Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

ANSI/IEEE Std. C95.1-1992 In accordance with the requirements of FCC Report and Order: ET Docket 93-62 ; FCC 47 CFR Part 2 (2.1093)

FCC SAR TEST REPORT

For

Product Name: 3G smart phone Brand Name: HYUNDAI Model No.: E535 Series Model: E555 Test Report Number: C150602S01

Issued for

Global China Link PTE LTD

44-02, ONE RAFFLES PLACE NO. 1, RAFFLES PLACE SINGAPORE 048616

Issued by

Compliance Certification Services Inc.

Kun Shan Laboratory No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Compliance Certification Services Inc. Date of Issue: June 18, 2015 Report No .: C150602S01-SF

Revision History

Revision	REPORT NO.	Date	Page Revised	Contents
Original	C150602S01-SF	June 18, 2015	N/A	N/A

 Compliance Certification Services Inc.

 Date of Issue: June 18, 2015
 Report No.

TABLE OF CONTENTS

1.	CERTIFICATE OF COMPLIANCE (SAR EVALUATION)	4
2.	EUT DESCRIPTION	5
3.	REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	6
4.	TEST METHODOLOGY	6
5.	TEST CONFIGURATION	6
6.	DOSIMETRIC ASSESSMENT SETUP	7
	6.1 MEASUREMENT SYSTEM DIAGRAM	8
	6.2 SYSTEM COMPONENTS	9
7.	EVALUATION PROCEDURES	12
8.	MEASUREMENT UNCERTAINTY	16
9.	EXPOSURE LIMIT	
10.	EUT ARRANGEMENT	19
	10.1 ANTHROPOMORPHIC HEAD PHANTOM	19
	10.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION	20
	10.3 DEFINITION OF THE "TILTED" POSITION	21
11.	MEASUREMENT RESULTS	22
	11.1 TEST LIQUIDS CONFIRMATION	22
	11.2 LIQUID MEASUREMENT RESULTS	23
	11.3 SYSTEM PERFORMANCE CHECK	24
	11.4 EUT TUNE-UP PROCEDURES AND TEST MODE	26
	11.5 SAR TEST CONFIGURATIONS	
	11.6 ANTENNA POSITION	34
	11.7 EUT SETUP PHOTOS	
	11.8 SAR MEASUREMENT RESULTS	
	11.9 REPEATED SAR MEASUREMENT	
12.	SAR HANDSETS MULTI XMITER ASSESSMENT	42
13.	EUT PHOTO	46
14.	EQUIPMENT LIST & CALIBRATION STATUS	50
15.	FACILITIES	51
16.	REFERENCES	51
Арр	pendix A: Plots of Performance Check	52
Арр	pendix B: DASY Calibration Certificate	59
Арр	pendix C: Plots of SAR Test Result	110

 Date of Issue: June 18, 2015
 Report No .: C150602S01-SF

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Product Name:						
Brand Name:	HYUNDAI					
Model Name.:	E535					
Series Model:	E555					
Devices supporting GPRS/EDGE:	Class B					
Description Test Modes(worst case):The product has two SIM, SIM 1 and SIM 2 sharing a chipset does not sup simultaneous work, only supports a single transmitter SIM1 or SIM 2, using SII 						
Device Category: PORTABLE DEVICES						
Exposure Category:	GENERAL POPULATION/U	JNCONTROLLED EXPOSURE				
Date of Test:	June 10, 2015 to June 12, 2	2015				
Applicant: Address:) _ACE NO. 1, RAFFLES PLACE SINGAPORE 048616					
Manufacturer: Address:	shenzhen hitopwave techno 8F Fucheng Hi-tech Buildin	ology Co.,LTD g, NanShan District, Shenzhen, China.				
Application Type:	Certification					
	APPLICABLE STANDARD	OS AND TEST PROCEDURES				
STANDARDS AND	TEST PROCEDURES	TEST RESULT				
ANSI/IEEE	E C95.1-1992	No non-compliance noted				
	Deviation from A	Applicable Standard				
	None					
and procedures specified stated device/equipment.	The device was tested by Compliance Certification Services Inc. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.					

Approved by:	Tested by:
Jeff fang	Luck. Fu
Jeff Fang RF Manager Compliance Certification Services Inc.	Luck.Fu Test Engineer Compliance Certification Services Inc.

