

FCC PART 24 TEST REPORT

Part 24 Subpart E

Report Reference No....... MWR150900607
FCC ID...... RQQHLT-L40SCL

Compiled by

(position+printed name+signature)..: File administrators Martin Ao

Supervised by

(position+printed name+signature)... Test Engineer Yuchao Wang

Approved by

(position+printed name+signature)..: Manager Dixon Hao

Date of issue...... Sep 22, 2015

Representative Laboratory Name .: Maxwell International Co., Ltd.

Guangdong, China

Ltd.

Address Electronic Testing Building, Shahe Road, Xili, Nanshan

District, Shenzhen, 518055, P. R. China

yuchao.wang

Applicant's name...... HYUNDAI CORPORATION

Address 140-2, Kye-dong, Chongro-ku, Seoul, South Korea

Test specification:

FCC CFR Title 47 Part 2, Part 24E

Standard EIA/TIA 603-D: 2010

KDB 971168 D01

TRF Originator...... Maxwell International Co., Ltd.

Maxwell International Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. Maxwell International Co., Ltd. takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Mobile Phone

Trade Mark HYUNDAI

Manufacturer Skycom Telecommunications Co., Limited

Model/Type reference...... L445

Listed Models: N/A

Modulation Type QPSK, 16QAM

Rating DC 3.70V

Hardware version 5096SF MM1 V01

Result..... PASS

TEST REPORT

Test Report No. :	MWR150900607	Sep 22, 2015
rest Keport No	WWW 150900007	Date of issue

Equipment under Test : Mobile Phone

Model /Type : L445

Listed Models : /

Applicant : HYUNDAI CORPORATION

Address : 140-2, Kye-dong, Chongro-ku, Seoul, South Korea

Manufacturer : Skycom Telecommunications Co., Limited

Address : Rm604, East Block, Shengtang Bldg., No.1, Tairan 9 Rd.,

Chegongmiao, Futian District, Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	1EST STANDARDS	<u> 4</u>
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment under Test	6
2.4.	Short description of the Equipment under Test (EUT)	6
2.5.	Internal Identification of AE used during the test	6
2.6.	Normal Accessory setting	6
2.7.	EUT configuration	6
2.8.	Related Submittal(s) / Grant (s)	6
2.9.	Modifications	7
2.10.	General Test Conditions/Configurations	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	8
3.4.	Test Description	8
3.5.	Equipments Used during the Test	9
<u>4.</u>	TEST CONDITIONS AND RESULTS	10
4.1.	Output Power	10
4.2.	Peak-to-Average Ratio (PAR)	15
4.3.	Occupied Bandwidth and Emission Bandwidth	22
4.4.	Band Edge compliance	29
4.5.	Spurious Emssion on Antenna Port	36
4.6.	Radiated Spurious Emssion	55
4.7.	Frequency Stability under Temperature & Voltage Variations	62
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	64
<u>6.</u>	EXTERNAL PHOTOS OF THE EUT	64
7.	INTERNAL PHOTOS OF THE EUT	64

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Part 24: PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01: v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.4:2009: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Aug 20, 2015
Testing commenced on		Aug 21, 2015
Testing concluded on	:	Sep 22, 2015

2.2. Product Description

The **HYUNDAI CORPORATION** 's Model: L445 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

of EUT	Mobile Phone			
Number	L445			
tion Type	GMSK for GSM/GPRS, 8-PSK for EDGE,QPSK for UMTS,			
tion Type	QPSK, 16QAM for LTE			
na Type	Internal			
Operation Frequency Band	Device supported UMTS FDD Band II/IV/V			
	IEEE 802.11b:2412-2462MHz			
ECC Operation frequency	IEEE 802.11g:2412-2462MHz			
FCC Operation frequency	IEEE 802.11n HT20:2412-2462MHz			
	IEEE 802.11n HT40:2422-2452MHz			
C Operation frequency	2402MHz-2480MHz			
A Release Version	Release 10			
A Release Version	Release 6			
SUPA Release Version	Not Supported			
AA Release Version	R99			
elease Version	R8			
Operation Frequency Band	Device supported FDD band 2, FDD band 4, FDD band 5,			
	FDD band 7, FDD band 17			
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)			
FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)			
rcc Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)			
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)			
dulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)			
are version	5096SF_MM1_V01			
are version	HYUNDAI_L445_V5.0.2_20150907			
d version	Android 4.4.2			
unction	Supported			
	Supported 802.11b/802.11g/802.11n			
oth	Supported BT 4.0/BT 3.0+EDR			
EDGE/GPRS	Supported GSM/GPRS/EDGE			
EDGE/GPRS Power Class	GSM900:Power Class 4/DCS1800:Power Class 1			
EDGE/GPRS Operation Frequency	GSM900 :880MHz-915MHz/DCS1800:1710MHz-1785MHz			
EDGE/GPRS Operation Frequency	GSM900/DCS1800/GPRS900/ GPRS			
	1800/EDGE900/EDGE1800			
Release Version	R99			
/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12			
ne temp. Tolerance	-30°C to +50°C			
ne vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)			
operation mode	Class B			

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 3.70V

2.4. Short description of the Equipment under Test (EUT)

2.4.1 General Description

L445 is subscriber equipment in the WCDMA/GSM /LTE system. The HSPA/UMTS frequency band is Band II, Band IV and Band V, LTE frequency band is band 2.band 4,band 5,band 7,band 17; The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS ,LTE and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5. Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery
AE2	Charger

AE1

Model: TPA-5950100UU

INPUT: 100-240V 50/60Hz 0.2A OUTPUT: DC 5.0V,1000mAh

2.6. Normal Accessory setting

Fully charged battery was used during the test.

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No.:	1

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: RQQHLT-L40SCL** filing to comply with FCC Part 24, Rules.

^{*}AE ID: is used to identify the test sample in the lab internally.

2.9. Modifications

No modifications were implemented to meet testing criteria.

2.10. General Test Conditions/Configurations

2.10.1 Test Environment

Environment Parameter	Selected Values During Tests			
Relative Humidity	Ambient			
Temperature	TN Ambient			
Voltage	VL	3.4V		
	VN	3.7V		
	VH	4.2V		

NOTE: VL=lower extreme test voltage VN=nominal voltage VH=upper extreme test voltage TN=normal temperature

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.

Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055, P. R. China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 406086

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter fr om the FCC is maintained in our files. Registration 406086, valid time is until October 28, 2017.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

PCS Band (1850-1915MHz paired with 1930-1995MHz)

Test Item	FCC Rule	Requirements	Verdict		
	No.				
Effective(Isotropic)	§2.1046,	EIRP ≤ 2W	Pass		
Radiated Output Power	§24.232	LII (1 - 277	1 455		
Peak-Average Ratio	§2.1046,	FCC:Limit≤13dB	Pass		
T cak-Average Natio	§24.232	1 00.Elitil(=100B	1 433		
Modulation	§2.1047	Digital modulation	N/A		
Characteristics	32.1017	Digital modulation	1 4/7 (
Bandwidth	§2.1049	OBW: No limit.	Pass		
Banawath	32.1040	EBW: No limit.	1 033		
Band Edges	§2.1051,	≤ -13dBm/1%*EBW,			
Compliance	§24.238	In 1MHz bands immediately outside and adjacent to	Pass		
Обтирналов	32 1.200	The frequency block.			
Spurious Emission at	§2.1051,	≤-13dBm/1MHz,			
Antenna Terminals	§24.238	from 9kHz to10th harmonics but outside authorized	Pass		
7 therma Terrimas	324.200	Operating frequency ranges.			
Field Strength of	§2.1053,				
Spurious	§24.238	≤ -13dBm/1MHz.	Pass		
Radiation					
Frequency Stability	§2.1055,	FCC: within authorized frequency	Pass		
	§24.235	block.	1 033		
NOTE 1: For the verdict, t	he "N/A" denotes	s "not applicable", the "N/T" de notes "not tested".			

