SAR number	rs - Body (hot	tspot ope	n, distano	ce 10mm)		
20175	1732.5	1RB	Front	22.65	23.00	-0.02	1.084	0.17	0.184	
20175	1732.5	1RB	Back	22.65	23.00	-0.10	1.084	0.172	0.186	Plot 14
20175	1732.5	1RB	Left Side	22.65	23.00	-0.06	1.084	0.084	0.091	
20175	1732.5	1RB	Right Side	22.65	23.00	-0.06	1.084	0.056	0.061	
20175	1732.5	1RB	Bottom Side	22.65	23.00	0.11	1.084	0.151	0.164	
20300	1745	50%RB	Front	21.68	22.00	0.16	1.076	0.151	0.163	
20300	1745	50%RB	Back	21.68	22.00	0.08	1.076	0.162	0.174	
20300	1745	50%RB	Left Side	21.68	22.00	0.04	1.076	0.078	0.084	
20300	1745	50%RB	Right Side	21.68	22.00	-0.01	1.076	0.046	0.050	
20300	1745	50%RB	Bottom Side	21.68	22.00	-0.16	1.076	0.137	0.147	
		m	easured / repo	orted SAR nur	nbers – Body	worn (d	istance 10	Omm)		
20175	1732.5	1RB	Front	22.65	23.00	-0.02	1.084	0.17	0.184	
20175	1732.5	1RB	Back	22.65	23.00	-0.10	1.084	0.172	0.186	
20300	1745	50%RB	Front	21.68	22.00	0.16	1.076	0.151	0.163	
20300	1745	50%RB	Back	21.68	22.00	0.08	1.076	0.162	0.174	

SAR Values [LTE Band 7]

		Channel		Conducted	Maximum			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			mea	asured / repor	ted SAR num	bers - He	ad			
20850	2510	1RB	Right Cheek	23.55	24.00	-0.11	1.109	0.028	0.031	Plot 15
20850	2510	1RB	Right Tilt	23.55	24.00	-0.06	1.109	0.016	0.018	
20850	2510	1RB	Left Cheek	23.55	24.00	-0.12	1.109	0.027	0.030	
20850	2510	1RB	Left Tilt	23.55	24.00	-0.15	1.109	0.014	0.016	
21350	2560	50%RB	Right Cheek	23.11	23.50	0.16	1.094	0.024	0.026	
21350	2560	50%RB	Right Tilt	23.11	23.50	0.18	1.094	0.013	0.014	
21350	2560	50%RB	Left Cheek	23.11	23.50	0.08	1.094	0.021	0.023	
21350	2560	50%RB	Left Tilt	23.11	23.50	0.06	1.094	0.01	0.011	
		meas	ured / reported	d SAR number	rs - Body (hot	spot ope	n, distand	e 10mm)	•	
20850	2510	1RB	Front	23.55	24.00	-0.02	1.109	0.207	0.230	
20850	2510	1RB	Back	23.55	24.00	-0.10	1.109	0.224	0.248	Plot 16
20850	2510	1RB	Left Side	23.55	24.00	-0.06	1.109	0.087	0.096	
20850	2510	1RB	Right Side	23.55	24.00	-0.06	1.109	0.094	0.104	
20850	2510	1RB	Bottom Side	23.55	24.00	0.11	1.109	0.189	0.210	
21350	2560	50%RB	Front	23.11	23.50	0.03	1.094	0.184	0.201	
21350	2560	50%RB	Back	23.11	23.50	0.01	1.094	0.210	0.230	
21350	2560	50%RB	Left Side	23.11	23.50	0.12	1.094	0.075	0.082	
21350	2560	50%RB	Right Side	23.11	23.50	0.05	1.094	0.082	0.090	
21350	2560	50%RB	Bottom Side	23.11	23.50	-0.14	1.094	0.173	0.189	

Page 44 of 153

Report No.: MWR151101111

	measured / reported SAR numbers – Body worn (distance 10mm)											
20850	2510	1RB	Front	23.55	24.00	-0.02	1.109	0.207	0.230			
20850	2510	1RB	Back	23.55	24.00	-0.10	1.109	0.224	0.248			
21350	2560	50%RB	Front	23.11	23.50	0.03	1.094	0.184	0.201			
21350	21350 2560 50%RB Back 23.11 23.50 0.01 1.094 0.210 0.230											

SAR Values [LTE Band 17]

		Channel		Conducted	Maximum			SAR _{1-g} rest	ults(W/kg)	
Ch.	Freq. (MHz)	Channel Type (10M)	Test Position	Conducted Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			mea	asured / repor	ted SAR numl	bers - He	ad			
23780	709	1RB	Right Cheek	23.20	23.50	-0.11	1.072	0.318	0.341	Plot 17
23780	709	1RB	Right Tilt	23.20	23.50	-0.06	1.072	0.114	0.122	
23780	709	1RB	Left Cheek	23.20	23.50	-0.12	1.072	0.297	0.318	
23780	709	1RB	Left Tilt	23.20	23.50	-0.15	1.072	0.105	0.113	
23800	711	50%RB	Right Cheek	22.78	23.00	0.13	1.052	0.301	0.317	
23800	711	50%RB	Right Tilt	22.78	23.00	0.09	1.052	0.101	0.106	
23800	711	50%RB	Left Cheek	22.78	23.00	0.07	1.052	0.281	0.296	
23800	711	50%RB	Left Tilt	22.78	23.00	-0.16	1.052	0.096	0.101	
		meas	ured / reported	d SAR number	rs - Body (hot	spot ope	n, distand	e 10mm)		
23780	709	1RB	Front	23.20	23.50	-0.02	1.072	0.314	0.336	
23780	709	1RB	Back	23.20	23.50	-0.10	1.072	0.594	0.636	Plot 18
23780	709	1RB	Left Side	23.20	23.50	-0.06	1.072	0.186	0.199	
23780	709	1RB	Right Side	23.20	23.50	-0.06	1.072	0.201	0.215	
23780	709	1RB	Bottom Side	23.20	23.50	0.11	1.072	0.309	0.331	
23800	711	50%RB	Front	22.78	23.00	0.02	1.052	0.302	0.318	
23800	711	50%RB	Back	22.78	23.00	0.08	1.052	0.513	0.540	
23800	711	50%RB	Left Side	22.78	23.00	0.15	1.052	0.171	0.180	
23800	711	50%RB	Right Side	22.78	23.00	0.19	1.052	0.196	0.206	
23800	711	50%RB	Bottom Side	22.78	23.00	0.07	1.052	0.284	0.299	
		m	easured / repo	orted SAR nur	nbers – Body	worn (d	istance 10)mm)		
23780	709	1RB	Front	23.20	23.50	-0.02	1.072	0.314	0.336	
23780	709	1RB	Back	23.20	23.50	-0.10	1.072	0.594	0.636	
23800	711	50%RB	Front	22.78	23.00	0.02	1.052	0.302	0.318	
23800	711	50%RB	Back	22.78	23.00	0.08	1.052	0.513	0.540	

SAR Values [WIFI2.4G]

				Maximum	Conducted			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Service	Test Position	Allowed Power (dBm)	Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
			n	neasured / re	ported SAR n	umbers - I	Head			
11	2462	DSSS	Right Cheek	13.44	14.00	0.10	1.138	0.467	0.531	Plot 19
11	2462	DSSS	Right Tilt	13.44	14.00	-0.05	1.138	0.127	0.144	
11	2462	DSSS	Left Cheek	13.44	14.00	-0.11	1.138	0.378	0.430	
11	2462	DSSS	Left Tilt	13.44	14.00	-0.08	1.138	0.184	0.209	
		me	asured / repor	rted SAR num	bers - Body (hotspot of	pen, dista	nce 10mm)		
11	2462	DSSS	Front	13.44	14.00	-0.17	1.138	0.036	0.041	
11	2462	DSSS	Back	13.44	14.00	-0.03	1.138	0.037	0.042	Plot 20
11	2462	DSSS	Right Side	13.44	14.00	-0.06	1.138	0.021	0.024	
11	2462	DSSS	Top Side	13.44	14.00	-0.06	1.138	0.036	0.041	
	measured / reported SAR numbers – Body worn (distance 10mm)									
11	2462	DSSS	Front	13.44	14.00	-0.17	1.138	0.036	0.041	
11	2462	DSSS	Back	13.44	14.00	-0.03	1.138	0.037	0.042	

Note:

1. The value with black color is the maximum Reported SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. Per KDB 941225 D02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dBhigher than RMC, or reported SAR with RMC 12.2kbps setting is \leq 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.

4. Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel

5. Per KDB 941225 D05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. 6. Per KDB 941225 D05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

7. Per KDB 941225 D05, 16QAM output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is \leq 1.45 W/kg; Per KDB 941225 D05v02r03,16QAM SAR testing is not required.

8. Per KDB 941225 D05, Smaller bandwidth output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is \leq 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

9. Per KDB 248227-SAR is measured using the highest measured maximum output power channel for the initial test configuration.

10. Per KDB 248227- Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement. And when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

11. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.0.335 W/Kg(0.531*(15.85/25.12)=0.335) So ODFM SAR test is not required.

12. Per KDB 648474 D04, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is \leq 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

5.3.3 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio= $\frac{(SAR_1+SAR_2)^{1.5}}{(\text{peak location separation,mm})} < 0.04$

	Estimated stand alone SAR											
Communication system	Frequency (MHz)	Configuration	Maximum Power (including tune-up tolerance) (dBm)	Separation Distance (mm)	Estimated SAR _{1-a} (W/kg)							
Bluetooth*	2441	Head	2	5	0.067							
Bluetooth*	2441	Hotspot	2	10	0.033							
Bluetooth*	2441	Body Worn	2	10	0.033							

Bluetooth*- Including Lower power Bluetooth

5.4. Simultaneous TX SAR Considerations

5.4.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT and WiFi modules sharing same antenna, GSM, WCDMA and LTE module sharing a single antenna;

Application Simultaneous Transmission information:

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
	850	VO	Yes,WLAN or BT/BLE	N/A
GSM	1900	VO	res, WLAN OF BT/BLE	IN/A
	GPRS/EDGE	DT	Yes,WLAN or BT/BLE	N/A
WCDMA	Band II/Band IV/BandV	DT	Yes,WLAN or BT/BLE	N/A
LTE	Band2/Band4/Band7/ Band17	DT	Yes,WLAN or BT/BLE	N/A
WLAN	2450	DT	Yes,GSM,GPRS,EDGE,UMTS	Yes
BT/BLE	2450	DT	Yes,GSM,GPRS,EDGE,UMTS	N/A
Note:VO-Voice	Service only;DT-Digital Tra	ansport		

Note: BT and WLAN can be active at the same time, but only with interleaving of packages switched on board level. That means that they don't transmit at the same time.

BLE-Bluetooth low energy;

BT- Classical Bluetooth

5.4.2 Evaluation of Simultaneous SAR

Head Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM/WCDMA

Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WCDMA Band V Reported SAR _{1-q} (W/Kg)	WCDMA Band IV Reported SAR _{1-q} (W/Kg)	WCDMA Band II Reported SAR _{1-q} (W/Kg)	WiFi Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-α} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separatio n ratio	Simut. Meas. Required
Right Cheek	0.124	0.060	0.078	0.111	0.069	0.531	0.655	1.6	no	no
Right Tilt	0.080	0.024	0.053	0.049	0.027	0.144	0.389	1.6	no	no
Left Cheek	0.141	0.033	0.095	0.107	0.058	0.430	0.571	1.6	no	no
Left Tilt	0.061	0.017	0.041	0.040	0.024	0.209	0.299	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Test Position	LTE Band 2 Reported SAR _{1-g} (W/Kg)	LTE Band 4 Reported SAR _{1-g} (W/Kg)	LTE Band 7 Reported SAR _{1-g} (W/Kg)	LTE Band 17 Reported SAR _{1-g} (W/Kg)	WiFi Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separatio n ratio	Simut. Meas. Required
Right Cheek	0.036	0.040	0.031	0.341	0.531	0.872	1.6	no	no
Right Tilt	0.021	0.012	0.018	0.122	0.144	0.266	1.6	no	no
Left Cheek	0.050	0.029	0.030	0.318	0.430	0.748	1.6	no	no
Left Tilt	0.026	0.011	0.016	0.113	0.209	0.322	1.6	no	no

Simultaneous transmission SAR for Bluetooth and GSM/WCDMA

Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WCDMA Band V Reported SAR _{1-q} (W/Kg)	WCDMA Band IV Reported SAR _{1-q} (W/Kg)	WCDMA Band II Reported SAR _{1-q} (W/Kg)	Bluetooth Estimated SAR₁₋α (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separatio n ratio	Simut. Meas. Required
Right Cheek	0.149	0.171	0.574	0.114	0.109	0.067	0.213	1.6	no	no
Right Tilt	0.094	0.105	0.271	0.050	0.059	0.067	0.312	1.6	no	no
Left Cheek	0.141	0.158	0.510	0.110	0.102	0.067	0.208	1.6	no	no
Left Tilt	0.078	0.097	0.241	0.041	0.054	0.067	0.157	1.6	no	no

Simultaneous transmission SAR for Bluetooth and LTE

Test Position	LTE Band 2 Reported SAR _{1-g} (W/Kg)	LTE Band 4 Reported SAR _{1-g} (W/Kg)	LTE Band 7 Reported SAR _{1-g} (W/Kg)	LTE Band 17 Reported SAR _{1-g} (W/Kg)	Bluetooth Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separatio n ratio	Simut. Meas. Required
Right Cheek	0.036	0.040	0.031	0.341	0.067	0.408	1.6	no	no
Right Tilt	0.021	0.012	0.018	0.122	0.067	0.189	1.6	no	no
Left Cheek	0.050	0.029	0.030	0.318	0.067	0.385	1.6	no	no
Left Tilt	0.026	0.011	0.016	0.113	0.067	0.18	1.6	no	no