Page 4 of 110

Report No .: C150602S01-SF

2. EUT DESCRIPTION

Product Name: 3G smart phone Brand Name: HYUNDAI Model Name:: E535 Series Model: E555 Model Discrepancy: Only market segment FCC ID: RQQHLT-E5DAZA Power reduction: NO DTM Description: N/A Device Category: Production unit GSM 850: 824.2 ~ 848.8 MHz PCS 1900: 1850.2 ~ 1909.8 MHz VCDMA Band II: 1852.4~1907.6MHz WCDMA Band II: 1852.4~1907.6MHz WCDMA Band II: 1852.4~262 MHz Bluetooth: 2402 ~ 2480 MHz Body: GSM 850: 0.311 W/kg Max. Reported SAR(1g): Head: MCDMA Band II: 0.318 W/kg Body: MCDMA Band II: 0.318 W/kg
Model Name.:E535Series Model:E555Model Discrepancy:Only market segmentFCC ID:RQQHLT-E5DAZAPower reduction:NODTM Description:N/ADevice Category:Production unitGSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHzMax. ReportedHead: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kgBody: GSM 850: 0.773 W/kg PCS 1900: 0.715 W/kg
Series Model:E555Model Discrepancy:Only market segmentFCC ID:RQQHLT-E5DAZAPower reduction:NODTM Description:N/ADevice Category:Production unitGSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHzMax. ReportedHead: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kgBody: GSM 850: 0.773 W/kg PCS 1900: 0.715 W/kg
Model Discrepancy:Only market segmentFCC ID:RQQHLT-E5DAZAPower reduction:NODTM Description:N/ADevice Category:Production unitGSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHzMax. ReportedHead: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kgBody: GSM 850: 0.773 W/kg PCS 1900: 0.715 W/kg
FCC ID: RQQHLT-E5DAZA Power reduction: NO DTM Description: N/A Device Category: Production unit GSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHz Body: GSM 850: 0.773 W/kg PCS 1900: 0.117 W/kg
Power reduction:NODTM Description:N/ADevice Category:Production unitGSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHzMax. ReportedHead: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kgBody: GSM 850: 0.773 W/kg PCS 1900: 0.715 W/kg
DTM Description:N/ADevice Category:Production unitFrequency Range:GSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHzMax. ReportedHead: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kgBody: GSM 850: 0.773 W/kg PCS 1900: 0.715 W/kg
Device Category: Production unit GSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHz Head: Body: GSM 850: 0.311 W/kg Body: PCS 1900: 0.117 W/kg PCS 1900: 0.715 W/kg
GSN GSM 850: 824.2 ~ 848.8 MHz PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHz Body: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kg Max. Reported Head: PCS 1900: 0.117 W/kg Body: PCS 1900: 0.773 W/kg PCS 1900: 0.715 W/kg
Frequency Range: PCS1900: 1850.2 ~ 1909.8 MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6 MHz WLAN 2.4G: 2412 ~ 2462 MHz Bluetooth: 2402 ~ 2480 MHz Body: Max. Reported Head: GSM 850: 0.311 W/kg PCS 1900: 0.117 W/kg Body: GSM 850: 0.773 W/kg PCS 1900: 0.715 W/kg
GSM 850: 0.311 W/kg GSM 850: 0.773 W/kg Max. Reported PCS 1900: 0.117 W/kg PCS 1900: 0.715 W/kg
WCDMA Band V: 0.203 W/kg WCDMA Band V: 0.444 W/kg WLAN 2.4G: 0.052 W/kg WLAN 2.4G: 0.040 W/kg
Modulation Technique: GSM/GPRS/EDGE: GMSK RMC/AMR: QPSK HSDPA: QPSK HSUPA: QPSK IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: DSSS (CCK, DQPSK, DBPSK)+OFDM (QPSK, BPSK, 16-QAM, 64-QAM) IEEE 802.11n: OFDM(MCS 0-7) Bluetooth 2.1+EDR: GFSK + π/4DQPSK+8DPSK BLE 4.0: GFSK
Accessories: Battery(rating): Capacitance: 1250mAh Rated voltage: 3.7V
Antenna Specification: GSM&WCDMA: PIFA Antenna
Wifi&Bluetooth: PIFA Antenna

Page 5 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/Kg for an uncontrolled environment and 8.0 W/Kg for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

☑ FCC 47 CFR Part 2 (2.1093)
 ☑ ANSI/IEEE C95.1-1992
 ☑ KDB 248227 D01v02r01
 ☑ KDB 447498 D01v05r02