Remark:

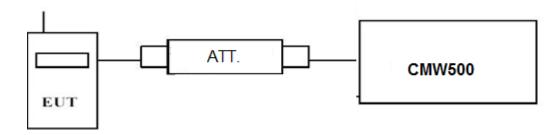
^{1.} The measurement uncertainty is not included in the test result.

3.5. Equipments Used during the Test

Description	Manufacturer	Model	Serial No.	Test Date	Due Date
EMI Test Receiver	R&S	ESIB26	A0304218	2015.06.02	2016.06.01
Full-Anechoic Chamber	Albatross	12.8m*6.8m *6.4m	A0412372	2015.01.05	2016.01.04
Loop Antenna	Schwarz beck	HFH2-Z2	100047	2015.06.02	2016.06.01
Bilog Antenna	Schwarzbeck	VULB 9163	9163-274	2015.06.02	2016.06.01
Bilog Antenna	Schwarzbeck	VULB 9163	9163-276	2015.06.02	2016.06.01
Double ridge horn antenna	R&S	HF960	100150	2015.06.02	2016.06.01
Double ridge horn antenna	R&S	HF960	100155	2015.06.02	2016.06.01
Ultra-wideband antenna	R&S	HL562	100089	2015.06.02	2016.06.01
Ultra-wideband antenna	R&S	HL562	100090	2015.06.02	2016.06.01
Test Antenna – Horn (18-25GHz)	ETS	UG-596A/U	A0902607	2015.06.02	2016.06.01
Test Antenna – Horn (18-25GHz)	ETS	UG-596A/U	A0902611	2015.06.02	2016.06.01
Amplifier 20M~3GHz	R&S	PAP-0203H	22018	2015.06.02	2016.06.01
Ampilier 1G~18GHz	R&S	MITEQ AFS42- 00101800	25-S-42	2015.06.02	2016.06.01
Ampilier 18G~40GHz	R&S	JS42- 18002600- 28-5A	12111.0980. 00	2015.06.02	2016.06.01
System Simulator	R&S	CMW500	A130101034	2015.06.010	2016.06.09
Signal Generator	R&S	SMF100A	A0304267	2015.06.010	2016.06.09
Signal Analyzer	Agilent	N9030A	MY49430428	2015.06.010	2016.06.09

The calibration interval was one year.

4. TEST CONDITIONS AND RESULTS


4.1. Output Power

4.1.1 Coducted Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

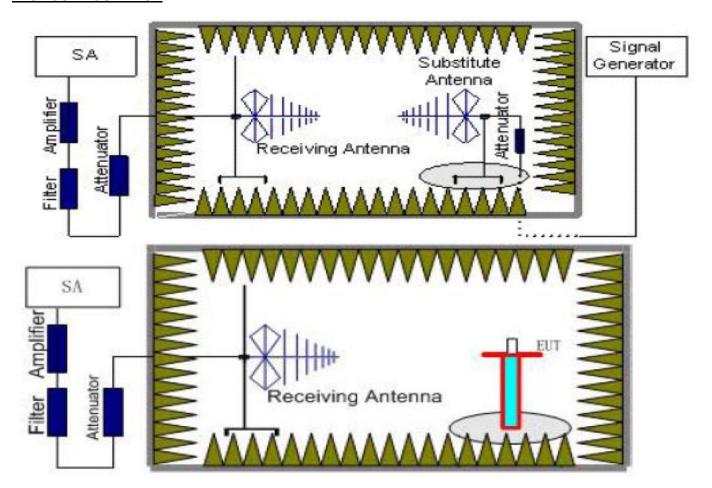
TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2:

		LTE FDD Band 2		
TX Channel	Frequency	DD Cine/Officet	Average P	ower [dBm]
Bandwidth	(MHz)	RB Size/Offset	QPSK	16QAM
		1 RB low	21.71	20.84
	1850.7	1 RB high	21.71	20.85
	1650.7	50% RB mid	21.80	20.82
		100% RB	20.82	20.31
		1 RB low	21.96	21.11
1.4 MHz	1880.0	1 RB high	21.95	21.13
1.4 1/11 12	1000.0	50% RB mid	22.03	21.07
		100% RB	21.05	21.05
		1 RB low	21.10	21.06
	1909.3	1 RB high	20.74	20.59
	1909.5	50% RB mid	20.75	20.56
		100% RB	20.37	20.45
		1 RB low	21.63	20.87
	1851.5	1 RB high	21.65	20.90
		50% RB mid	20.83	20.59
		100% RB	20.81	20.37
3 MHz		1 RB low	21.87	21.13
J IVII7Z	1851.5	1 RB high	21.89	21.11
		50% RB mid	21.04	20.93
		100% RB	21.03	20.55
	1908.5	1 RB low	21.21	20.57
	1900.3	1 RB high	20.35	20.51

Report No.:MWR150900607


		50% RB mid	20.27	20.53
		100% RB	20.19	20.31
		1 RB low	21.81	21.08
	40=0=	1 RB high	21.51	20.97
	1852.5	50% RB mid	20.45	19.62
		100% RB	20.51	19.56
		1 RB low	22.04	21.34
	4000	1 RB high	22.01	21.31
5 MHz	1880.0	50% RB mid	21.12	20.22
		100% RB	21.05	20.08
		1 RB low	21.46	20.90
	4007.7	1 RB high	20.25	18.88
	1907.5	50% RB mid	19.67	19.03
		100% RB	19.93	21.08
		1 RB low	21.12	20.47
		1 RB high	20.93	20.28
	1855.0	50% RB mid	20.23	19.28
		100% RB	20.33	19.37
		1 RB low	21.98	21.28
		1 RB high	21.89	21.25
10 MHz	1880.0	50% RB mid	21.11	20.10
		100% RB	21.07	20.07
		1 RB low	20.54	19.89
	1905.0	1 RB high	19.85	18.91
		50% RB mid	19.84	18.98
		100% RB	19.95	20.47
		1 RB low	21.25	20.59
		1 RB high	21.29	20.66
	1857.5	50% RB mid	20.29	19.32
		100% RB	20.30	19.33
		1 RB low	22.00	21.28
		1 RB high	21.84	21.27
15 MHz	1880.0	50% RB mid	21.25	20.18
		100% RB	21.24	20.18
		1 RB low	20.77	20.14
		1 RB high	20.14	19.59
	1902.5	50% RB mid	19.96	18.98
		100% RB	19.87	18.91
		1 RB low	21.34	20.61
		1 RB high	21.61	20.85
	1860.0	50% RB mid	20.39	19.46
		100% RB	20.35	19.40
		1 RB low	21.87	21.12
		1 RB high	21.63	20.92
20 MHz	1880.0	50% RB mid	21.21	20.18
		100% RB	21.16	20.15
-		1 RB low	21.45	20.74
		1 RB high	20.30	19.63
	1900.0	50% RB mid	19.95	19.01
			10.00	10.01

4.1.2. Radiated Output Power

LIMIT

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.80 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 0.80m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Aq}) should be recorded after test.
 - The measurement results are obtained as described below:
 - Power(EIRP)= P_{Mea} P_{Ag} P_{cl} + G_a
 - We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)= P_{Mea} - P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Page 13 of 64

TEST RESULTS

Note: We test the H direction and V direction and V direction is worse.