Body Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM/WCDMA

Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WCDMA Band V Reported SAR _{1-q} (W/Kg)	WCDMA Band IV Reported SAR _{1-q} (W/Kg)	WCDMA Band II Reported SAR _{1-q} (W/Kg)	WiFi Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separati on ratio	Simut. Meas. Required
Front	0.538	0.522	0.146	0.117	0.738	0.041	0.779	1.6	no	no
Back	0.744	0.783	0.245	0.210	0.796	0.042	0.838	1.6	no	no
Left Side	0.181	0.242	0.076	0.095	0.144	/	0.242	1.6	no	no
Right Side	0.218	0.312	0.090	0.102	0.151	0.024	0.336	1.6	no	no
Top Side	/	/	/	/	/	0.041	0.041	1.6	no	no
Bottom Side	0.656	0.537	0.121	0.111	0.749	/	0.749	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Test Position	LTE Band 2 Reported SAR _{1-q} (W/Kg)	LTE Band 4 Reported SAR _{1-q} (W/Kg)	LTE Band 7 Reported SAR _{1-q} (W/Kg)	LTE Band 17 Reported SAR _{1-q} (W/Kg)	WiFi Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separati on ratio	Simut. Meas. Required
Front	0.607	0.184	0.230	0.336	0.041	0.648	1.6	no	no
Back	0.761	0.186	0.248	0.636	0.042	0.803	1.6	no	no
Left Side	0.253	0.091	0.096	0.199	/	0.253	1.6	no	no
Right Side	0.276	0.061	0.104	0.215	0.024	0.3	1.6	no	no
Top Side	/	/	/	/	0.041	0.041	1.6	no	no
Bottom Side	0.711	0.164	0.210	0.331	/	0.711	1.6	no	no

Simultaneous transmission SAR for Bluetooth and GSM/WCDMA

Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WCDMA Band V Reported SAR _{1-q} (W/Kg)	WCDMA Band IV Reported SAR _{1-q} (W/Kg)	WCDMA Band II Reported SAR _{1-g} (W/Kg)	Bluetooth Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separati on ratio	Simut. Meas. Required
Front	0.538	0.522	0.146	0.117	0.738	0.033	0.771	1.6	no	no
Back	0.744	0.783	0.245	0.210	0.796	0.033	0.829	1.6	no	no
Left Side	0.181	0.242	0.076	0.095	0.144	0.033	0.275	1.6	no	no
Right Side	0.218	0.312	0.090	0.102	0.151	0.033	0.345	1.6	no	no
Top Side	/	/	/	/	/	0.033	0.033	1.6	no	no
Bottom Side	0.656	0.537	0.121	0.111	0.749	0.033	0.782	1.6	no	no

Simultaneous transmission SAR for Bluetooth and LTE

Test Position	LTE Band 2 Reported SAR _{1-g} (W/Kg)	LTE Band 4 Reported SAR _{1-g} (W/Kg)	LTE Band 7 Reported SAR _{1-g} (W/Kg)	LTE Band 17 Reported SAR _{1-g} (W/Kg)	Bluetooth Estimated SAR _{1-α} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-a} Limit (W/Kg)	Peak location separati on ratio	Simut. Meas. Required
Front	0.607	0.184	0.230	0.336	0.033	0.64	1.6	no	no
Back	0.761	0.186	0.248	0.636	0.033	0.794	1.6	no	no
Left Side	0.253	0.091	0.096	0.199	0.033	0.286	1.6	no	no
Right Side	0.276	0.061	0.104	0.215	0.033	0.309	1.6	no	no
Top Side	/	/	/	/	0.033	0.033	1.6	no	no
Bottom Side	0.711	0.164	0.210	0.331	0.033	0.744	1.6	no	no

Note:

- 1. The WiFi and BT share same antenna, so cannot transmit at same time.
- 2. The value with block color is the maximum values of standalone
- 3. The value with blue color is the maximum values of $\sum SAR_{1-g}$

5.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

5.6. General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- 6. WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 248227 D01, Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement and when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 9. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 10. Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.
- 11. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 12. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - $\bullet \le$ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 13. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 14. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.

- 15. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- 16. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.
- Per KDB648474 D04 require for phablet SAR test considerations, For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 18. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

5.7. Measurement Uncertainty (300MHz-3GHz)

		Relati	ve DSAY5 Un				Tests			
			Accordin	g to IEC6220	<u>9-1/20</u>	06	1	Ctd	Ctd	Deeree
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme		1	1	1	T	T			1	
1	Probe calibration	В	5.50%	N	1	1	1	5.50%	5.50%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	œ
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	œ
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	œ
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
Test Sample			1	1						
15	Test sample positioning	А	1.86%	N	1	1	1	1.86%	1.86%	8
16	Device holder uncertainty	Α	1.70%	N	1	1	1	1.70%	1.70%	∞
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
Phantom ar		1	[1	r	1	1	1	1	1
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	œ
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	œ
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid cpermittivity	Α	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	8

	(meas.)								
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$	/	/	/	/	/	10.20%	10.00%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$	/	R	K=2	/	/	20.40%	20.00%	8

	Uncer	tainty o	of a System P	erformance C	Check	with D	ASY4 S	System		
	-			g to IEC6220			_	-	-	
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measuremer	nt System		•	•						
1	Probe calibration	В	6.00%	N	1	1	1	6.00%	6.00%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	œ
3	Hemispherical isotropy	В	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	œ
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	œ
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	œ
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	∞
Test Sample										
16	Test sample positioning	Α	0.00%	N	1	1	1	0.00%	0.00%	∞
17	Device holder uncertainty	Α	2.00%	N	1	1	1	2.00%	2.00%	∞
18	Drift of output power	В	3.40%	R	$\sqrt{3}$	1	1	2.00%	2.00%	∞
Phantom and		1	Γ	Γ	1	1	1			1
19	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	œ

Page 52 of 153

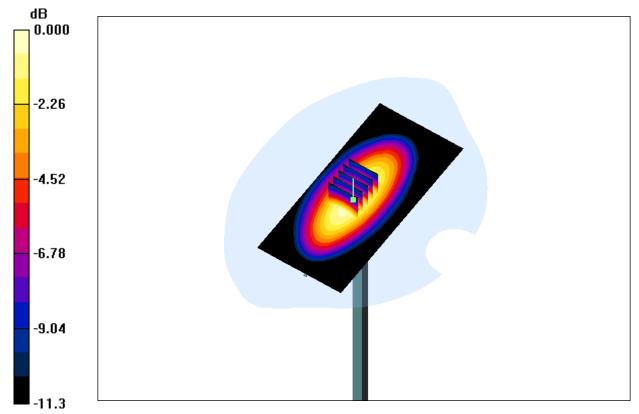
Report No.: MWR151101111

20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	8
21	Liquid conductivity (meas.)	A	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	8
22	Liquid cpermittivity (meas.)	A	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	8
23	Temp.Unc Conductivity	В	1.70%	R	$\sqrt{3}$	0.78	0.71	0.80%	0.80%	8
24	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$		/	/	/	/	/	12.90%	12.70%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	18.80%	18.40%	8

5.8. System Check Results

Date: 10/10/2015

DUT: Dipole 750 MHz; Type: D750V2; Serial: 1133 Program Name: System Performance Check Head at 750 MHz


Communication System: CW; Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.91 mho/m; ϵ_r = 41.79; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.36, 6.36, 6.36); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

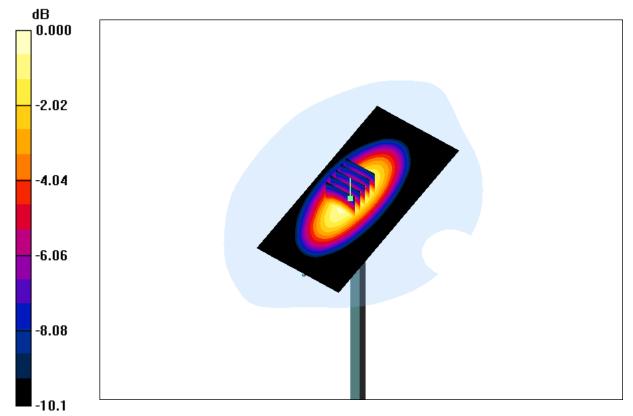
d=15mm, Pin=250mW/Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.03 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 47.4 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 2.96 W/kg SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 2.10 mW/g

Date: 10/16/2015

DUT: Dipole 750 MHz; Type: D750V2; Serial: 1133 Program Name: System Performance Check Body at 750 MHz

Communication System: CW; Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.97 mho/m; ϵ_r = 55.99; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.02, 6.02, 6.02); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.31 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.1 V/m; Power Drift = -0.141 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 2.21 mW/g; SAR(10 g) = 1.47 mW/g

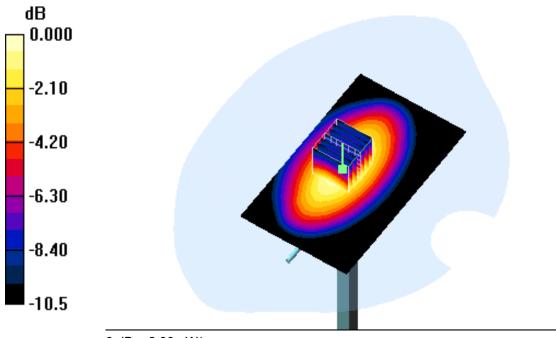
Maximum value of SAR (measured) = 2.41 mW/g

 $0 \, dB = 2.41 mW/g$

Date: 10/10/2015

DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086 Program Name: System Performance Check Head at 900 MHz

Communication System: CW; Frequency: 900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; σ = 0.97 mho/m; ϵ_r = 42.13; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.19, 6.19, 6.19); Calibrated:10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.82 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

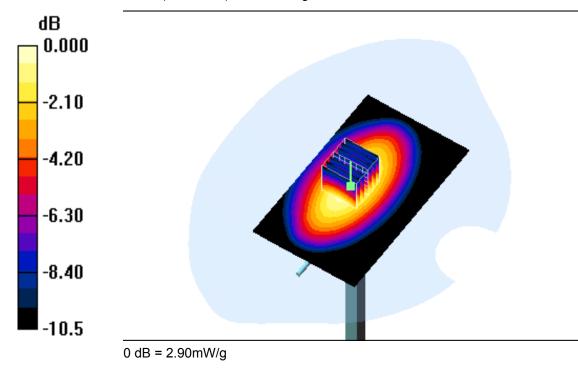
Reference Value = 54.523 V/m; Power Drift = -0.01dB Peak SAR (extrapolated) = 4.068 W/kg SAR(1 g) = 2.67 mW/g; SAR(10 g) = 1.72 mW/g Maximum value of SAR (measured) = 2.90 mW/g

0 dB = 2.90 mW/g

Date: 10/16/2015

DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086 Program Name: System Performance Check at 900 MHz Body

Communication System: CW; Frequency: 900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; σ = 1.01 mho/m; ϵ_r = 54.69; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.02, 6.02, 6.02); Calibrated:10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

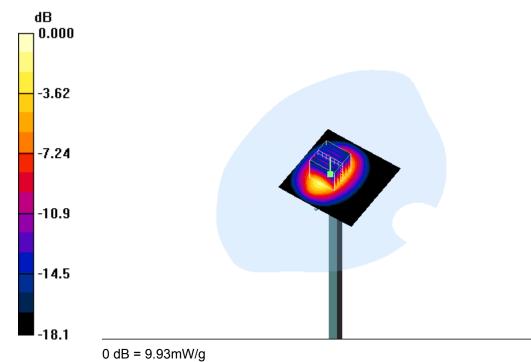
d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.523 V/m; Power Drift = -0.01dB Peak SAR (extrapolated) = 4.068 W/kg SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.80 mW/g

Date: 10/11/2015

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Program Name: System Performance Check Head at 1750 MHz


Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.38 mho/m; ϵ_r = 39.83; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.97, 4.97, 4.97); Calibrated:10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

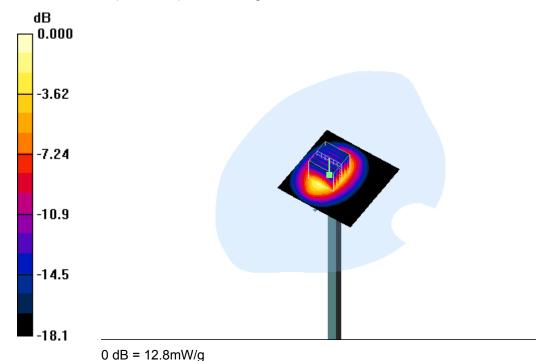
d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.60 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.712 V/m; Power Drift = 0.03dB Peak SAR (extrapolated) = 16.718 W/kg SAR(1 g) = 8.82 mW/g; SAR(10 g) = 4.56 mW/g Maximum value of SAR (measured) = 9.93 mW/g

Date: 10/18/2015

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Program Name: System Performance Check Body at 1750 MHz

Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.53 mho/m; ϵ_r = 54.57; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.69, 4.69, 4.69); Calibrated:10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.60 mW/g

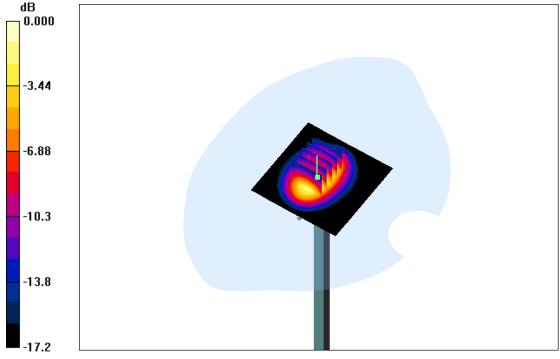
d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.17 V/m; Power Drift = 0.03dB Peak SAR (extrapolated) = 15.81 W/kg SAR(1 g) = 9.06 mW/g; SAR(10 g) = 4.85 mW/g Maximum value of SAR (measured) = 12.8 mW/g

Date: 10/12/2015

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194 Program Name: System Performance Check Head at 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 40.29; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.68, 4.68, 4.68); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.6 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.87 mW/g; SAR(10 g) = 5.26 mW/g