KDB 648474 D04v01r02

KDB 865664 D01v01r03

KDB 865664 D02v01r01

KDB 941225 D01v03

KDB 941225 D06v02

5. TEST CONFIGURATION

For WWAN SAR testing The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

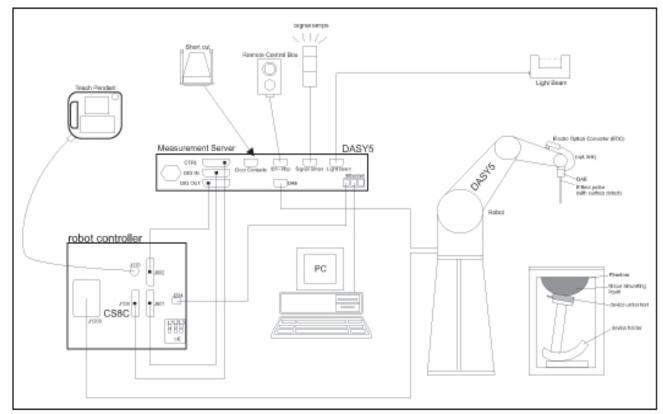
During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting For WLAN SAR testing, WLAN engineering test software installed on the EUT can provide continuous transmitting RF signal the signal duty cycle close to 100%.

6. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from ATTENNESSA. The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than \pm 10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than \pm 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528.

Ingredients	Frequency (MHz)										
(% by weight)	4	450 8		835 915		15 19		00	24	2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

The following table gives the recipes for tissue simulating liquids.


Page 7 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

ERF Compliance Certification Services Inc.

Date of Issue: June 18, 2015

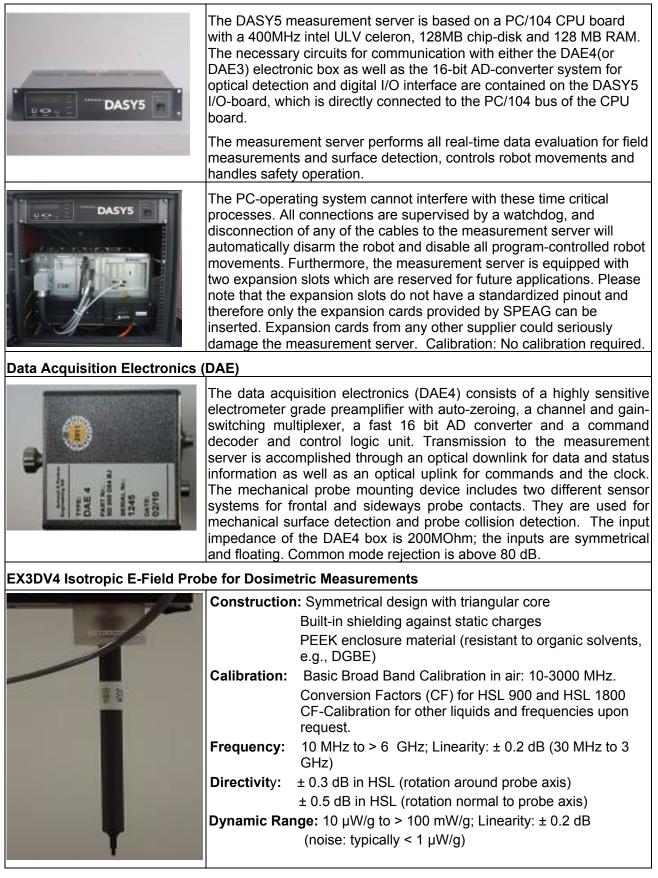
Report No .: C150602S01-SF

6.1 MEASUREMENT SYSTEM DIAGRAM

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 8 of 110


This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

ERE Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

6.2 SYSTEM COMPONENTS

ERF Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Dimensions:	Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from probe tip to dipole centers: 1 mm
Application:	High precision dosimetric measurements

in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Interior of probe

SAM Twin Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50360 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness: 2 ±0.2 mm

Filling Volume: Approx. 25 liters

Height: 850mm; Length: 1000mm; Width: Dimensions: 750mm

SAM Phantom (ELI4 v4.0)

Description Construction:

Phantom for compliance testing of handheld and bodymounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

2.0 ± 0.2 mm (sagging: <1%) Shell Thickness: Filling Volume: Dimensions: Minor axis:

Approx. 25 liters Maior ellipse axis: 600 mm 400 mm 500mm

Device Holder for SAM Twin Phantom

L SRF	Date of Issue: June 18, 2015	rvices Inc. Report No .: C150602S01-SF
Construction:	In combination with the Twin SAM Phantom, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).	
System Validat	tion Kits for SAM Twin Phantom	
	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.	
Frequency:	900,1800,2450,5800 MHz	
ReTune loss:	> 20 dB at specified validation position ty: > 100 W (f < 1GHz); > 40 W (f > 1GHz)	
D1800 D1900 D2450	2: dipole length: 161 mm; overall height: 340 mm V2: dipole length: 72.5 mm; overall height: 300 mm V2: dipole length: 67.7 mm; overall height: 300 mm V2: dipole length: 51.5 mm; overall height: 290 mm v2: dipole length: 20.6 mm; overall height: 300mm	
System Validat	tion Kits for ELI4 phantom	
Construction:	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.	
Frequency:	900, 1800, 2450, 5800 MHz	
ReTune loss:	> 20 dB at specified validation position	
Power capabili	ty: > 100 W (f < 1GHz); > 40 W (f > 1GHz)	
D1800 D1900 D2450	2: dipole length: 161 mm; overall height: 340 mm V2: dipole length: 72.5 mm; overall height: 300 mm V2: dipole length: 67.7 mm; overall height: 300 mm V2: dipole length: 51.5 mm; overall height: 290 mm V2: dipole length: 20.6 mm; overall height: 300 mm	

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

7. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

= Compensated signal of channel i(i = x, y, z)Vi = Input signal of channel i U (i = x, y, z)= Crest factor of exciting field (DASY 5 parameter) cf dcp_i = Diode compression point (DASY 5 parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$$

= Compensated signal of channel i(i = x, y, z)with Vi

> *Norm*_i = Sensor sensitivity of channel i (i = x, y, z) μ V/(V/m)² for E0field Probes

ConvF

= Sensitivity enhancement in solution

aii = Sensor sensitivity factors for H-field probes

- f = Carrier frequency (GHz)
- Ei = Electric field strength of channel i in V/m
- Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

Page 12 of 110

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

ERE Compliance Certification Services Inc. Report No .: C150602S01-SF

The primary field data are used to calculate the derived field units.

Date of Issue: June 18, 2015

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ

= equivalent tissue density in g/cm^3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

= total magnetic field strength in A/m H_{tot}

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

• Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

• Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

• Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

Date of Issue: June 18, 2015

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes ($a <<\lambda$), the cos-term can be omitted. Factors *Sb* (parameter Alpha in the DASY 5 software) and *a* (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30_ to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

8. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 30 MHz to 3 GHz averaged over 1 gram								
Uncertainty Component	Uncertainty	Prob.	Div.	C _{i (1g)}	Std. Unc.(1-g)	Vi or Veff		
Measurement System								
Probe Calibration (<i>k</i> =1)	6.00	Normal	1	1	6.00	8		
Probe Isotropy	4.70	Rectangular	√3	0.7	1.90	8		
Modulation Response	2.40	Rectangular	√3	1	1.39	∞		
Hemispherical Isotropy	9.60	Rectangular	√3	0.7	3.88	∞		
Boundary Effect	2.00	Rectangular	√3	1	1.15	∞		
Linearity	4.70	Rectangular	√3	1	2.71	∞		
System Detection Limit	1.00	Rectangular	√3	1	0.58	∞		
Readout Electronics	0.30	Normal	1	1	0.30	∞		
Response Time	0.80	Rectangular	√3	1	0.46	∞		
Integration Time	2.60	Rectangular	√3	1	1.50	∞		
RF Ambient Noise	3.00	Rectangular	√3	1	1.73	∞		
RF Ambient Reflections	3.00	Rectangular	√3	1	1.73	∞		
Probe Positioner	0.40	Rectangular	√3	1	0.23	∞		
Probe Positioning	2.90	Rectangular	√3	1	1.67	∞		
Max. SAR Evaluation	2.00	Rectangular	√3	1	1.15	∞		
Test sample Related						1		
Test sample Positioning	2.9	Normal	1	1	2.9	145		
Device Holder Uncertainty	3.6	Normal	1	1	3.6	5		
Power drift	5	Rectangular	√3	1	2.89	∞		
Power Scaling	0	Rectangular	√3	1	0.00	∞		
	Phantom a	and Tissue Par	ameters					
Phantom Uncertainty	6.1	Rectangular	√3	1	3.52	∞		
SAR correction	1.9	Rectangular	√3	1	1.10	∞		
Liquid Conductivity (target)	5	Rectangular	√3	0.64	1.85	∞		
Liquid Conductivity (meas)	2.70	Rectangular	√3	0.78	1.22	∞		
Liquid Permittivity (target)	5	Rectangular	√3	0.6	1.73	∞		
Liquid Permittivity (meas)	3.33	Rectangular	√3	0.26	0.50	∞		
Temp. unc Conductivity	3.4	Rectangular	√3	0.78	1.53	∞		
Temp. unc Permittivity	0.4	Rectangular	√3	0.23	0.05	∞		
Combined Std. Uncertainty		RSS			11.50	361		
Expanded STD Uncertainty		<i>k</i> =2			22.99%			
Expanded STD Uncertainty		<i>k</i> =2			1.800	B		