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2; recorded worst case for each Channel Bandwidth of LTE FDD Band 2.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Aq}(dB)+G_a(dBi)$

LTE FDD Band 2_Channel Bandwidth 1.4MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.7	-21.37	3.41	10.24	33.60	19.06	33.01	13.95	Н
1880.0	-20.14	3.49	10.24	33.60	20.21	33.01	12.80	Н
1909.3	-20.44	3.55	10.23	33.60	19.84	33.01	13.17	Н

LTE FDD Band 2 Channel Bandwidth 3MHz QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.5	-21.15	3.41	10.24	33.60	19.28	33.01	13.73	Н
1880.0	-19.79	3.49	10.24	33.60	20.56	33.01	12.45	Н
1908 5	-19 89	3.55	10.23	33 60	20.39	33 01	12 62	Н

LTE FDD Band 2 Channel Bandwidth 5MHz QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.5	-20.95	3.41	10.24	33.60	19.48	33.01	13.53	Н
1880.0	-19.28	3.49	10.24	33.60	21.07	33.01	11.94	Н
1907.5	-19.55	3.55	10.23	33.60	20.73	33.01	12.28	Н

LTE FDD Band 2_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1855.0	-21.12	3.41	10.24	33.60	19.31	33.01	13.70	Н
1880.0	-19.65	3.49	10.24	33.60	20.70	33.01	12.31	Н
1905.0	-19.81	3.55	10.23	33.60	20.47	33.01	12.54	Н

LTE FDD Band 2_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1857.5	-21.31	3.41	10.24	33.60	19.12	33.01	13.89	Н
1880.0	-19.90	3.49	10.24	33.60	20.45	33.01	12.56	Н
1902.5	-20.30	3.55	10.23	33.60	19.98	33.01	13.03	Н

LTE FDD Band 2 Channel Bandwidth 20MHz QPSK

	<u> </u>	=	· · · · · · · · · · · · · · · · · · ·	· · · ·				
Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1860.0	-21.50	3.41	10.24	33.60	18.93	33.01	14.08	Н
1880.0	-20.27	3.49	10.24	33.60	20.08	33.01	12.93	Н
1900.0	-20.71	3.55	10.23	33.60	19.57	33.01	13.44	Н

I TE EDD	Rand 2	Channel	Bandwidth	1 4MHz	160 AM
\perp \mid \subseteq \subseteq \bigcup \bigcup	Daliu Z	Unanne	Danuvviuii	1. 4 1VII 12	IOGAW

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.7	-22.74	3.41	10.24	33.60	17.69	33.01	15.32	Н
1880.0	-21.38	3.49	10.24	33.60	18.97	33.01	14.04	Н
1909.3	-21.74	3.55	10.23	33.60	18.54	33.01	14.47	Н

LTE FDD Band 2_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.5	-22.58	3.41	10.24	33.60	17.85	33.01	15.16	Н
1880.0	-21.08	3.49	10.24	33.60	19.27	33.01	13.74	Н
1908.5	-21.49	3.55	10.23	33.60	18.79	33.01	14.22	Н

LTE FDD Band 2_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.5	-22.37	3.41	10.24	33.60	18.06	33.01	14.95	Н
1880.0	-20.87	3.49	10.24	33.60	19.48	33.01	13.53	Н
1907.5	-21.24	3.55	10.23	33.60	19.04	33.01	13.97	Н

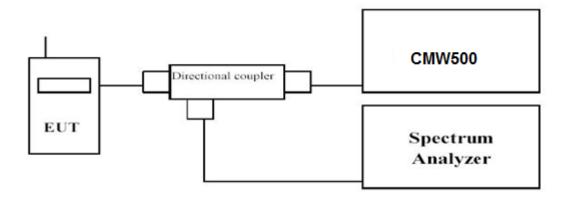
LTE FDD Band 2_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1855.0	-22.43	3.41	10.24	33.60	18.00	33.01	15.01	Н
1880.0	-21.06	3.49	10.24	33.60	19.29	33.01	13.72	Н
1905.0	-21.31	3.55	10.23	33.60	18.97	33.01	14.04	Н

LTE FDD Band 2_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	PMea (dBm)	PcI (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1857.5	-22.63	3.41	10.24	33.60	17.80	33.01	15.21	Н
1880.0	-21.29	3.49	10.24	33.60	19.06	33.01	13.95	Н
1902.5	-21.60	3.55	10.23	33.60	18.68	33.01	14.33	Н

LTE FDD Band 2_Channel Bandwidth 20MHz_16QAM


Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1860.0	-23.04	3.41	10.24	33.60	17.39	33.01	15.62	Н
1880.0	-21.88	3.49	10.24	33.60	18.47	33.01	14.54	Н
1900.0	-22.33	3.55	10.23	33.60	17.95	33.01	15.06	Н

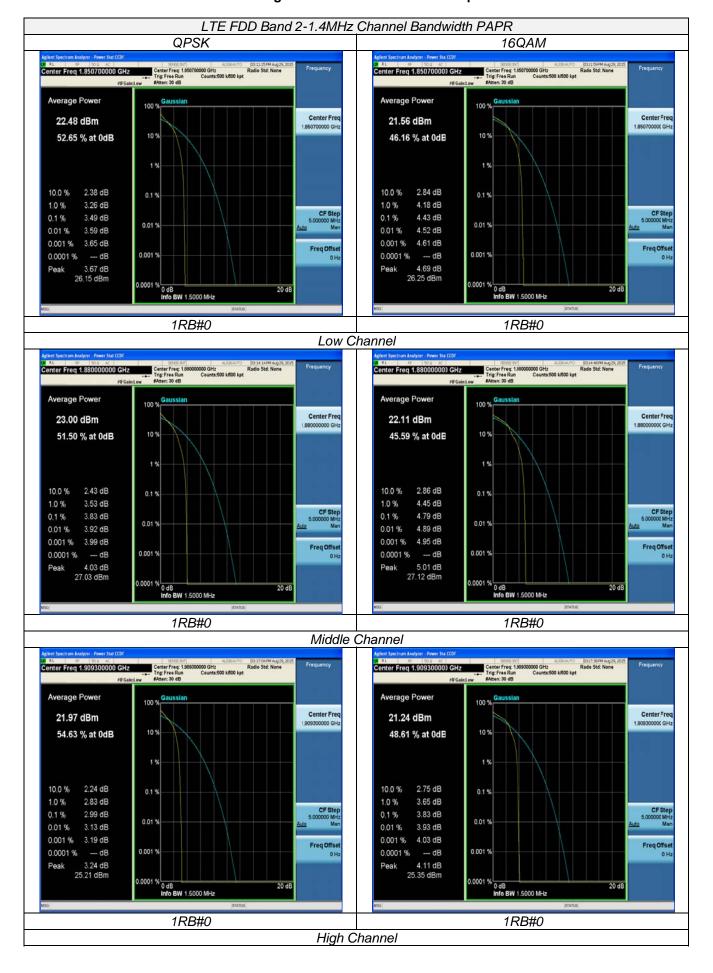
4.2. Peak-to-Average Ratio (PAR)

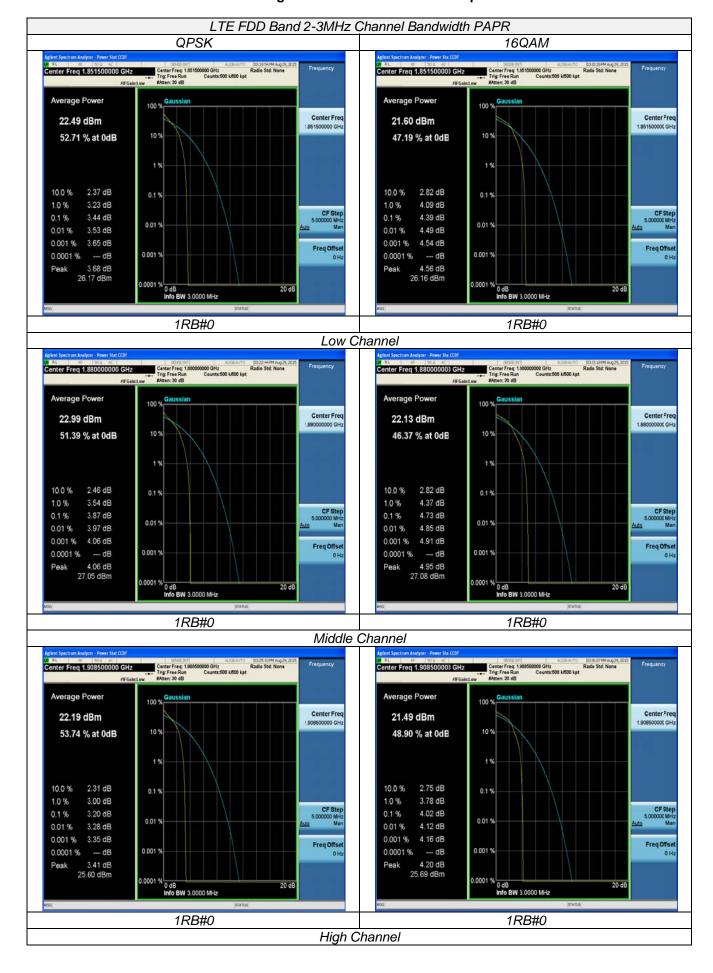
LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