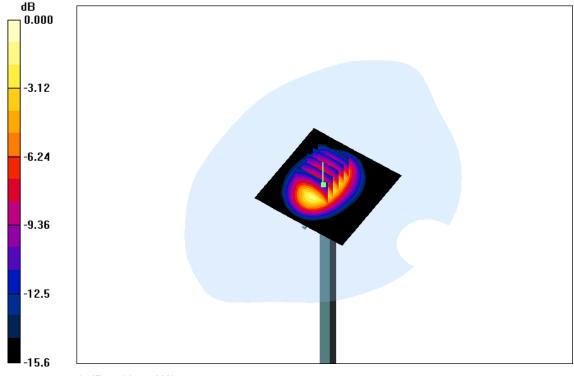
Maximum value of SAR (measured) = 11.2 mW/g

 $0 \, dB = 11.2 mW/g$

Date: 10/18/2015

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194 Program Name: System Performance Check at Body 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ϵ_r = 53.69; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.48, 4.48, 4.48); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.9 V/m; Power Drift = 0.109 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.42 mW/g

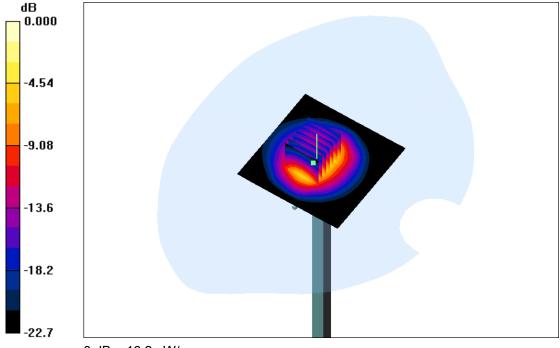
Maximum value of SAR (measured) = 12.5 mW/g

 $0 \, dB = 12.5 mW/g$

Date: 10/13/2015

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955 Program Name: System Performance Check Head at 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.83 mho/m; ϵ_r = 38.19; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.21, 4.21, 4.21); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 16.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.0 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.45 mW/g Maximum value of SAP (measured) = 16.2 mW/g

Maximum value of SAR (measured) = 16.2 mW/g

0 dB = 16.2mW/g

Date: 10/20/2015

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955 Program Name: System Performance Check Body at 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.90 mho/m; ϵ_r = 50.59; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.14, 4.14, 4.14); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

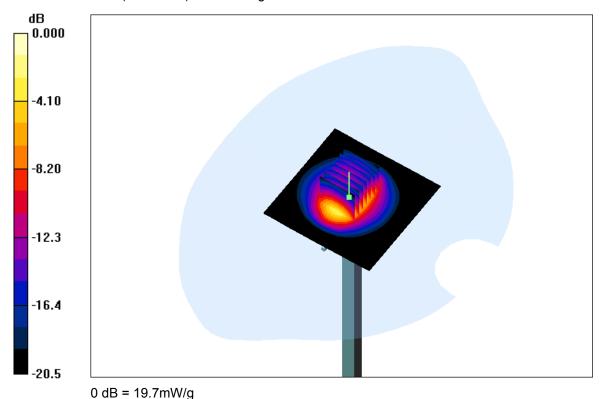
d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 16.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.5 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.34 mW/g Maximum value of SAR (measured) = 15.4 mW/g

0 dB = 15.4mW/g

Date: 10/14/2015

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1058 Program Name: System Performance Check Head at 2600 MHz


Communication System: CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ =1.96 mho/m; ϵ_r = 38.09; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.06, 4.06, 4.06); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

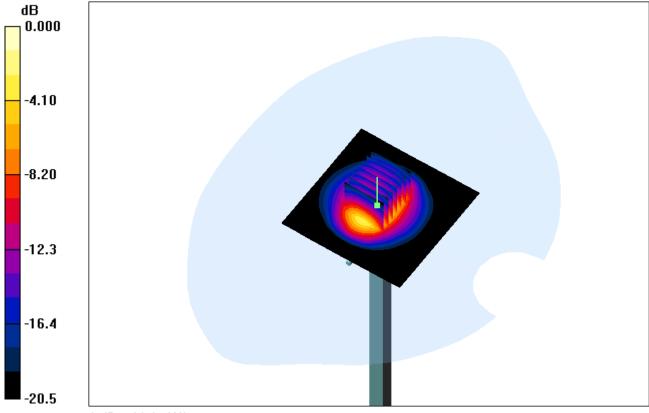
d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 21.1 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 84.1 V/m; Power Drift = 0.032 dB
Peak SAR (extrapolated) = 30.2 W/kg
SAR(1 g) = 14.4 mW/g; SAR(10 g) = 6.47 mW/g
Maximum value of SAR (measured) = 19.7 mW/g

Date: 10/20/2015

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1058 Program Name: System Performance Check Body at 2600 MHz

Communication System: CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.20 mho/m; ϵ_r = 51.09; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.02, 4.02, 4.02); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 25.1 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.4 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 34.1 W/kg **SAR(1 g) = 14.6 mW/g; SAR(10 g) = 6.48 mW/g**

Maximum value of SAR (measured) = 23.2 mW/g

 $0 \, dB = 23.2 \, mW/g$

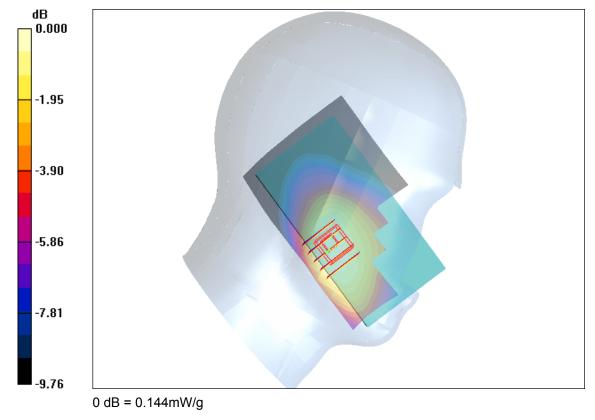
5.9. SAR Test Graph Results

SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

#1

Date: 10/10/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.899 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

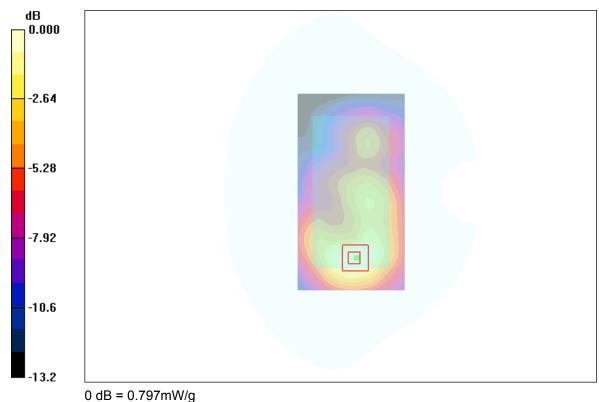
- Probe: ES3DV3 SN3028; ConvF(6.19, 6.19, 6.19); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Cheek 2/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.138 mW/g

Left Cheek 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.42 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.166 W/kg SAR(1 g) = 0.129 mW/g; SAR(10 g) = 0.099 mW/g Maximum value of SAR (measured) = 0.144 mW/g

Date: 10/16/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: GPRS850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ϵ_r = 55.4; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

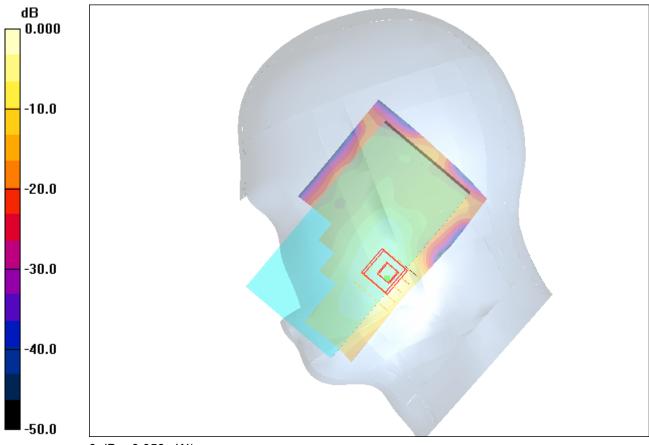
- Probe: ES3DV3 SN3028; ConvF(6.02, 6.02, 6.02); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.811 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.5 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.635 mW/g; SAR(10 g) = 0.438 mW/g Maximum value of SAR (measured) = 0.797 mW/g

Date: 10/12/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.42 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

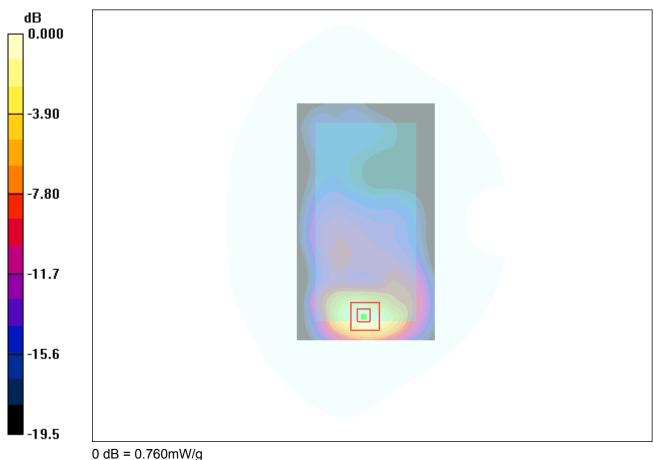
- Probe: ES3DV3 SN3028; ConvF(4.68, 4.68, 4.68); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.056 mW/g

Right Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.50 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.090 W/kg SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.059 mW/g

Date: 10/18/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: GPRS1900; Frequency: 1880 MHz;Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

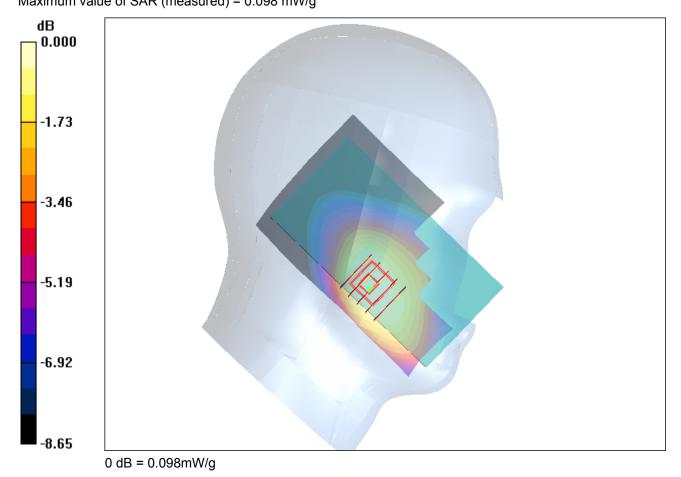
- Probe: ES3DV3 SN3028; ConvF(4.48, 4.48, 4.48); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.720 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.43 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.687 mW/g; SAR(10 g) = 0.353 mW/g Maximum value of SAR (measured) = 0.760 mW/g

Date: 10/10/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: W850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 837 MHz; σ = 0.898 mho/m; ϵ_r = 41.4; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

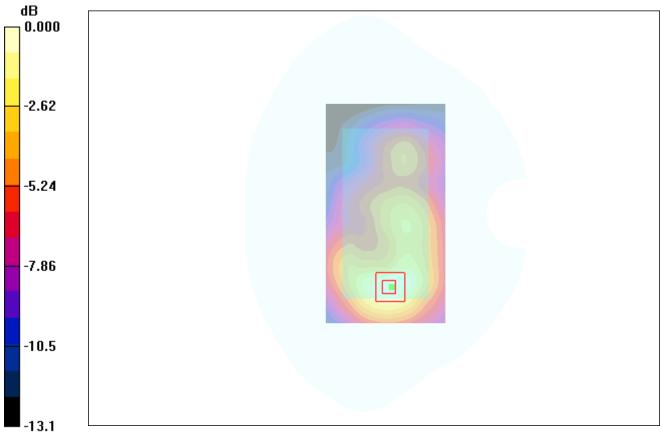
- Probe: ES3DV3 SN3028; ConvF(6.19, 6.19, 6.19); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

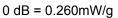
Left Cheek 2/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.101 mW/g

Left Cheek 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.60 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.117 W/kg SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.073 mW/g Maximum value of SAR (measured) = 0.098 mW/g

Date: 10/16/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: W850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 1.01 mho/m; ϵ_r = 55.5; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.02, 6.02, 6.02); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

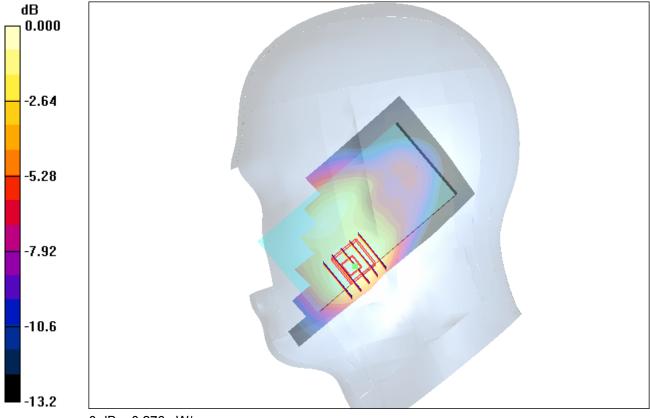
Back 2/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.265 mW/g

Back 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.4 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.391 W/kg SAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.260 mW/g

Date: 10/11/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: W1700; Frequency: 1752.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1753 MHz; σ = 1.26 mho/m; ϵ_r = 39.2; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.97, 4.97, 4.97); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right touch/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.207 mW/g

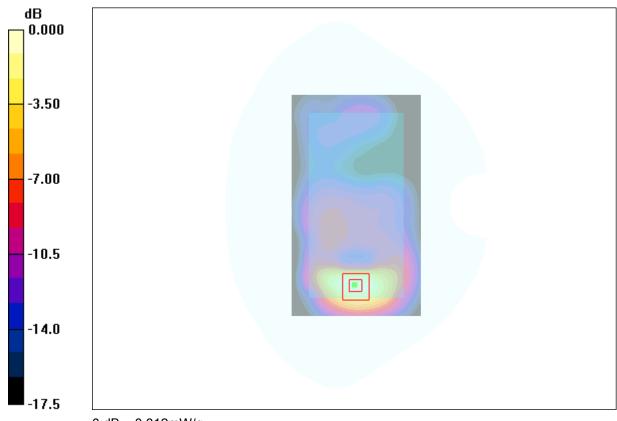
Right touch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.15 V/m; Power Drift = -0.11 dB