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

Measurement uncertainty for 30 MHz to 3 GHz averaged over 1 gram						
Uncertainty Component	Uncertainty	Prob.	Div.	C _{i (1g)}	Std. Unc.(1-g)	Vi or Veff
Measurement System						
Probe Calibration (<i>k</i> =1)	6.00	Normal	1	1	6.0	8
Axial Isotropy	4.70	Rectangular	√3	0.7	1.9	∞
Hemispherical Isotropy	9.60	Rectangular	√3	0.7	3.9	∞
Boundary Effect	1.00	Rectangular	√3	1	0.6	∞
Linearity	4.70	Rectangular	√3	1	2.7	∞
System Detection Limit	1.00	Rectangular	√3	1	0.6	∞
Readout Electronics	0.30	Normal	1	1	0.3	∞
Response Time	0.80	Rectangular	√3	0	0.0	∞
Integration Time	2.60	Rectangular	√3	0	0.0	∞
RF Ambient Noise	3.00	Rectangular	√3	1	1.7	∞
RF Ambient Reflections	3.00	Rectangular	√3	1	1.7	∞
Probe Positioner	0.40	Rectangular	√3	1	0.2	∞
Probe Positioning	2.90	Rectangular	√3	1	1.7	∞
Max. SAR Evaluation	1.00	Rectangular	√3	1	0.6	∞
	System val	idation source	e (dipole)	1	I	
Deviation of experimental dipole from numerical dipole	5	Normal	1	1	5.0	∞
Dipole axis to liquid distance	2	Rectangular	√3	1	1.2	∞
Input power and SAR drift	4.7	Rectangular	√3	1	2.7	∞
	Phantom a	and Tissue Par	ameters			
Phantom Uncertainty	4	Rectangular	√3	1	2.3	8
SAR correction	1.9	Rectangular	1	0.84	1.6	∞
Liquid Conductivity (meas)	2.70	Rectangular	1	0.78	2.11	∞
Liquid Permittivity (meas)	3.33	Rectangular	1	0.23	0.77	∞
Temp. unc Conductivity	1.7	Rectangular	√3	0.78	0.77	∞
Temp. unc Permittivity	0.3	Rectangular	√3	0.23	0.04	∞
Combined Std. Uncertainty		RSS			10.9	361
Expanded STD Uncertainty		<i>k</i> =2			21.83	8%
Expanded STD Uncertainty		<i>k</i> =2			1.720	B

Table: Worst-case uncertainty for DASY5 assessed according to IEEE1528-2003. The budge is valid for the frequency range 30 MHz to 3G Hz and represents a worst-case analysis.

Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

9. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, **partial-body SAR** is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. **SAR for hands, wrists, feet and ankles** is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

<u>Occupational/Controlled Environments</u> are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE
GENERAL POPULATION/UNCONTROLLED EXPOSURE
PARTIAL BODY LIMIT
1.6 W/kg

10. EUT ARRANGEMENT

Please refer to IEEE1528-2003 illustration below.

10.1 ANTHROPOMORPHIC HEAD PHANTOM

Figure 7-1a shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 7-1b. The plane passing through the two ear reference points and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 7-1c). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs. Anterior to the N-F line, the ear is truncated as illustrated in Figure 7-1b. The ear truncation is introduced to avoid the handset from touching the ear lobe, which can cause unstable handset positioning at the cheek.