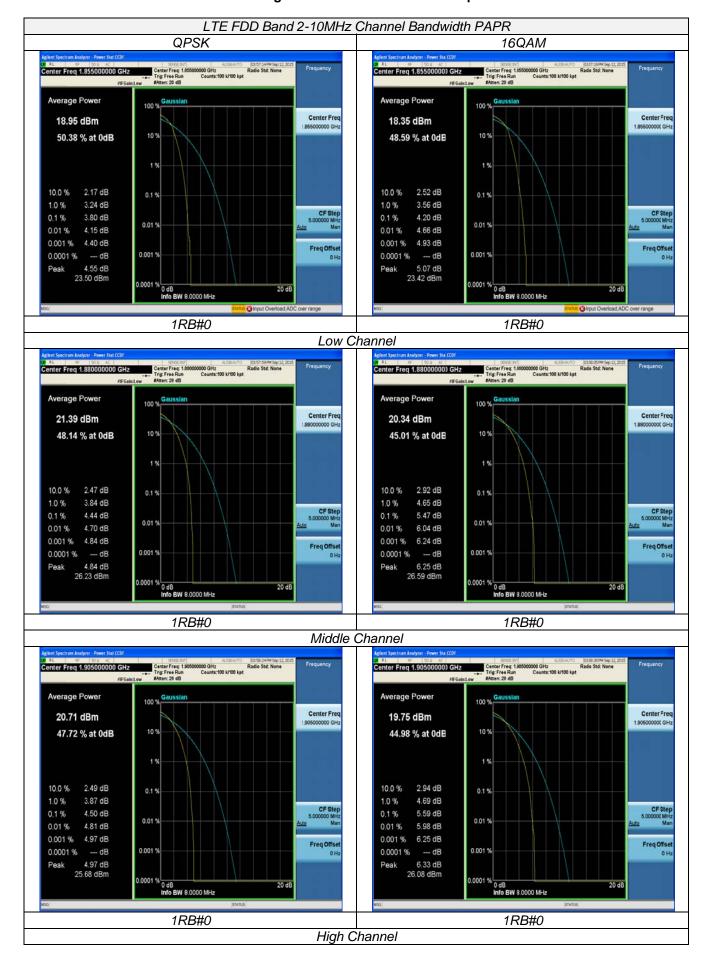
TEST CONFIGURATION

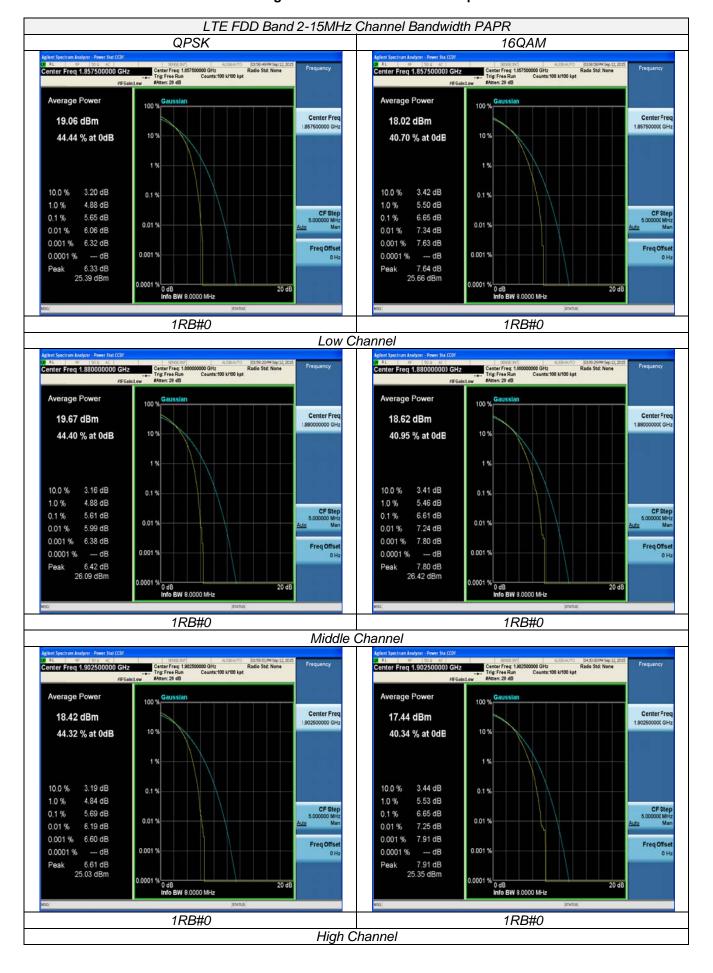
TEST PROCEDURE

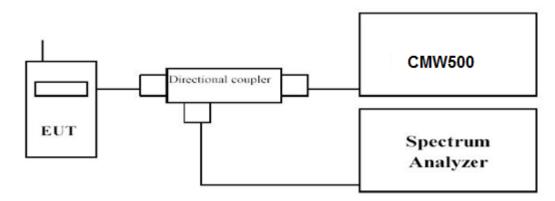

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function:
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.


TEST RESULTS

Remark:


 We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2; recorded worst case for each Channel Bandwidth of LTE FDD Band 2.


		LTE FDD Band 2			
TX Channel	Frequency	DD Cina/Offeet	PAPR (dB)		
Bandwidth	(MHz)	RB Size/Offset	QPSK	16QAM	
	1850.7		3.49	4.43	
1.4 MHz	1880.0	1RB#0	3.83	4.79	
	1909.3		2.99	3.83	
	1851.5		3.44	4.39	
3 MHz	1880.0	1RB#0	3.87	4.73	
	1908.5		3.20	4.02	
	1852.5	1RB#0	3.24	4.21	
5 MHz	1880.0		3.65	4.64	
	1907.5		3.48	4.43	
	1855.0		3.80	4.20	
10 MHz	1880.0	1RB#0	4.44	5.47	
	1905.0		4.50	5.59	
	1857.5		5.65	6.65	
15 MHz	1880.0	1RB#0	5.61	6.61	
	1902.5		5.69	6.65	
	1860.0		6.47	6.91	
20 MHz	1880.0	1RB#0	6.45	6.95	
	1900.0		6.47	7.01	