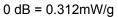
Peak SAR (extrapolated) = 0.439 W/kg SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.276 mW/g

 $0 \, dB = 0.276 mW/g$

Date: 10/18/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: W1700; Frequency: 1752.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1753 MHz; σ = 1.35 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.69, 4.69, 4.69); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

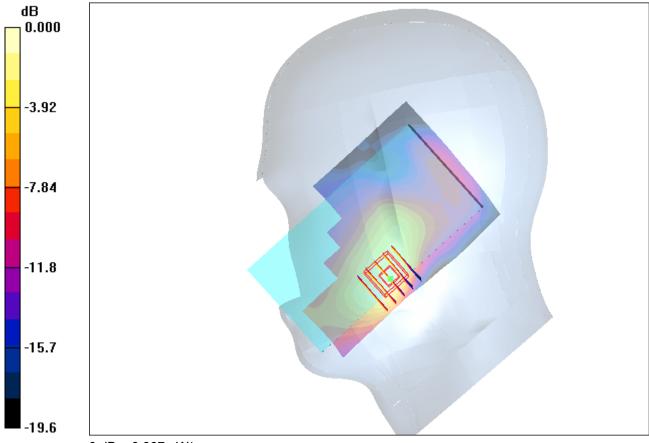
Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.38 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.43 W/kg SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.094 mW/g Maximum value of SAR (measured) = 0.312 mW/g

Date: 10/12/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: W1900; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1907.6 MHz; σ = 1.36 mho/m; ϵ_r = 39.8; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.68, 4.68, 4.68); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

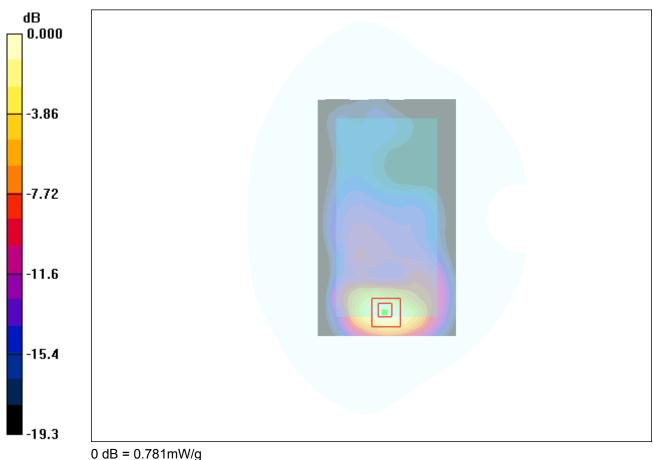
Right Cheek/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.074 mW/g

Right Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.04 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.103 W/kg SAR(1 g) = 0.061 mW/g; SAR(10 g) = 0.034 mW/g Maximum value of SAR (measured) = 0.067 mW/g

Date: 10/18/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: W1900; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1907.6 MHz; σ = 1.48 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.48, 4.48, 4.48); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.747 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.45 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.703 mW/g; SAR(10 g) = 0.359 mW/g Maximum value of SAR (measured) = 0.781 mW/g

Date: 10/12/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 40.29; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.68, 4.68, 4.68); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

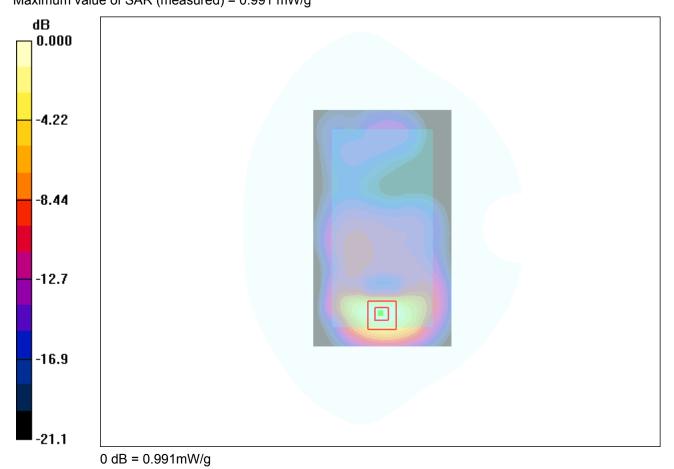
Left Cheek/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.046 mW/g

Left Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.42 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.065 W/kg SAR(1 g) = 0.044 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.047 mW/g

Date: 10/18/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 53.69; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.48, 4.48, 4.48); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g

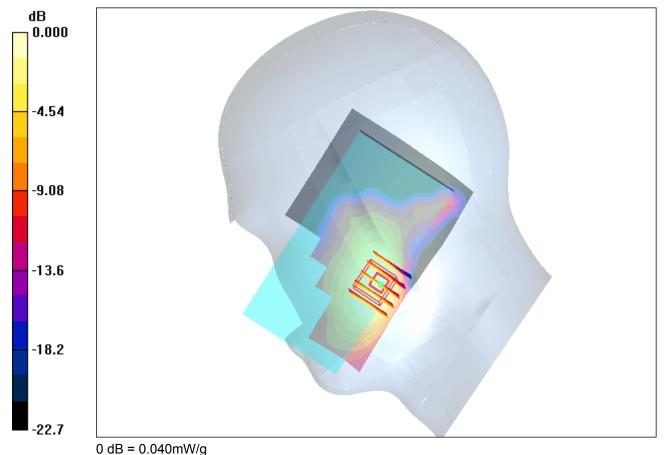
Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.23 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.664 mW/g; SAR(10 g) = 0.458 mW/g Maximum value of SAR (measured) = 0.991 mW/g

Date: 10/11/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.34 mho/m; ϵ_r = 41.5; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.97, 4.97, 4.97); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

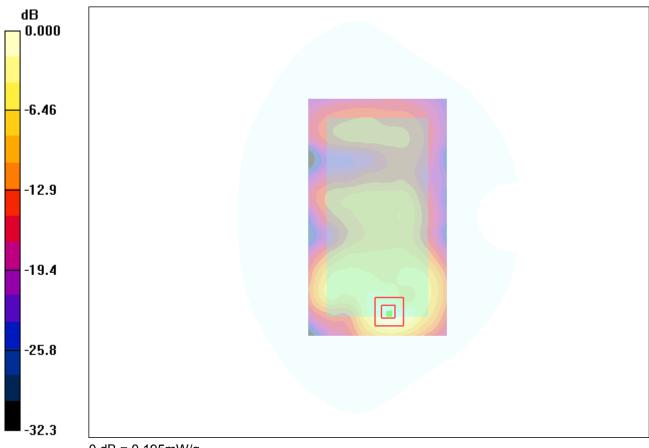
Right Cheek/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

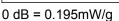
Right Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.9 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.060 W/kgSAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.022 mW/gMaximum value of SAR (measured) = 0.040 mW/g

Date: 10/18/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: LTE; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.49 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.69, 4.69, 4.69); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.188 mW/g

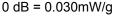
Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.09 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.382 W/kg SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.077 mW/g Maximum value of SAR (measured) = 0.195 mW/g

Date: 10/14/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: LTE; Frequency: 2510 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2510 MHz; σ = 1.81 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:


- Probe: ES3DV3 SN3028; ConvF(4.21, 4.21, 4.21); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

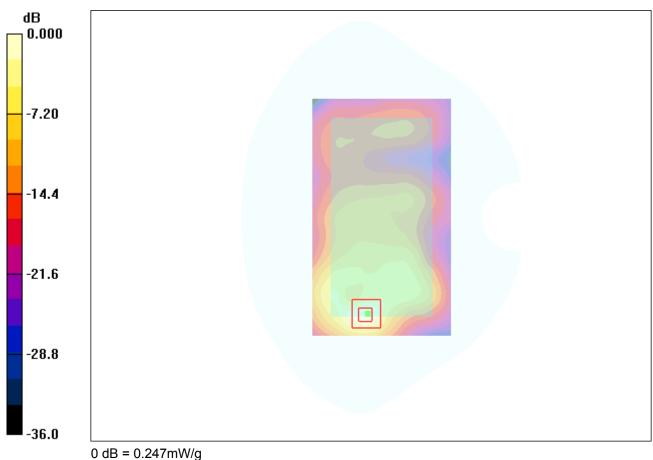
Right Cheek/Area Scan (81x151x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.032 mW/g

Right Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.94 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.055 W/kg SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.016 mW/g Maximum value of SAR (measured) = 0.030 mW/g

Date: 10/20/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: LTE; Frequency: 2510 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2510 MHz; σ = 1.88 mho/m; ϵ_r = 50.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.14, 4.14, 4.14); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.245 mW/g

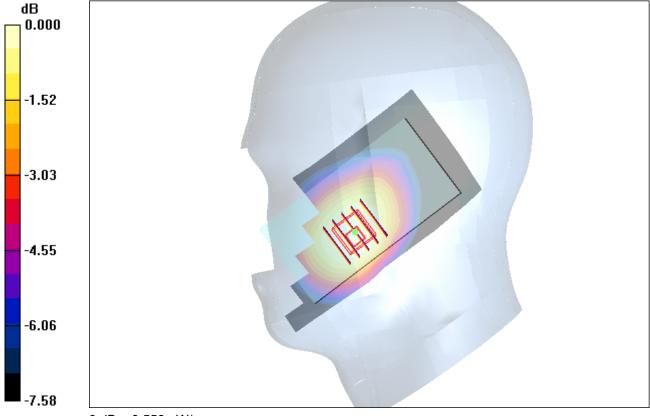
Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.30 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.516 W/kg SAR(1 g) = 0.224 mW/g; SAR(10 g) = 0.097 mW/g Maximum value of SAR (measured) = 0.247 mW/g

Date: 10/10/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: LTE B17; Frequency: 709 MHz;Duty Cycle: 1:1 Medium parameters used: f = 709 MHz; σ = 0.905 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:


- Probe: ES3DV3 SN3028; ConvF(6.36, 6.36, 6.36); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right touch/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.658 mW/g

Right touch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.17 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.686 W/kg

SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.117 mW/gMaximum value of SAR (measured) = 0.558 mW/g

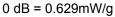
Maximum value of SAR (measured) = 0.558 mW/g

 $0 \, dB = 0.558 mW/g$

Date: 10/16/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: LTE B17; Frequency: 709 MHz;Duty Cycle: 1:1 Medium parameters used: f = 709 MHz; σ = 0.952 mho/m; ϵ_r = 55.5; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.02, 6.02, 6.02); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (81x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.642 mW/g

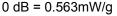
Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.3 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.790 W/kg SAR(1 g) = 0.594 mW/g; SAR(10 g) = 0.360 mW/g Maximum value of SAR (measured) = 0.629 mW/g

Date: 10/13/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505

Communication System: 802.11; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.84 mho/m; ϵ_r = 37.7; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:


- Probe: ES3DV3 SN3028; ConvF(4.21, 4.21, 4.21); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

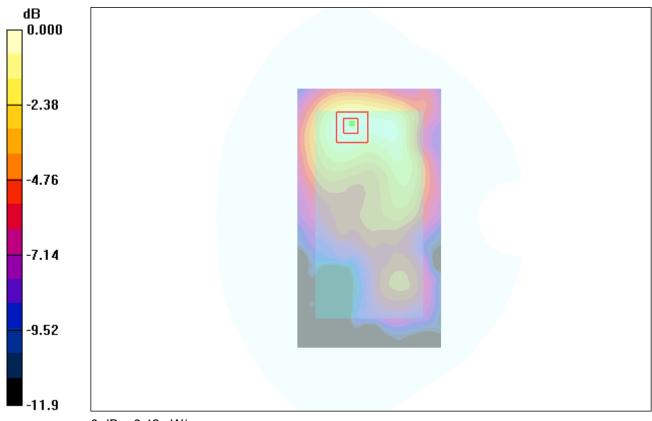
Right Cheek/Area Scan (81x151x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.588 mW/g

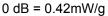
Right Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.47 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0716 W/kg

SAR(1 g) = 0.467 mW/g; SAR(10 g) = 0.277 mW/g Maximum value of SAR (measured) = 0.563 mW/g

Date: 10/20/2015

DUT: L505; Type: SI PIN; Serial: IMEI Number Program Name: L505


Communication System: 802.11; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.97 mho/m; ϵ_r = 52.4; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.14, 4.14, 4.14); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back 2/Area Scan (81x151x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.041 mW/g

Back 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.05 W/kg SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.042 mW/g

6. Calibration Certificate

6.1. Probe Calibration Certificate

Add: No.51 Xneyua			CALIBRATION
Tel: +86-10-623046 E-mail: cttl@chinatt		86-10-62304633-2504	No. L0570
Client AUD	Sector Sector Sector	Certificate No: Z14-3	97115
CALIBRATION CE	RTIFICAT	E	
Object	ES3DV	3 - SN:3028	
Calibration Procedure(s)	TMC-0	S-E-02-195	
	Calibra	tion Procedures for Dosimetric E-field Probes	5
Calibration date:	Octobe	r 22, 2014	
pages and are part of the ce	rtificate.		
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environment or calibration)	t temperature(22±3)*C and
All calibrations have been humidity<70%. Calibration Equipment used	conducted in	10 St 9	t temperature(22±3)*C and Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used	conducted in (M&TE critical fo	or calibration)	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	conducted in (M&TE critical fo ID #	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	conducted in (M&TE critical fo ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) D1-Jul-14 (CTTL, No.J14XD2146)	Scheduled Calibration Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator	Conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02148) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02148) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617 SN 1331	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15 Jan -15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617 SN 3617 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617 SN 3617 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.J212-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617 SN 3617 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ12-781)	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3617 SN 3617 SN 1331 ID # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15