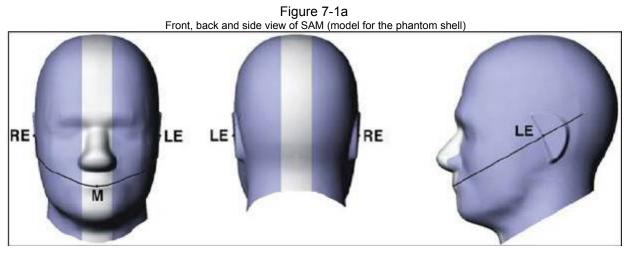


Figure 7-1b Close up side view of phantom showing the ear region

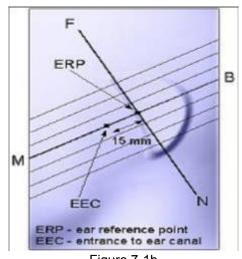


Figure 7-1b Close up side view of phantom showing the ear region

Figure 7-1c Side view of the phantom showing relevant markings and the 7 cross sectional plane locations

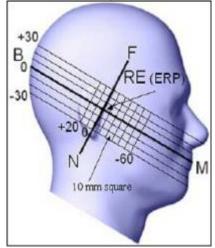


Figure 7-1c Side view of the phantom showing relevant markings and the 7 cross sectional plane locations

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

10.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION

The "cheek" or "touch" position is defined as follows:

- a. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.)
- b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 7-2a and 7-2b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7-2a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7-2b), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets.
- c. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7-2c), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna.
- e. e) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF.
- g. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 7-2c. The physical angles of rotation should be noted.

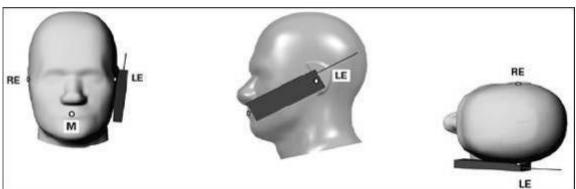
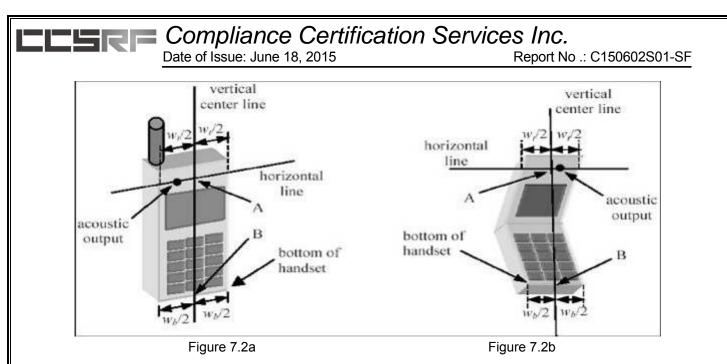



Figure 7.2c

Phone "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

10.3 DEFINITION OF THE "TILTED" POSITION

The "tilted" position is defined as follows:

- a. Repeat steps (a) (g) of 7.2 to place the device in the "cheek position."
- b. While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.
- c. Rotate the handset around the horizontal line by 15 degrees.
- d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the head).

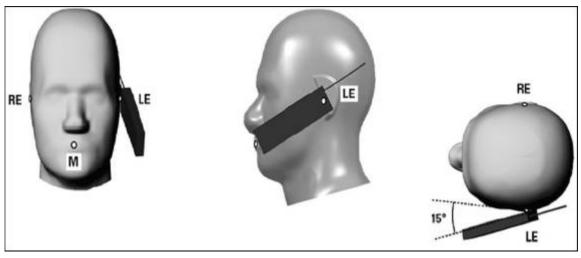


Figure 7-3 Phone "tilted" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

Report No .: C150602S01-SF

11. MEASUREMENT RESULTS

11.1 TEST LIQUIDS CONFIRMATION

SIMULATED TISSUE LIQUID PARAMETER CONFIRMATION

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

KDB865664 D01 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and Body tissue dielectric parameters recommended by the KDB865664 D01 have been incorporated in the following table.