4.3. Occupied Bandwidth and Emission Bandwidth

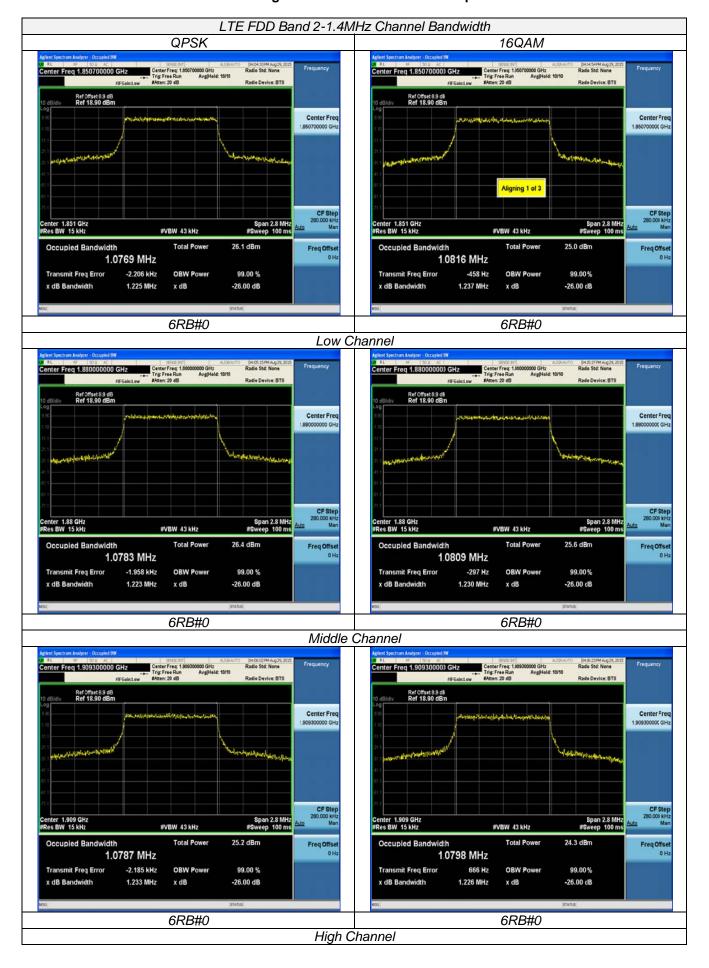
LIMIT

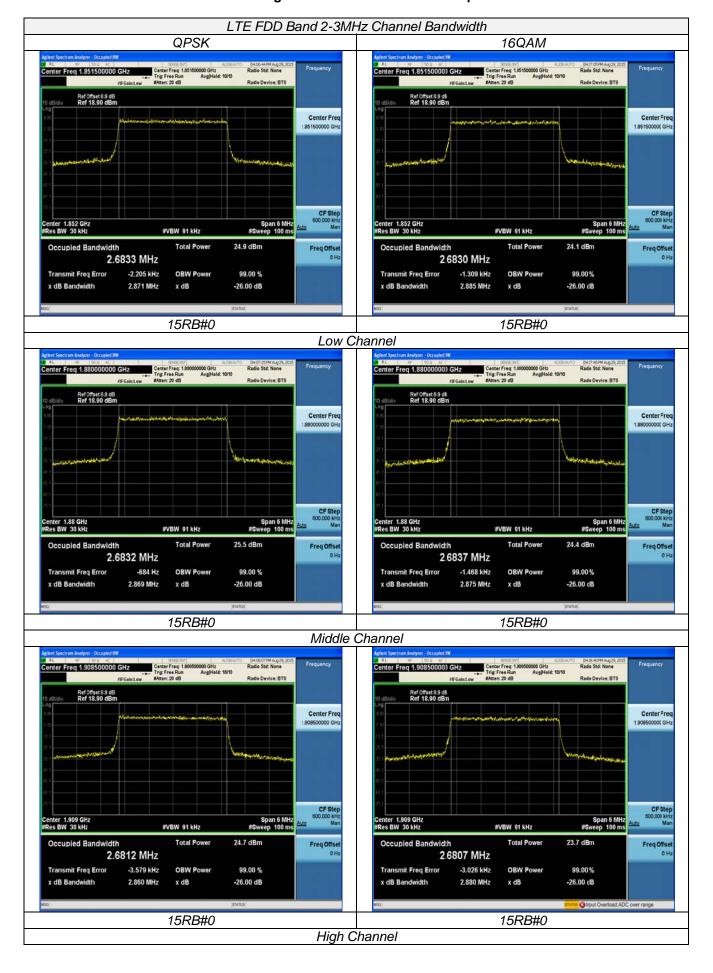
N/A

TEST CONFIGURATION

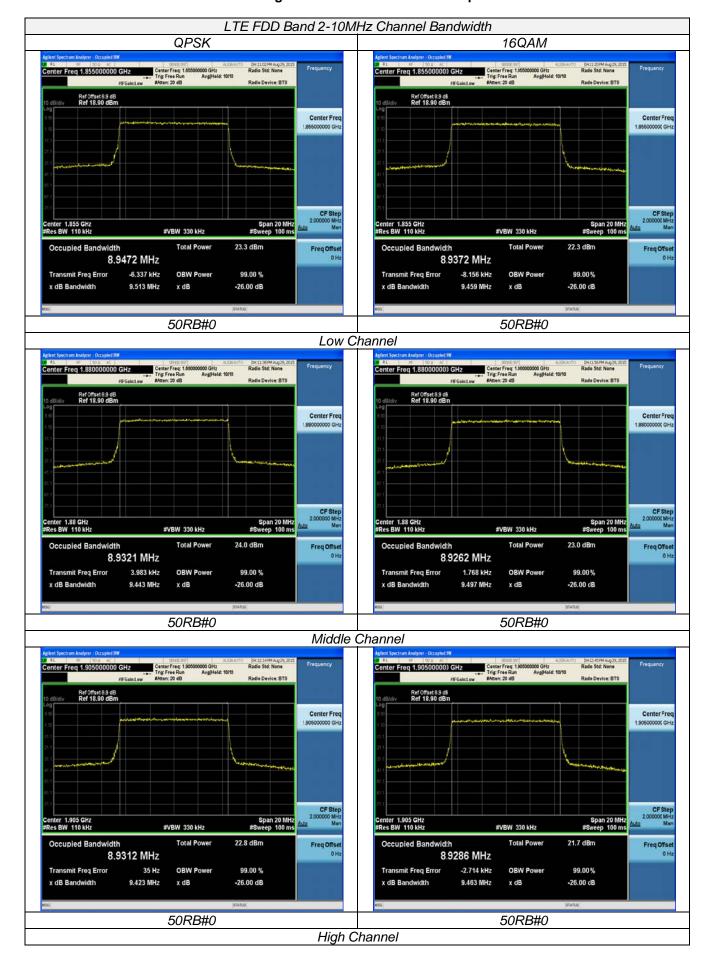
TEST PROCEDURE

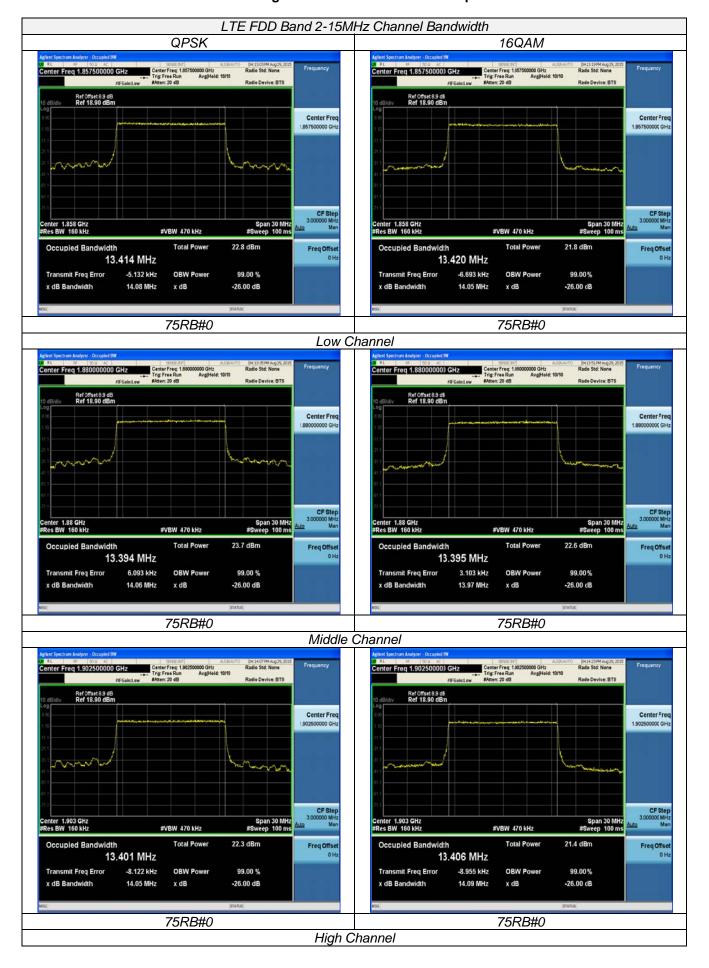
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