Certificate No: Z14-97115

Page 1 of 11

In Collaboration with
Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China
Tal: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatd.com <u>Http://www.chinatd.cn</u>
Glossary:
TSL tissue simulating liquid NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx, y,z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis
Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
θ=0 is normal to probe axis
Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:
 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged
Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:
Measurement Techniques", June 2013 b) USC 82800.1 "Breachers to measure the Stratific Absorption Bate (SAB) for board hold do fore used
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
Methods Applied and Interpretation of Parameters:
 NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the
E ² -field uncertainty inside TSL (see below ConvF).
 NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.
 DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep
 (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
 PAR. PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
 Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature)
Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on
power measurements for f >800MHz. The same setups are used for assessment of the parameters
applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given.
These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to
that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which
allows extending the validity from±50MHz to±100MHz.
 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.
 Connector Angle: The angle is assessed using the information gained by determining the NORMx
(no uncertainty required).
Certificate No: Z14-97115 Page 2 of 11

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tal: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com <u>Http://www.chinattl.cn</u>

Probe ES3DV3

SN: 3028

Calibrated: October 22, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z14-97115

Page 3 of 11

DASY – Parameters of Probe: ES3DV3 - SN: 3028

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.16	1.27	1.21	±10.8%
DCP(mV) ⁸	105.8	103.2	103.8	

Modulation Calibration Parameters

UID	Communication		Α	в	с	D	VR	UncE
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	282.9	±2.2%
		Y	0.0	0.0	1.0		292.0	
		Z	0.0	0.0	1.0		290.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z14-97115

Page 4 of 11

1	4dd: No. 51 Xneyum B Fel: +86-10-62304633 5-mail: ettl@chinattl.c ASY - Pa	-2079 Fax: +86- om <u>Http://ww</u>	10-62304633-2 nv chinattl.cn	504	ES3D	V3 - S	SN: 3	028
alihrat	ion Paramet	er Determin	ed in He	ad Tissu	e Simula	tina Me	edia	
	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^o	Depth ^o (mm)	Unct. (k=2)
	Relative	Conductivity		1		2018 Textus 1	Depth ^G	10000
[MHz] ^C	Relative Permittivity [#]	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	(k=2)
(MHz) ^C 750	Relative Permittivity ^F 41.9	Conductivity (S/m) ^F 0.89	ConvF X 6.36	ConvF Y 6.38	ConvF Z 6.38	Alpha ^o 0.37	Depth ^G (mm) 1.44	(k=2) ±12%
[MHz] ^C 750 835	Relative Permittivity ^F 41.9 41.5	Conductivity (S/m) ^F 0.89 0.90	ConvF X 6.36 6.19	ConvF Y 6.36 6.19	ConvF Z 6.36 6.19	Alpha ⁰ 0.37 0.39	Depth ^G (mm) 1.44 1.42	(k=2) ±12% ±12%
[MHz] ^C 750 835 1750	Relative Permittivity [#] 41.9 41.5 40.1	Conductivity (S/m) ^F 0.89 0.90 1.37	ConvF X 6.36 6.19 4.97	ConvF Y 6.36 6.19 4.97	ConvF Z 6.36 6.19 4.97	Alpha ^o 0.37 0.39 0.55	Depth ^o (mm) 1.44 1.42 1.34	(k=2) ±12% ±12% ±12%
f [MHz] ^C 750 835 1750 1900	Relative Permittivity [#] 41.9 41.5 40.1 40.0	Conductivity (S/m) ^F 0.89 0.90 1.37 1.40	ConvF X 6.36 6.19 4.97 4.68	ConvF Y 6.36 6.19 4.97 4.68	ConvF Z 6.36 6.19 4.97 4.68	Alpha ⁰ 0.37 0.39 0.55 0.70	Depth ⁶ (mm) 1.44 1.42 1.34 1.23	(k=2) ±12% ±12% ±12% ±12%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^e At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary.

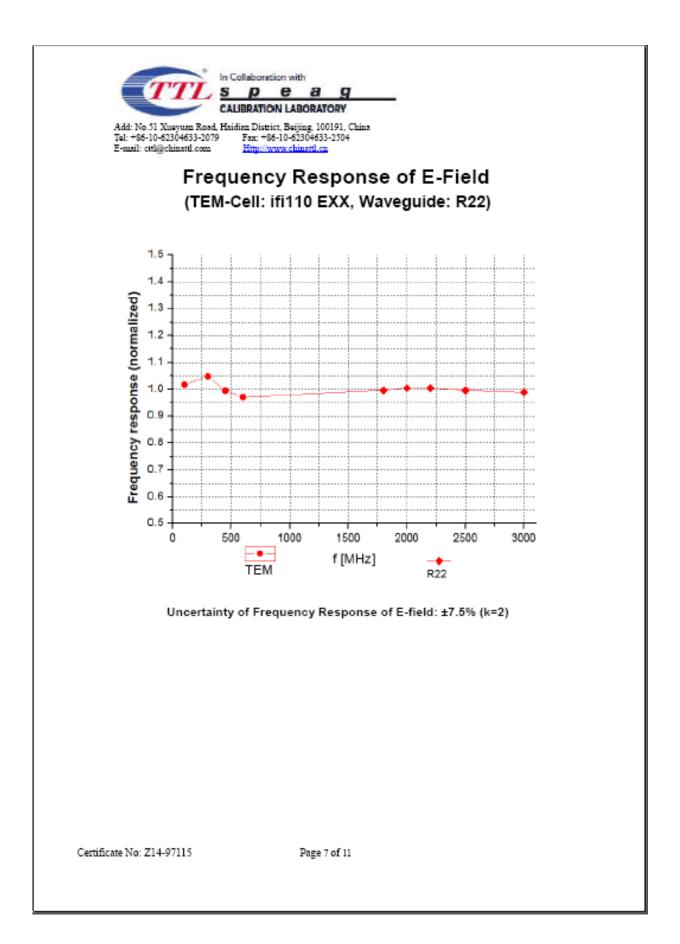
Certificate No: Z14-97115

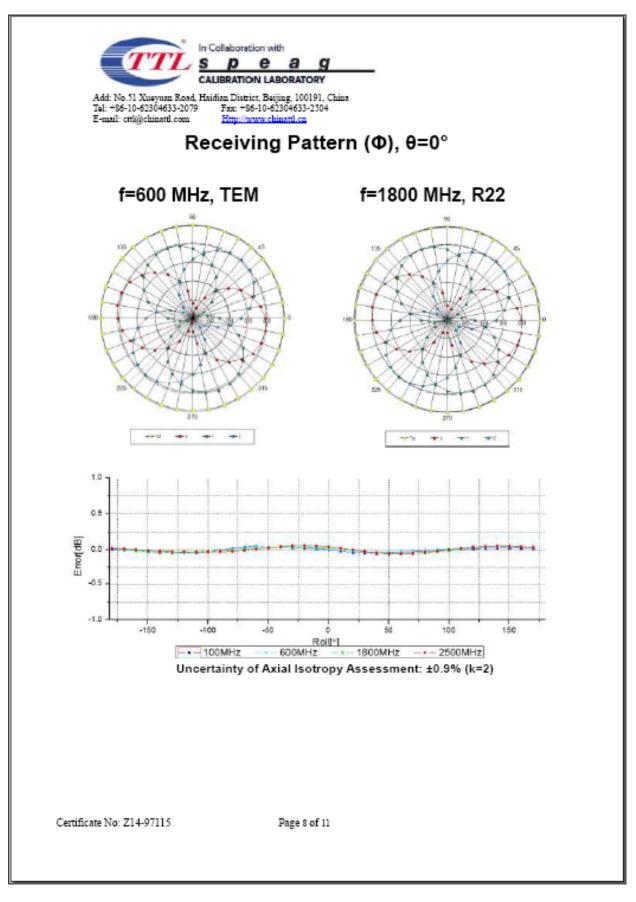
Page 5 of 11

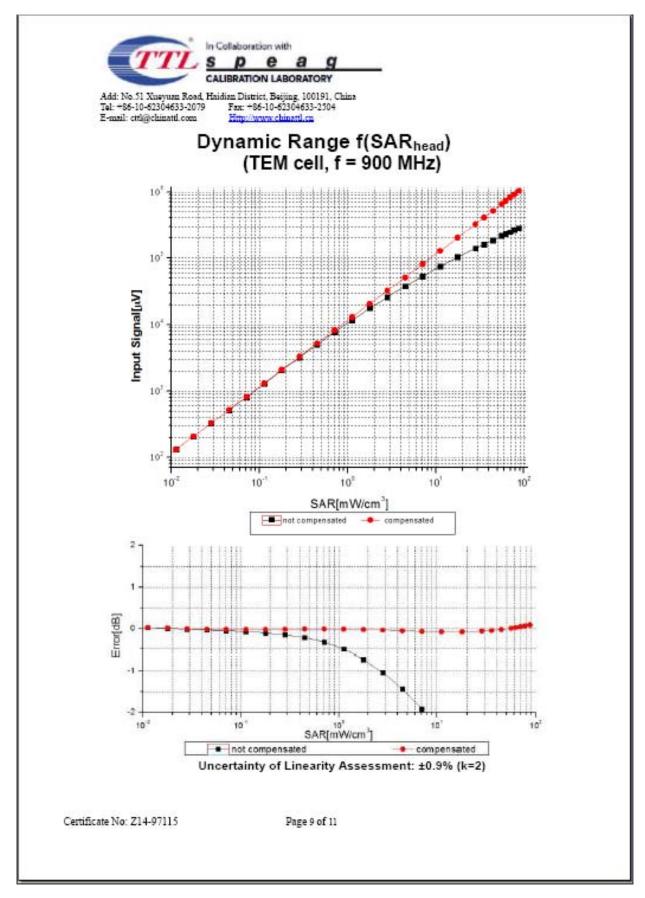
DASY – Parameters of Probe: ES3DV3 - SN: 3028

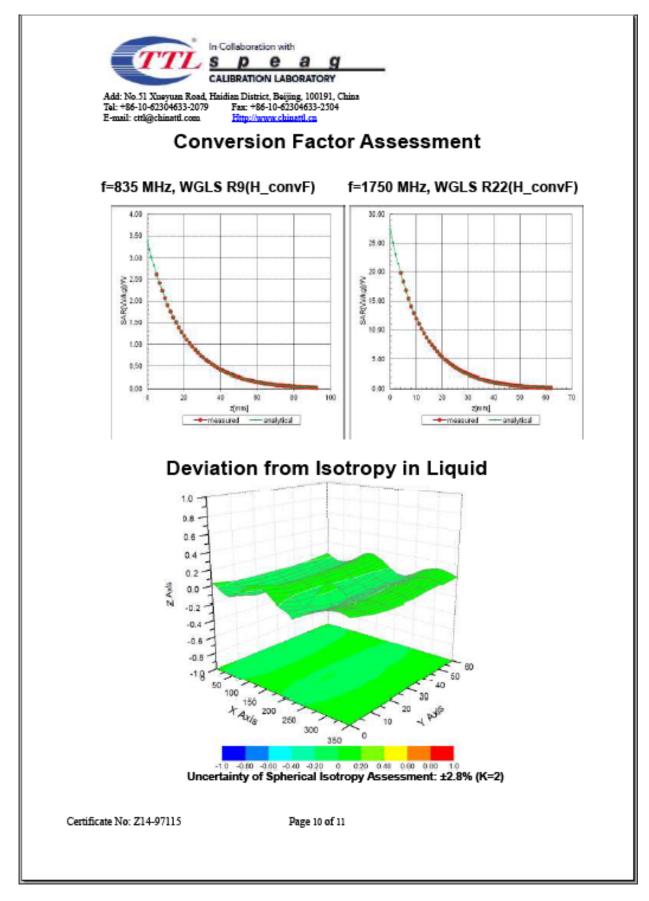
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.02	6.02	6.02	0.33	1.68	±12%
835	55.2	0.97	6.02	6.02	6.02	0.34	1.79	±12%
1750	53.4	1.49	4.69	4.69	4.69	0.63	1.30	±12%
1900	53.3	1.52	4.48	4.48	4.48	0.60	1.34	$\pm 12\%$
2300	52.9	1.81	4.37	4.37	4.37	0.74	1.25	$\pm 12\%$
2450	52.7	1.95	4.14	4.14	4.14	0.68	1.35	±12%
2600	52.5	2.16	4.02	4.02	4.02	0.84	1.16	$\pm 12\%$


^o Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^{*r*} At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation


formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary


effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z14-97115

Page 6 of 11

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn DASY - Parameters of Probe: ES3DV3 - SN: 3208		
Other Probe Parameters		
Sensor Arrangement	Triangular	
Connector Angle (°)	54.8	
Mechanical Surface Detection Mode	enabled	
Optical Surface Detection Mode	disable	
Probe Overall Length	337mm	
Probe Body Diameter	10mm	
Tip Length	10mm	
Tip Diameter	4mm	
Probe Tip to Sensor X Calibration Point	2mm	
Probe Tip to Sensor Y Calibration Point	2mm	
Probe Tip to Sensor Z Calibration Point	2mm	
Recommended Measurement Distance from Surface	3mm	