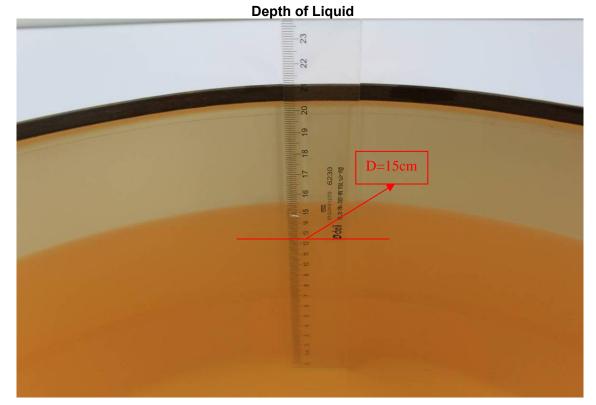
Target Frequency	He	ad	Bo	dy
(MHz)	ε _r	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Report No .: C150602S01-SF

11.2 LIQUID MEASUREMENT RESULTS

The following table show the measuring results for simulating liquid:


Liquid Type	Liquid Temp. (°C)	Parameters	Target	Measured	Deviation (%)	Limited (%)	Measured Date
Head835	21.5	Permitivity(ε)	41.50	42.883	3.33	± 5	2015-6-10
Tieau000	21.5	Conductivity(σ)	0.90	0.917	1.89	± 5	2013-0-10
Body835	21.5	Permitivity(ε)	55.20	55.474	0.50	± 5	2015-6-11
DUUyoSS	21.5	Conductivity(σ)	0.97	0.992	2.27	± 5	2015-0-11
Head1900	21.5	Permitivity(ε)	40.00	39.497	-1.26	± 5	2015-6-10
Tieau 1900	21.5	Conductivity(σ)	1.40	1.397	-0.21	± 5	2015-0-10
Body1900	21.5	Permitivity(ε)	53.30	52.321	-1.84	± 5	2015-6-11
Body 1900	21.5	Conductivity(σ)	1.52	1.561	2.70	± 5	2015-0-11
Head2450	21.5	Permitivity(ε)	39.20	38.777	-1.08	± 5	2015-6-12
Tieau2430	21.5	Conductivity(σ)	1.80	1.802	0.11	± 5	2013-0-12
Body2450	21.5	Permitivity(ε)	52.70	52.480	-0.42	± 5	2015-6-12
B00y2400	21.0	Conductivity(σ)	1.95	1.900	-2.56	± 5	2010-0-12

11.3 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with head and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 3798 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx= 5 mm, dy= 5 mm, dz= 5 mm).
- Distance between probe sensors and phantom surface was set to 2 mm.
- The dipole input power was 250mW±3%.
- The results are normalized to 1 W input power.

• Note: For SAR testing, the depth is 15cm shown above

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

SYSTEM PERFORMANCE CHECK RESULTS

_iquid Type	Ambient Temp. (°C)	Liquid Temp. (°C)	Input Power (W)	Measured SAR1g (W/Kg)	1W Target SAR1g(W/ Kg)	1W Normalized SAR1g(W/Kg)	Deviation (%)	Limited (%)	Date
Head835	22	21.5	0.25	2.32	9.50	9.28	-2.32	± 10	2015-6-10
Body835	22	21.5	0.25	2.46	9.53	9.84	3.25	± 10	2015-6-11
Head1900	22	21.5	0.25	9.69	40.40	38.76	-4.06	± 10	2015-6-10
Body1900	22	21.5	0.25	10.70	40.50	42.80	5.68	± 10	2015-6-11
Head2450	22	21.5	0.25	12.70	52.60	50.80	-3.42	± 10	2015-6-12
Body2450	22	21.5	0.25	12.40	49.20	49.60	0.81	± 10	2015-6-12

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

11.4 EUT TUNE-UP PROCEDURES AND TEST MODE

The following procedure had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power. A Radio Communication Tester "CMU200" was used to program the EUT.

General Note:

- 1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. For head SAR testing, the EUT was set in GSM Voice for GSM850 and PCS1900 due to its highest frame-average power.
- For body worn SAR testing, the EUT was set in GPRS 4 Tx slots for GSM850 and GPRS 4 Tx PCS1900 due to its highest frame-average power.
- For hotspot SAR testing, the EUT was set in GPRS 4 Tx slots for GSM850 and GPRS 4 Tx PCS1900 due to its highest frame-average power.