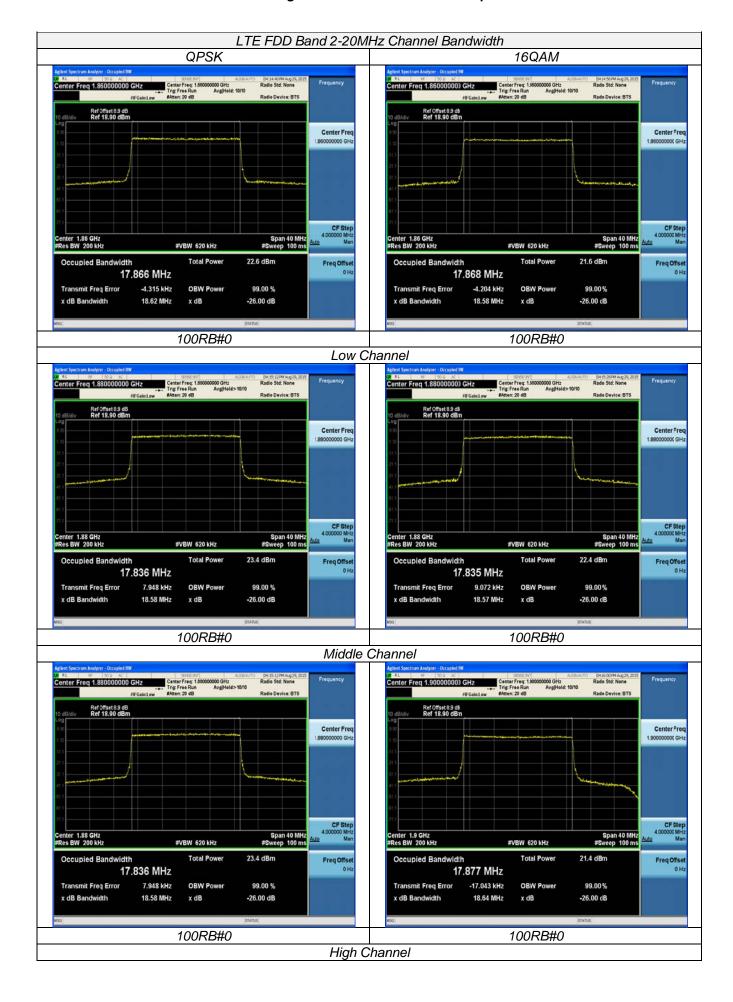

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

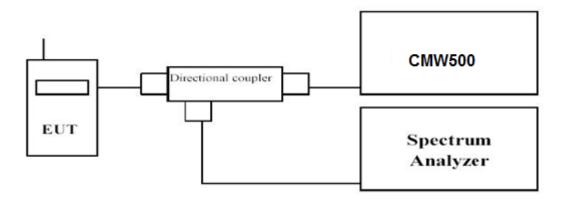

TEST RESULTS


Remark:


1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2; recorded worst case for each Channel Bandwidth of LTE FDD Band 2.


	LTE FDD Band 2							
TX Channel	RB Size/Offset	Frequency (MHz)		Emission Ith (MHz)	99% Occupied bandwidth (MHz)			
Bandwidth		(1011 12)	QPSK	16QAM	QPSK	16QAM		
		1850.7	1.225	1.237	1.0769	1.0816		
1.4 MHz	6RB#0	1880.0	1.223	1.230	1.0783	1.0809		
		1909.3	1.233	1.226	26 1.0787	1.0798		
		1851.5	2.871	2.885	2.6833	2.6830		
3 MHz	15RB#0	1880.0	2.869	2.875	2.6832	2.6837		
		1908.5	2.860	2.880	2.6812	2.6807		
	25RB#0	1852.5	4.811	4.841	4.4850	4.4836		
5 MHz		1880.0	4.825	4.863	4.4830	4.4815		
		1907.5	4.836	4.823	4.4852	4.4792		
		1855.0	9.513	9.459	8.9472	8.9372		
10 MHz	50RB#0	1880.0	9.443	9.497	8.9321	8.9262		
		1905.0	9.423	9.463	8.9312	8.9286		
		1857.5	14.08	14.05	13.414	13.420		
15 MHz	75RB#0	1880.0	14.06	13.97	13.394	13.395		
		1902.5	14.05	14.09	13.401	13.406		
		1860.0	18.62	18.58	17.866	17.868		
20 MHz	100RB#0	1880.0	18.58	18.57	17.836	17.835		
		1900.0	18.64	18.64	17.880	17.877		