Certificate No: Z14-97115

Page 11 of 11

6.2. D750V2 Dipole Calibration Certificate

chmid & Partner Engineering AG aughausstrasse 43, 8004 Zurich	, Switzerland	S S S S S S S S S S S S S S S S S S S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accreditat he Swiss Accreditation Service fulfilateral Agreement for the re	is one of the signatories	to the EA	creditation No.: SCS 0108
lient SMQ (Auden)	cognition of callor mont		D750V3-1133_Jan15
CALIBRATION C	ERTIFICATE		
Object	D750V3 - SN: 113	33	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 05, 2015		
The measurements and the unce All calibrations have been conduc	rtainties with confidence pr	onal standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence p ted in the closed laborator FE critical for calibration)	robability are given on the following pages ar ty facility: environment temperature (22 ± 3) ⁿ Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages ar ty facility: environment temperature (22 ± 3) ⁿ Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T <u>Primary Standards</u> Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages ar ty facility: environment temperature (22 ± 3) ⁿ Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP B481A Power sensor HP B481A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317	robability are given on the following pages ar traditity: environment temperature (22 ± 3) ² Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8431A Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages ar ty facility: environment temperature (22 ± 3) ⁿ Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T <u>Primary Standards</u> Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	cab bitty are given on the following pages are tablity, environment temperature (22 ± 3) ⁿ Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	tainties with confidence p ted in the closed laborator ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 601 ID #	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ² Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601	robability are given on the following pages ar ty facility: environment temperature (22 ± 3) ³ Cel Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37282783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 50547.2 / 06327 SN: 3205 SN: 601 ID # 100005	coability are given on the following pages are cal bate (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) Check Date (in house) 04-Aug-99 (in house check Oct-13)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3047.2 / 06327 SN: 3206 SN: 801 ID # 100005 US37390585 S4206	cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 03-Apr-14 (No. 217-01921) 03-Der-14 (No. 217-01921) 04-Aug-91 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator RAS SMT-06 Network Analyzer HP 8753E	tainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047,2 / 06327 SN: 5047,2 / 06327 SN: 801 ID # 100005 US37390585 S4206 Name	robability are given on the following pages ar ty facility: environment temperature (22 ± 3) ³ Cel Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5058 (20k) SN: 601 ID # 100005 US37390585 S4206 Name Jeton Kastrati Katja Pokovic	robability are given on the following pages are ry facility: environment temperature (22 ± 3) ³ Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01921) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 237-01921) 30-Dec-14 (No. 237-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function Laboratory Technician	d are part of the certificata. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dac-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-16 Signature Signature January 12, 2015

Calibration La Schmid & Part Engineering Zeughausstrasse 43	ner		C Service sui	scher Kalibrierdiens sse d'étalonnage izzero di taratura oration Service
The Swiss Accreditz	ss Accreditation Service (SAS) tion Service is one of the sign ant for the recognition of calibr		Accreditation N	io.: SCS 0108
Glossary:				
TSL	tissue simulating	liquid		
ConvF	sensitivity in TSI			
N/A	not applicable or			
Calibration is	Performed Accordin	g to the Following	Standards:	
 a) IEEE SI Average Commu b) IEC 622 	d 1528-2013, "IEEE R ad Specific Absorption nications Devices: Me 209-1, "Procedure to n	Recommended Practi Rate (SAR) in the H easurement Technique neasure the Specific	ce for Determining the P uman Head from Wireles	s or hand-held
Februar				
d) DASY4	cumentation: /5 System Handbook lied and Interpretatio	n of Peremeters:		
 Measure of the contract Antennic point ex 	ement Conditions: Fun ertificate. All figures st a Parameters with TSI	ther details are avail tated in the certificate L: The dipole is mour	able from the Validation are valid at the frequen- ited with the spacer to po- hantom section, with the	cy indicated. osition its feed
 Feed P position measure reflected 	oint Impedance and R led under the liquid fill ement at the SMA cor d power. No uncertain	ed phantom. The imp nnector to the feed p ity required.	arameters are measured bedance stated is transfo bint. The Return Loss en	rmed from the sures low
	al Delay: One-way del ertainty required.	lay between the SMA	connector and the ante	nna feed point.
	easured: SAR measur			
 SAR no connect 		asured, normalized t	o an input power of 1 W	at the antenna
 SAR for 		eters: The measured	TSL parameters are use	d to calculate t
multiplied by	uncertainty of measu the coverage factor ke approximately 95%.	rement is stated as t =2, which for a norm	ne standard uncertainty o al distribution correspond	of measuremen s to a coverage

Measurement Conditions

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mha/m ± 8 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.02 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.27 W/kg ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	0.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.46 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.42 W/kg

Certificate No: D750V3-1133_Jan15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 1.6 jΩ	
Return Loss	- 26.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 4.0 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.030 ns
----------------------------------	----------

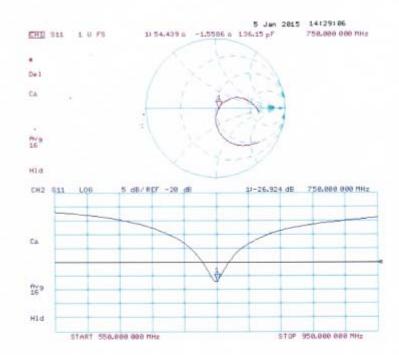
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 20, 2014

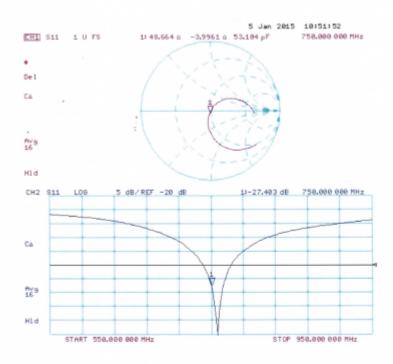

Certificate No: D750V3-1133_Jan15

Page 4 of 8

DASY5 Valida	tion Report for H	lead TSL				
						Date: 05.01.201
Test Laboratory	SPEAG, Zurich, S	Switzerland				
DUT: Dipole 7	50 MHz; Type: D7	50V3; Serial: D	0750V3 - SN: 1	133		
Medium param Phantom sectio	System: UID 0 - C eters used: f = 750 f a: Flat Section tandard: DASY5 (II	MHz; σ = 0.89 S	/m; $\varepsilon_{e} = 41.4$; p	= 1000 kg/m	3	
DASY52 Confi	guration:	P				
Probe: I	S3DV3 - SN3205;	: ConvF(6.44, 6.4	44, 6.44); Calib	rated: 30.12.2	014;	
 Sensor- 	Surface: 3mm (Mec	hanical Surface	Detection)			
 Electroit 	ics: DAE4 Sn601;	Calibrated: 18.0	8.2014			
 Phanton 	n: Flat Phantom 4.9	L; Type: QD000	P49AA; Serial	: 1001		
DASV		MCADY1441	0.000			
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0	2 52.8.8(1222); SE ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g e of SAR (measure	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	mm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x7	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu dB	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu dB 0 -2.00 -4.00 -6.00	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.4 Maximum valu dB 0 -2.00 -4.00	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu dB 0 -2.00 -4.00 -6.00	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=25 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg	50 mW, d=15	smm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu dB -2.00 -4.00 -6.00 -8.00	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov apolated) = 2.96 W 1 W/kg; SAR(10 g	Tissue/Pin=23 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg d) = 2.34 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:
Dipole Calib Measurement g Reference Valu Peak SAR (ext SAR(1 g) = 2.0 Maximum valu dB -2.00 -4.00 -6.00 -8.00	ration for Head rid: dx=5mm, dy=5 e = 52.99 V/m; Pov rapolated) = 2.96 W 1 W/kg; SAR(10 g e of SAR (measure	Tissue/Pin=23 imm, dz=5mm wer Drift = -0.01 //kg g) = 1.32 W/kg d) = 2.34 W/kg	50 mW, d=15	imm/Zoom	Scan (7x)	7x7)/Cube 0:

Page 101 of 153

Impedance Measurement Plot for Head TSL



Certificate No: D750V3-1133_Jan15

Page 6 of 8

	tion Report for Body	0L		
				Date: 05.01.20
Test Laboratory	: SPEAG, Zurich, Switzer	land		
DUT: Dipole 7	50 MHz; Type: D750V3;	Serial: D750V3 - SN: 113	33	
Medium param Phantom section		$r = 0.97$ S/m; $\epsilon_r = 54.4$; $\rho =$	1000 kg/m ³	
DASY52 Conf	guration:			
• Probe:	ES3DV3 - SN3205; Convl	(6.21, 6.21, 6.21); Calibra	ted: 30.12.2014;	
 Sensor 	Surface: 3mm (Mechanica	I Surface Detection)		
 Electro 	nics: DAE4 Sn601; Calibr	ited: 18.08.2014		
 Phanto 	n: Flat Phantom 4.9L; Typ	e: QD000P49AA; Serial: 1	001	
• DASY	2 52.8.8(1222); SEMCAI	X 14.6.10(7331)		
SAR(1 g) = 2. Maximum val	rapolated) = 3.13 W/kg 14 W/kg; SAR(10 g) = 1.4 ie of SAR (measured) = 2.	2 W/kg 49 W/kg		
SAR(1 g) = 2. Maximum val		2 W/kg 49 W/kg		
SAR(1 g) = 2. Maximum val	14 W/kg; SAR(10 g) = 1.4	2 W/kg 49 W/kg		
Maximum val	14 W/kg; SAR(10 g) = 1.4	2 W/kg 49 W/kg		

Impedance Measurement Plot for Body TSL

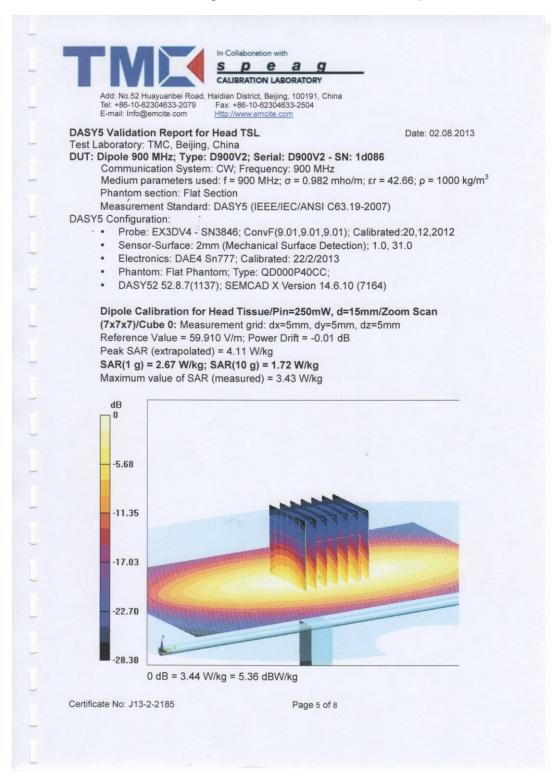
Certificate No: D750V3-1133_Jan15

Page 8 of 8

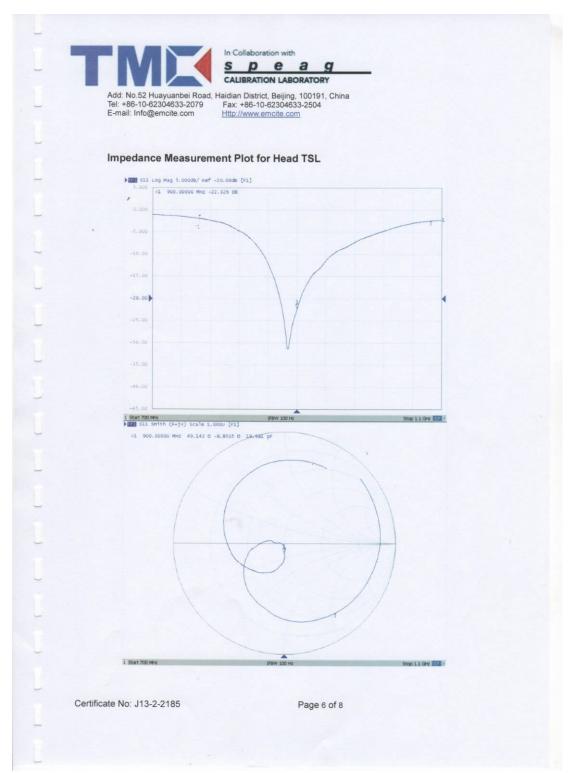
6.3. D900V2 Dipole Calibration Certificate

Add: No.52 Huayuanbe Tel: +86-10-62304633-	ei Road, Haidian Distric	ON LABORATORY t, Beijing, 100191, China	校 准 CNAS LO
E-mail: Info@emcite.co		mcite.com	
Client Sunway		Certificate No: J13-2	2-2185
CALIBRATION C	ERTIFICATE		
Object	D900V2	- SN: 1d086	
r Calibration Procedure(s)			
combration roccoure(a)		-E-02-194	
	Calibratio	on procedure for dipole validation kits	•
Calibration date:	August 9	, 2013	
and humidity<70%. Calibration Equipment use	conducted in the o	closed laboratory facility: environme calibration)	
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD	conducted in the o	closed laboratory facility: environme	nt temperature(22±3)*0 Scheduled Calibration Sep-13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5	d (M&TE critical for ID # Cal Date 102083 100595	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443)	Scheduled Calibration Sep-13 Sep -13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	conducted in the o d (M&TE critical for ID # Cal Date 102083 100595 SN 3846	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-3846	Scheduled Calibration Sep-13 Sep -13 5_Dec12) Dec-13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5	conducted in the o d (M&TE critical for ID # Cal Date 102083 100595 SN 3846 SN 777	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-3846 22-Feb-13 (SPEAG, DAE4-777_Fe	Scheduled Calibration Sep-13 Sep -13 5_Dec12) Dec-13 ab13) Feb -14
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	conducted in the o d (M&TE critical for ID # Cal Date 102083 100595 4 SN 3846 SN 777 G MY49070393	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-3846	Scheduled Calibration Sep-13 Sep -13 5_Dec12) Dec-13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438	conducted in the o d (M&TE critical for ID # Cal Date 102083 100595 4 SN 3846 SN 777 G MY49070393	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-3846 22-Feb-13 (SPEAG, DAE4-777_Fe 13-Nov-12 (TMC, No.JZ12-394)	Scheduled Calibration Sep-13 Sep -13 S_Dec12) Dec-13 ab13) Feb -14 Nov-13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438	a conducted in the or d (M&TE critical for ID # Cal Date 100595 4 SN 3846 SN 777 3 MY49070393	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No.JZ12-443) 20- Dec-12 (SPEAG, No.EX3-3846 22-Feb-13 (SPEAG, DAE4-777_Fe 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278)	Scheduled Calibration Sep-13 S-Dec12) Dec-13 ab13) Feb-14 Nov-13 Oct-13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DVA DAE4 Signal Generator E4438 Network Analyzer E8362E	conducted in the o d (M&TE critical for ID # Cal Date 102083 100595 4 SN 3846 SN 777 9C MY49070393 3 MY43021135 Name	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No. JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, DAE4-777_Fe 13-Nov-12 (TMC, No. JZ12-394) 19-Oct-12 (TMC, No. JZ13-278) Function	Scheduled Calibration Sep-13 S-Dec12) Dec-13 ab13) Feb-14 Nov-13 Oct-13
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438 Network Analyzer E8362E Calibrated by:	d (M&TE critical for ID # Cal Date 102083 100595 4 SN 3846 SN 777 4 MY49070393 3 MY43021135 Name Zhao Jing	closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No.JZ12-443) 20- Dec-12 (SPEAG, No.EX3-3846 22-Feb-13 (SPEAG, DAE4-777_Fe 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function SAR Test Engineer	Scheduled Calibration Sep-13 S-Dec12) Dec-13 ab13) Feb-14 Nov-13 Oct-13

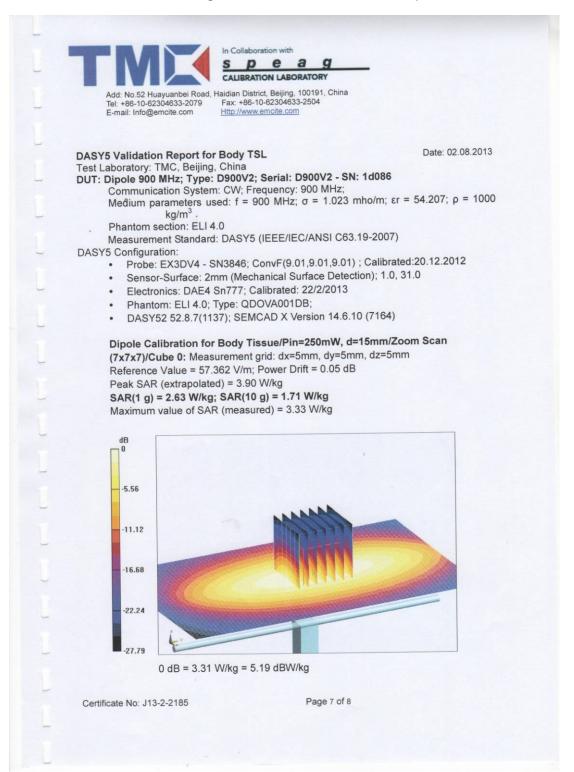
Page 105 of 153

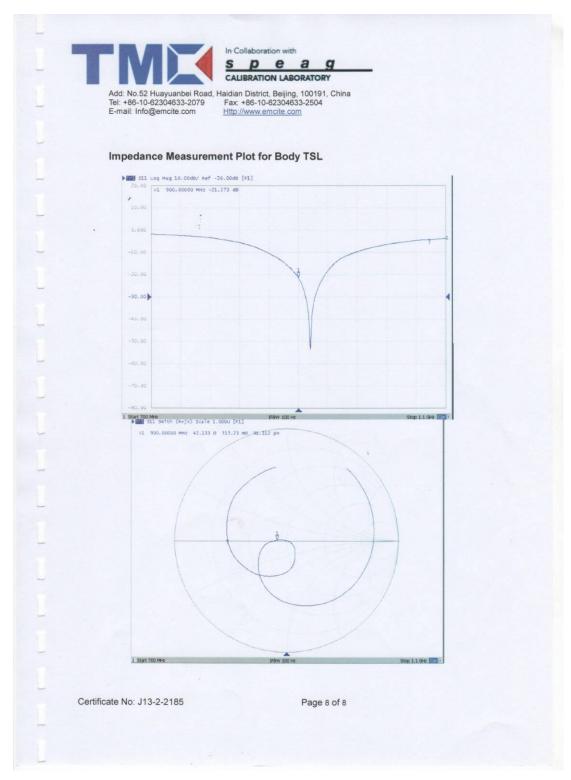

	CALIBRATION	LABORATORY
	ayuanbei Road, Haidian District, B 304633-2079 Fax: +86-10-62 emcite.com Http://www.emc	304633-2504
lossary:	tionup aimulating liquid	
SL	tissue simulating liquid sensitivity in TSL / NOF	RMx,y,z
I/A	not applicable or not me	easured
alibration is Pe	rformed According to th	e Following Standards:
) IEEE Std 1528 Spatial-Average	-2003, "IEEE Recommend ad Specific Absorption Rat	led Practice for Determining the Peak le (SAR) in the Human Head from Wireless
Communication	s Devices: Measurement	Techniques", December 2003
) IEC 62209-1. "	Procedure to measure the	Specific Absorption Rate (SAR) For hand-held r (frequency range of 300MHz to 3GHz)",
February 2005		
KDB865664, S	AR Measurement Require	ements for 100 MHz to 6 GHz
dditional Docu		
) DASY4/5 System	em Handbook	
lethods Applie	d and Interpretation of P	arameters:
Measuremen end of the ce	t Conditions: Further detain rtificate. All figures stated	ils are available from the Validation Report at the in the certificate are valid at the frequency
indicated.		
Antenna Para	ameters with TSL: The dip below the center marking	ole is mounted with the spacer to position its feed of the flat phantom section, with the arms
oriented para	llel to the body axis.	
Feed Point In	npedance and Return Los	s: These parameters are measured with the phantom. The impedance stated is transformed
from the mea	isurement at the SMA con	nector to the feed point. The Return Loss
ensures low	reflected power. No uncert	tainty required. en the SMA connector and the antenna feed
	certainty required.	
SAR measur	ed: SAR measured at the	stated antenna input power.
connector.		ormalized to an input power of 1 W at the antenna
SAR for nom the nominal		measured TSL parameters are used to calculate
The reported Measurement	uncertainty of measure multiplied by the cover	ment is stated as the standard uncertainty of age factor k=2, which for a normal distribution
	to a coverage probability o	
	-2-2185	Page 2 of 8

	-	LABORATORY			
Add: No.52 Huayuanbei Road, Hai Tel: +86-10-62304633-2079 F	idian District, I	Beijing, 100191, Ch 2304633-2504	ina		
Measurement Conditions					
DASY system configuration, as far as		page 1. DASY52		5	2.8.7.1137
Extrapolation		ed Extrapolation			2.0.1.1101
Phantom		vin Phantom			
Distance Dipole Center - TSL		15 mm		with	Spacer
Zoom Scan Resolution				with	i opacei
		ly, dz = 5 mm			
Frequency Head TSL parameters	900	MHz ± 1 MHz			
The following parameters and calculat	tions were ap	plied.			
		Temperature	Permitti	vity	Conductivity
Nominal Head TSL parameters		22.0 °C	41.5		0.97 mho/m
Measured Head TSL parameters		(22.0 ± 0.2) °C	42.6 ± 6	5 %	0.98 mho/m ± 6 %
Head TSL temperature change du	iring test	<0.5 °C			
SAR result with Head TSL		1		_	
SAR averaged over 1 cm^3 (1 g) of	f Head TSL	Condit	ion		
SAR measured		250 mW in	put power		2.67 mW / g
SAR for nominal Head TSL parameter	ters	normalize	d to 1W	10.7	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm^3 (10 g)	of Head TSL	Condit	ion		
SAR measured		250 mW in	put power		1.72 mW / g
SAR for nominal Head TSL parameter	ters	normalize	d to 1W	6.87	mW /g ± 20.4 % (k=2
Body TSL parameters	liana wasa an	aliad			and the second
The following parameters and calculat	tions were ap	Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters		22.0 °C	55.0		1.05 mho/m
Measured Body TSL parameters	-	(22.0 ± 0.2) °C	54.2 ± 6	3 %	1.02 mho/m ± 6 %
Body TSL temperature change du		<0.5 °C			
SAR result with Body TSL	ing tost	40.0 0			
SAR averaged over 1 cm ³ (1 g) of	f Body TSL	Condit	lion		
SAR measured		250 mW in	put power		2.63 mW / g
SAR for nominal Body TSL paramet	ters	normalize		10.7n	nW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g)					
SAR measured	in Doug rou	250 mW in			1.71 mW / g
			d to 1W		mW /g ± 20.4 % (k=2


Certificate No: J13-2-2185

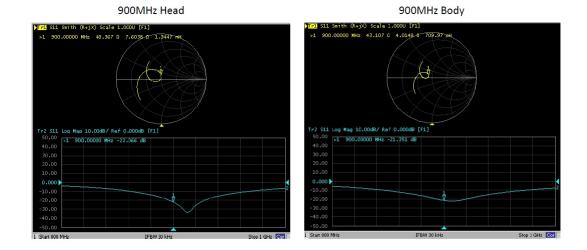
Page 3 of 8


ppendix	
ntenna Parameters with Head T	SL
Impedance, transformed to feed point	4 9.1Ω-8.85jΩ
Return Loss	- 22.3dB
Antenna Parameters with Body	SL
Impedance, transformed to feed point	42.1Ω+0.52jΩ
Return Loss	- 21.3dB
directly connected to the second affice DC-signals. On some of the dipoles, si matching when loaded according to the paragraph. The SAR data are not affect	id coaxial cable. The center conductor of the feeding line is if the dipole. The antenna is therefore short-circuited for nall end caps are added to the dipole arms in order to improve e position as explained in the "Measurement Conditions" the dipole arms, because they might bend or the soldered e damaged.
directly connected to the second aim of DC-signals. On some of the dipoles, si matching when loaded according to the paragraph. The SAR data are not affer the Standard.	nall end caps are added to the dipole arms in order to improve e position as explained in the "Measurement Conditions" ted by this change. The overall dipole length is still according to the dipole arms, because they might bend or the soldered
directly connected to the second arm of DC-signals. On some of the dipoles, si matching when loaded according to th paragraph. The SAR data are not affer the Standard. No excessive force must be applied to connections near the feedpoint may b	nall end caps are added to the dipole arms in order to improve e position as explained in the "Measurement Conditions" ted by this change. The overall dipole length is still according to the dipole arms, because they might bend or the soldered
directly connected to the second arm DC-signals. On some of the dipoles, si matching when loaded according to th paragraph. The SAR data are not affer the Standard. No excessive force must be applied to connections near the feedpoint may b Additional EUT Data	The algold. The added to the dipole arms in order to improve a position as explained in the "Measurement Conditions" ted by this change. The overall dipole length is still according to the dipole arms, because they might bend or the soldered a damaged.
directly connected to the second arm DC-signals. On some of the dipoles, si matching when loaded according to th paragraph. The SAR data are not affer the Standard. No excessive force must be applied to connections near the feedpoint may b Additional EUT Data	The algold. The added to the dipole arms in order to improve a position as explained in the "Measurement Conditions" ted by this change. The overall dipole length is still according to the dipole arms, because they might bend or the soldered a damaged.
directly connected to the second arm DC-signals. On some of the dipoles, si matching when loaded according to th paragraph. The SAR data are not affer the Standard. No excessive force must be applied to connections near the feedpoint may b Additional EUT Data	The algold. The added to the dipole arms in order to improve a position as explained in the "Measurement Conditions" ted by this change. The overall dipole length is still according to the dipole arms, because they might bend or the soldered a damaged.


Page 109 of 153

Page 110 of 153

Page 111 of 153



D900V2, serial no. 1d086 Extended Dipole Calibrations

Referring to KDB 865664D01V01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			D900V2, se	rial no. 1	d086			
		900	Head			900	Body	
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)
2013-8-9	-22.3		49.2		-21.3		42.1	
2014-8-8	-22.21	0.41	49.12	-0.08	-21.1	0.94	42.25	-0.15
2015-8-4	-22.1	0.9	48.4	- <mark>0.8</mark>	-21.4	-0.5	43.1	1.0

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

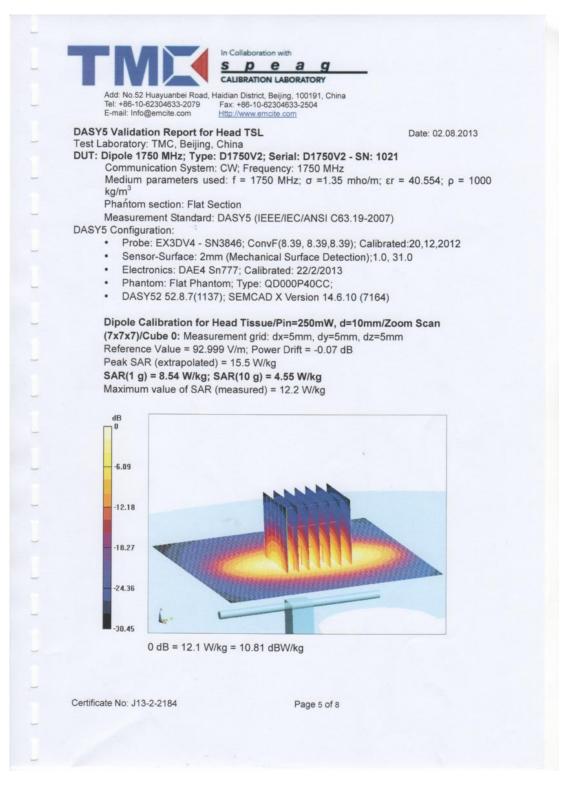
<Dipole Verification Data>- D900V2, serial no. 1d086