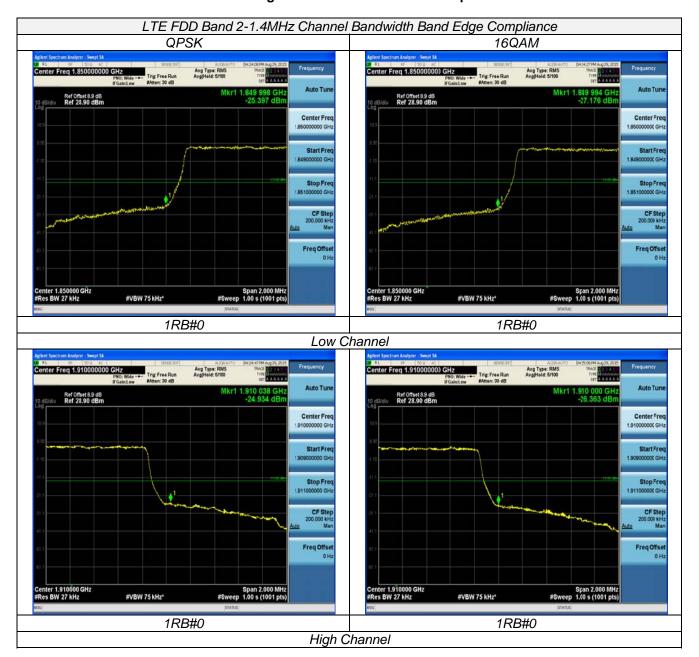


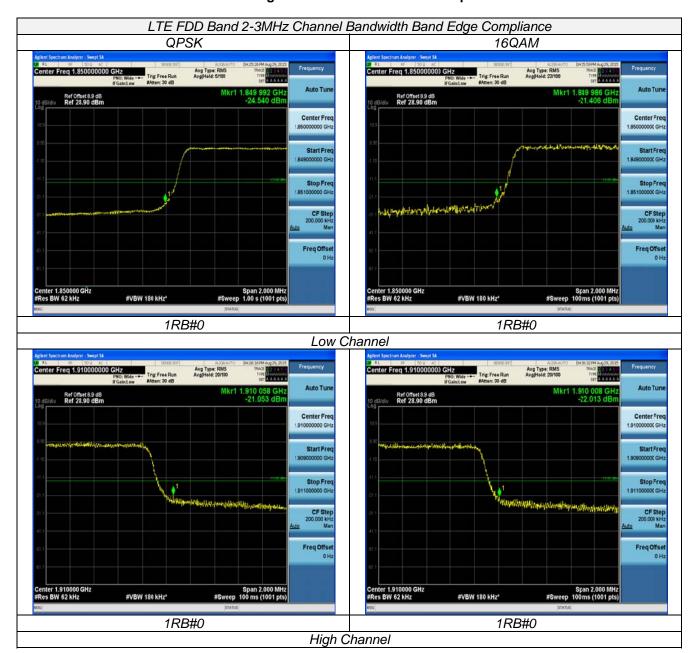
4.4. Band Edge compliance

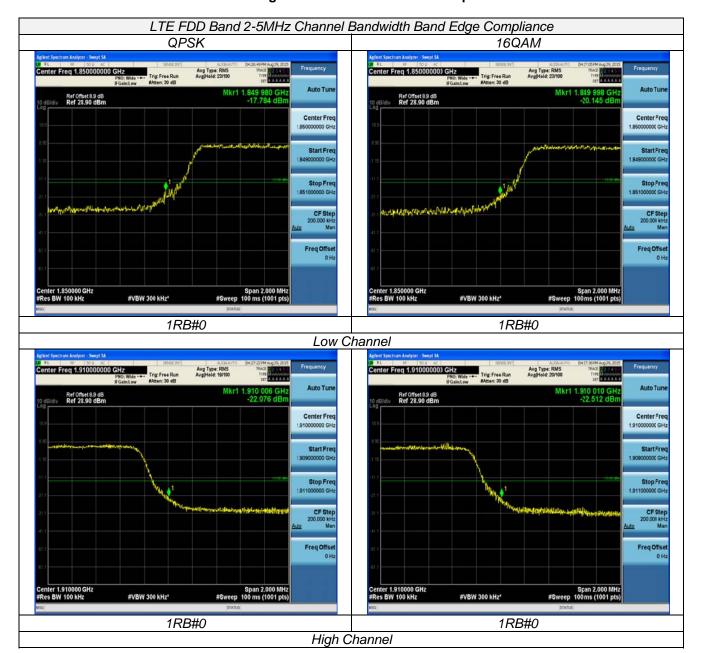
LIMIT

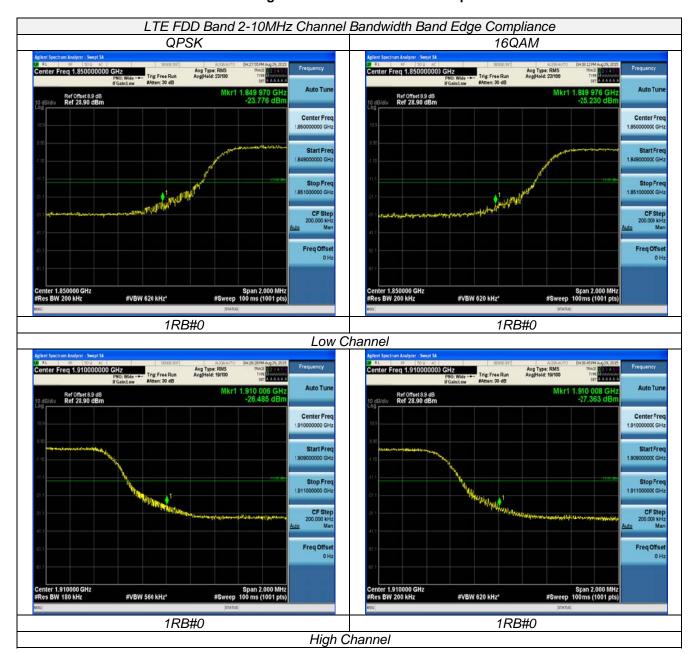
Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

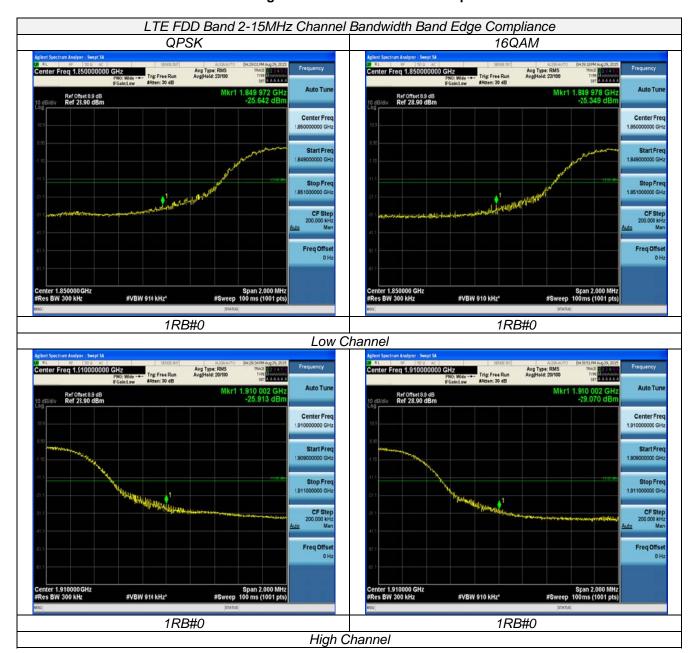
TEST CONFIGURATION

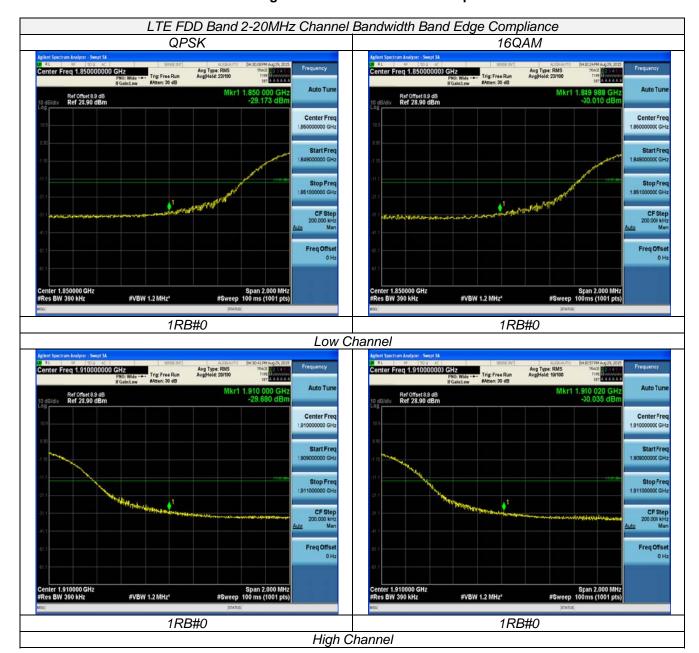

TEST PROCEDURE

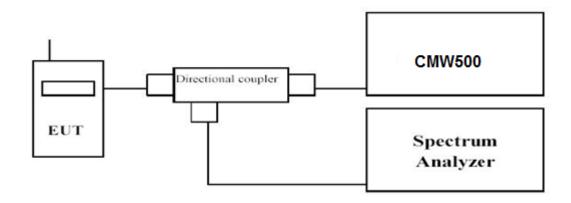

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum


TEST RESULTS


Remark:


1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2; recorded worst case for each Channel Bandwidth of LTE FDD Band 2.





4.5. Spurious Emssion on Antenna Port

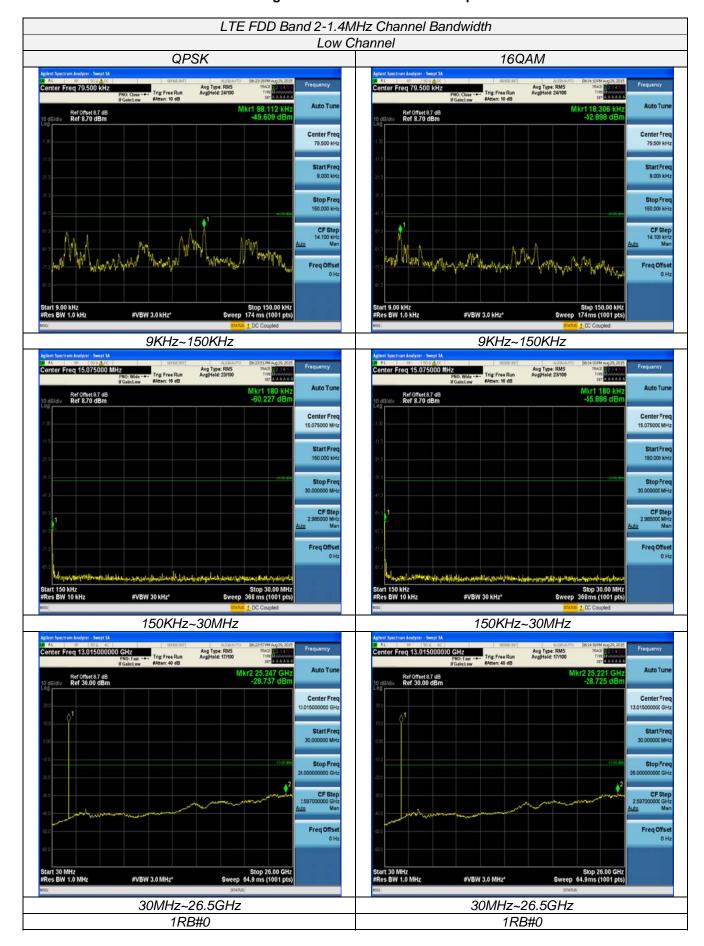
LIMIT

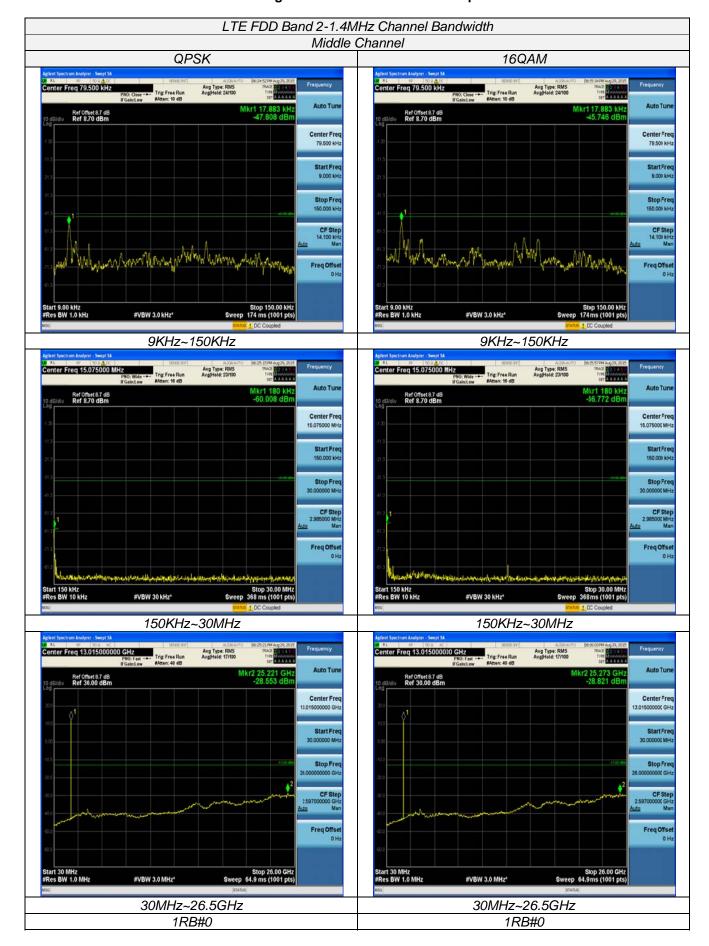
Per FCC §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

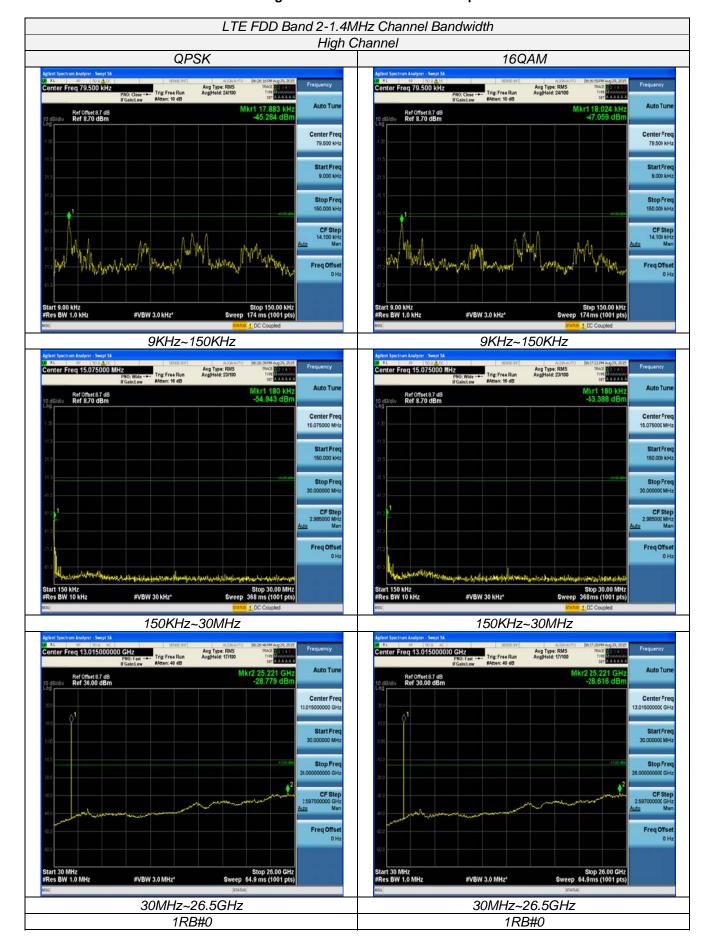
TEST CONFIGURATION

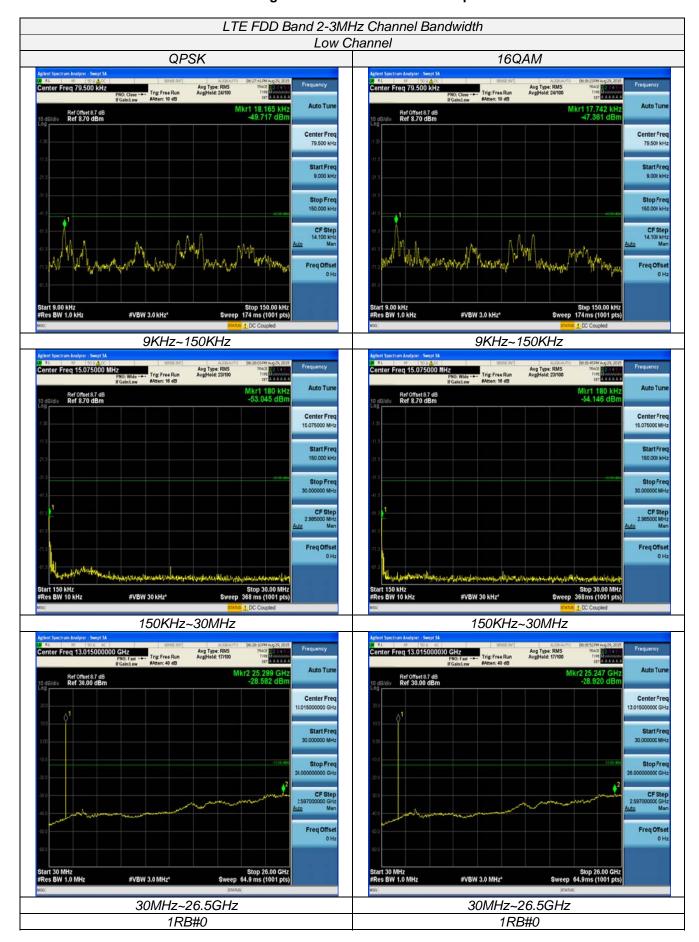
TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D


- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.


Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 2	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26.5	1 MHz	3 MHz	Auto


TEST RESULTS


Remark:

 We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2; recorded worst case for each Channel Bandwidth of LTE FDD Band 2.