6.4. D1750V2 Dipole Calibration Certificate

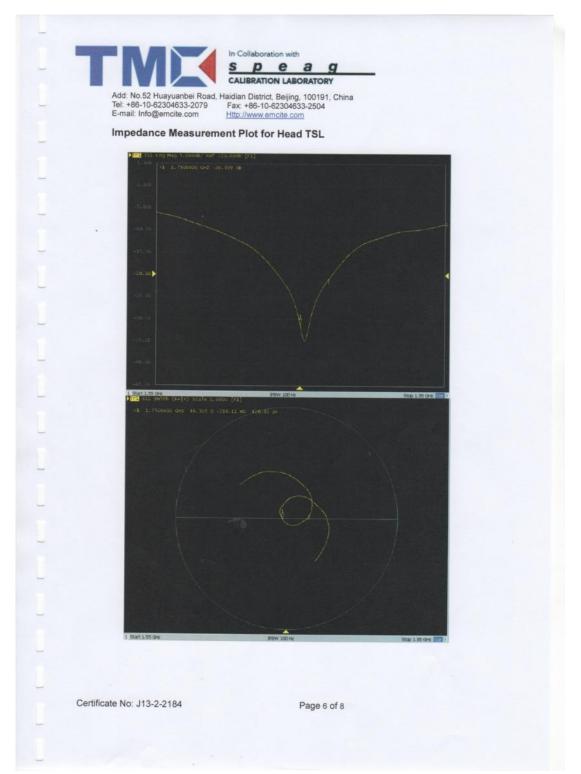
Add: No.52 Huayu Tel: +86-10-62304		62304633-2504	CNAS L04
E-mail: Info@emci	te.com <u>Http://www.er</u>	Certificate No: J13-2	2194
Client Sunwa			-2104
CALIBRATION	CERTIFICATE		
Object	D1750V2	- SN: 1021	
r Calibration Procedure((s)		
	TMC-OS-	E-02-194 In procedure for dipole validation kits	
	Calibratic		
Calibration date:	August 2,	2013	
		ceability to national standards, which	
	ts(SI). The measureme pages and are part of th	nts and the uncertainties with cont e certificate.	fidence probability are
given on the following All calibrations have t and humidity<70%.	pages and are part of the open conducted in the open conducted in the open conducted (M&TE critical for	e certificate. closed laboratory facility: environme	
given on the following All calibrations have t and humidity<70%. Calibration Equipment Primary Standards	pages and are part of the been conducted in the o used (M&TE critical for ID # Cal Dat	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.)	ent temperature(22±3) Scheduled Calibration
given on the following All calibrations have t and humidity<70%. Calibration Equipment	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat	e certificate. closed laboratory facility: environme calibration)	nt temperature(22±3)で
given on the following All calibrations have to and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 -Z5 100595	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443)	ont temperature(22±3) Scheduled Calibration Sep-13 Sep -13
given on the following All calibrations have to and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX: DAE4	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 -Z5 100595 3DV4 SN 3846 SN 777	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384 22-Feb-13 (SPEAG, DAE4-777_F	Scheduled Calibration Sep-13 Sep -13 6_Dec12) Dec-13 eb13) Feb -14
given on the following All calibrations have to and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX:	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 -Z5 100595 3DV4 SN 3846 SN 777 4438C MY49070393	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384	Scheduled Calibration Sep-13 Sep -13 6_Dec12) Dec-13
given on the following All calibrations have to and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX: DAE4 Signal Generator Ex-	pages and are part of the peen conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 -Z5 100595 3DV4 SN 3846 SN 777 4438C MY49070393 362B MY43021135	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No. JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384) 22-Feb-13 (SPEAG, DAE4-777_F 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278)	Scheduled Calibration Sep-13 Sep-13 6_Dec12) Dec-13 eb13) Feb -14 Nov-13 Oct-13
given on the following All calibrations have to and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX: DAE4 Signal Generator Ex-	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 -Z5 100595 3DV4 SN 3846 SN 777 4438C MY49070393	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No.JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384) 22-Feb-13 (SPEAG, DAE4-777_F 13-Nov-12 (TMC, No.JZ12-394)	Scheduled Calibration Sep-13 Sep-13 6_Dec12) Dec-13 eb13) Feb -14 Nov-13
given on the following All calibrations have to and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX: DAE4 Signal Generator E- Network Analyzer E8	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 IO595 3DV4 SN 3846 SN 777 4438C MY49070393 362B MY43021135 Name Zhao Jing	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No. JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384 22-Feb-13 (SPEAG, DAE4-777_F 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function SAR TestEngineer	Scheduled Calibration Sep-13 Sep-13 6_Dec12) Dec-13 eb13) Feb -14 Nov-13 Oct-13
given on the following All calibrations have b and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX: DAE4 Signal Generator E- Network Analyzer E8 Calibrated by: Reviewed by:	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 Z5 100595 3DV4 SN 3846 SN 777 4438C MY49070393 362B MY43021135	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No. JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384 22-Feb-13 (SPEAG, DAE4-777_F 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function	Scheduled Calibration Sep-13 Sep-13 6_Dec12) Dec-13 eb13) Feb -14 Nov-13 Oct-13
given on the following All calibrations have b and humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV- Reference Probe EX: DAE4 Signal Generator E: Network Analyzer E8 Calibrated by:	pages and are part of the been conducted in the of used (M&TE critical for ID # Cal Dat 0 102083 IO595 3DV4 SN 3846 SN 777 4438C MY49070393 362B MY43021135 Name Zhao Jing	e certificate. closed laboratory facility: environme calibration) e(Calibrated by, Certificate No.) 11-Sep-12 (TMC, No. JZ12-443) 11-Sep-12 (TMC, No. JZ12-443) 20- Dec-12 (SPEAG, No.EX3-384 22-Feb-13 (SPEAG, DAE4-777_F 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function SAR TestEngineer	Scheduled Calibration Sep-13 Sep-13 6_Dec12) Dec-13 eb13) Feb -14 Nov-13 Oct-13

Page 114 of 153

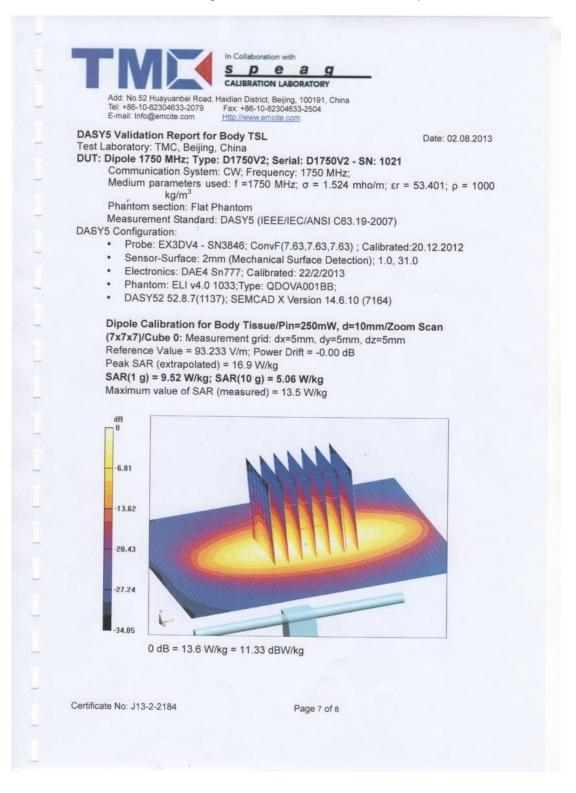
Tel: +86-10-62304633-2079	Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504
E-mail: Info@emcite.com	Http://www.emcite.com
lossary: SL tissue sim	ulating liquid
	n TSL / NORMx,y,z
	able or not measured
alibration is Performed Ac	cording to the Following Standards:
IEEE Std 1528-2003, "IEEE	Recommended Practice for Determining the Peak
	bsorption Rate (SAR) in the Human Head from Wireless
IFC 62209-1 "Procedure to	Veasurement Techniques", December 2003 o measure the Specific Absorption Rate (SAR) For hand-held
devices used in close proxi	mity to the ear (frequency range of 300MHz to 3GHz)",
February 2005 KDB865664, SAR Measure	ement Requirements for 100 MHz to 6 GHz
dditional Documentation:	
DASY4/5 System Handboo	NK .
ethods Applied and Interp	
Measurement Conditions:	Further details are available from the Validation Report at the igures stated in the certificate are valid at the frequency
indicated.	guies stated in the certificate are valid at the nequency
Antenna Parameters with	TSL: The dipole is mounted with the spacer to position its feed
	enter marking of the flat phantom section, with the arms
oriented parallel to the bo	dy axis. Ind Return Loss: These parameters are measured with the
dipole positioned under th	e liquid filled phantom. The impedance stated is transformed
from the measurement at	the SMA connector to the feed point. The Return Loss
	ver. No uncertainty required. v delay between the SMA connector and the antenna feed
point. No uncertainty requ	
SAR measured: SAR mea	asured at the stated antenna input power.
SAR normalized: SAR as connector.	measured, normalized to an input power of 1 W at the antenna
	ameters: The measured TSL parameters are used to calculate
The reported uncertainty	of measurement is stated as the standard uncertainty of
Measurement multiplied to	by the coverage factor k=2, which for a normal distribution
Corresponds to a coverage	e probability of approximately 95%.

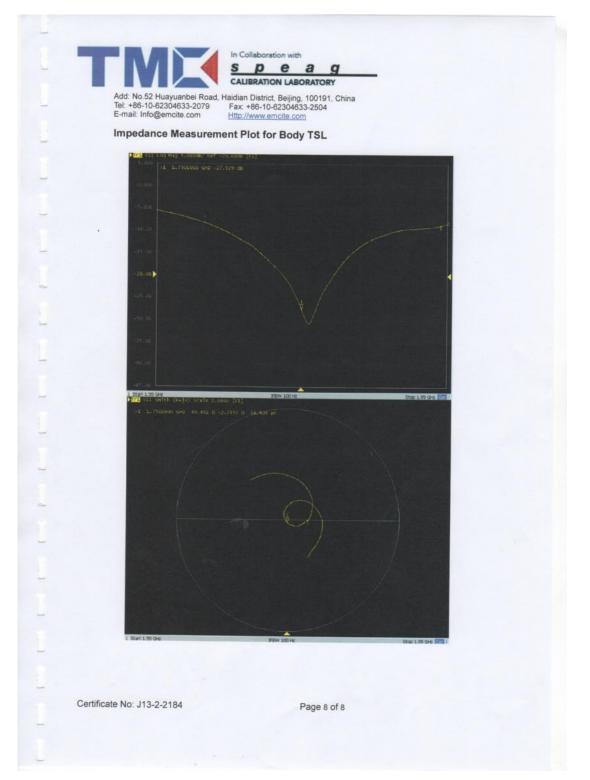

Tel: +86-1			LABORATORY			
E-man. m	2 Huayuanbei Road, Haidian Distri 0-62304633-2079 Fax: +86-10 fo@emcite.com Http://www.	0-623	eijing, 100191, Ch 304633-2504	ina		
Measuremen						
	configuration, as far as not given					
DASY Versi			ASY52		5	2.8.7.1137
Extrapolati	Adva Adva		d Extrapolation			
Phantom		Twir	n Phantom			
Distance Di	pole Center - TSL	10	0 mm		with	n Spacer
Zoom Scan	Resolution d	x, dy	, dz = 5 mm			
Frequency	1	750 1	MHz ± 1 MHz			
Head TSL par			lind			
The following	parameters and calculations were	T	lied. Femperature	Permitti	vity	Conductivity
Nominal He	ad TSL parameters	-	22.0 °C	40.1		1.37 mho/m
	lead TSL parameters	(2	2.0 ± 0.2) °C	40.6 ± 6	3 %	1.35 mho/m ± 6 %
	emperature change during test	-	<0.5 °C	40.010		1.00 1110/11 2 0 %
	ith Head TSL		-0.0 0			
Exercise 1	ed over 1 cm^3 (1 g) of Head TSI	L	Condit	ion		
SAR measu	red		250 mW in	put power		8.54 mW / g
SAR for non	inal Head TSL parameters		normalized	d to 1W	34.6 r	mW /g ± 20.8 % (k=2)
SAR average	ed over 10 cm ³ (10 g) of Head T	ISL	Condit	ion		
SAR measu			250 mW ing	out power		4.55 mW / g
SAR for non	inal Head TSL parameters		normalized		18.3 1	mW /g ± 20.4 % (k=2)
Body TSL par	ameters					
The following p	parameters and calculations were	1				
		Т	emperature	Permittiv	vity	Conductivity
	dy TSL parameters		22.0 °C	53.4		1.49 mho/m
	ody TSL parameters	(2)	2.0 ± 0.2) °C	53.4 ± 6	%	1.52 mho/m ± 6 %
1.5.1	emperature change during test		<0.5 °C			
	th Body TSL					
	ed over 1 cm ³ (1 g) of Body TSL	-	Conditi			
SAR measur		_	250 mW inp			9.52mW / g
	inal Body TSL parameters		normalized		37.5 n	mW /g ± 20.8 % (k=2)
	ed over 10 cm^3 (10 g) of Body T	SL	Conditi	on		
SAR average SAR measur	ed		250 mW ing	out power		5.06 mW/g

Certificate No: J13-2-2184


Page 3 of 8

Antenna Parameters with Head T	SL
Impedance, transformed to feed point	46.3Ω-0.22jΩ
Return Loss	- 31.0dB
ntenna Parameters with Body T	SL
Impedance, transformed to feed point	49.5Ω-2.36jΩ
Return Loss	- 27.5dB
a measured. The dipole is made of standard semirigid rectly connected to the second arm of t C-signals. On some of the dipoles, sma atching when loaded according to the p aragraph. The SAR data are not affecte e Standard. o excessive force must be applied to the innections near the feedpoint may be d	coaxial cable. The center conductor of the feeding line is ne dipole. The antenna is therefore short-circuited for Il end caps are added to the dipole arms in order to impro osition as explained in the "Measurement Conditions" d by this change. The overall dipole length is still accordin e dipole arms, because they might bend or the soldered
a measured. the dipole is made of standard semirigid rectly connected to the second arm of t C-signals. On some of the dipoles, sma atching when loaded according to the p aragraph. The SAR data are not affecte e Standard. o excessive force must be applied to the pannections near the feedpoint may be d	coaxial cable. The center conductor of the feeding line is ne dipole. The antenna is therefore short-circuited for Il end caps are added to the dipole arms in order to impro osition as explained in the "Measurement Conditions" d by this change. The overall dipole length is still accordin e dipole arms, because they might bend or the soldered
e measured. he dipole is made of standard semirigid rectly connected to the second arm of t C-signals. On some of the dipoles, sma iatching when loaded according to the p aragraph. The SAR data are not affecte e Standard.	he dipole. The antenna is therefore short-circuited for II end caps are added to the dipole arms in order to impro- osition as explained in the "Measurement Conditions" d by this change. The overall dipole length is still according e dipole arms, because they might bend or the soldered


Page 117 of 153


Page 118 of 153

Page 119 of 153

Page 120 of 153