GSM Conducted output power(dBm):

Band	, 	GSM 850			GSM 1900	
Channel	128	190	251	512	661	810
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8
Maxii	num Burst	-Averaged	Output Po	ower		
GSM(GMSK,1Uplink)	32.85	32.92	32.89	29.69	29.45	29.35
GPRS 8 (GMSK,1 Uplink)	32.91	32.69	32.65	29.70	29.49	29.48
GPRS 10 (GMSK,2 Uplink)	32.12	31.91	31.84	28.95	28.82	28.75
GPRS 11 (GMSK,3 Uplink)	30.44	30.16	30.04	27.24	27.22	27.28
GPRS 12 (GMSK,4 Uplink)	29.34	29.01	28.79	26.16	26.16	26.38
EDGE 8 (GMSK,1 Uplink)	26.91	26.89	26.85	25.82	25.78	25.74
EDGE 10 (GMSK,2 Uplink)	26.56	26.61	26.58	25.45	25.51	25.47
EDGE 11 (GMSK,3 Uplink)	25.96	25.88	25.91	24.85	24.77	24.83
EDGE 12 (GMSK,4 Uplink)	25.44	25.39	25.37	24.33	24.28	24.26
Maxin	num Frame	e-Averageo	d Output P	ower		
GSM(GMSK,1Uplink)	23.83	23.90	23.87	20.67	20.43	20.33
GPRS 8 (GMSK,1 Uplink)	23.88	23.66	23.62	20.67	20.46	20.45
GPRS 10 (GMSK,2 Uplink)	26.09	25.88	25.81	22.92	22.79	22.72
GPRS 11 (GMSK,3 Uplink)	26.18	25.90	25.78	22.98	22.96	23.02
GPRS 12 (GMSK,4 Uplink)	26.33	26.00	25.78	23.15	23.15	23.37
EDGE 8 (GMSK,1 Uplink)	17.88	17.86	17.82	16.79	16.75	16.71
EDGE 10 (GMSK,2 Uplink)	20.54	20.59	20.56	19.43	19.49	19.45
EDGE 11 (GMSK,3 Uplink)	21.70	21.62	21.65	20.59	20.51	20.57
EDGE 12 (GMSK,4 Uplink)	22.43	22.38	22.36	21.32	21.27	21.25

Remark: The frame-averaged power is linearly scaled the maximum burst-averaged power based on time slots. The calculated methods are shown as below:

Frame-averaged power = Burst-averaged power (1 Uplink) – 9.03 dBm

Frame-averaged power = Burst averaged power (2 Uplink) – 6.02 dBm

Frame-averaged power = Burst-averaged power (3 Uplink) – 4.26 dBm

Frame-averaged power = Burst averaged power (4 Uplink) – 3.01 dBm

Note: Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Page 26 of 110

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

WCDMA Conducted output power(dBm):

As the SAR body tests for WCDMA **Band II and Band V**, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:a 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to all "all '1's"b Test loop Mode 1

The following procedures had been used to prepare the EUT for the SAR test.

HSDPA Setup Configuration:

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βd (SF)	βс∕βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 2: F N d	or the HS-E Magnitude (E	DPCCH pow EVM) with H in clause 5.	er mask requ S-DPCCH te	$_{\rm s}$ = 30/15 * β_c . irement test in cla st in clause 5.13.1 and $\Delta_{\rm NACK}$ = 30/19	A, and HSDF	PA EVM with pha	ase

Note 3: CM = 1 for β_{e}/β_{d} =12/15, β_{hs}/β_{c} =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_0/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

HSUPA Setup Configuration:

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βc	βd	β _d (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1	: Даск,	ANACK and	d A _{CQI} =	= 30/15 v	vith $eta_{\scriptscriptstyle hs}$	= 30/15 '	β_c .						
Note 2							her combinatio CM difference		DPDCH, [OPCCH,	HS- DPC	CH, E-E	PDCH
Note 3				-			during the more the more the more the more the content of the content						by
Note 4	e 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.												
Note 5													
	Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.												

Compliance Certification Services Inc. Date of Issue: June 18, 2015 Report Notes

Report No .: C150602S01-SF

Band	W	CDMA Band	l II	W	CDMA Band	V
Channel	9262	9400	9538	4132	4182	4233
Frequency(MHz)	1852.4	1880	1907.6	826.4	836.4	846.6
RMC12.2K	22.97	22.89	22.13	22.97	22.74	22.95
HSDPA Subtest-1	21.99	21.89	21.62	21.79	21.81	22.11
HSDPA Subtest-2	21.89	21.70	21.70	21.81	21.97	21.86
HSDPA Subtest-3	21.56	21.67	21.59	21.93	21.99	21.75
HSDPA Subtest-4	21.61	21.68	21.89	21.80	22.03	22.09
HSUPA Subtest-1	21.65	21.68	22.17	21.93	21.91	21.49
HSUPA Subtest-2	21.50	21.86	21.58	21.84	22.06	20.81
HSUPA Subtest-3	21.87	21.77	21.67	21.73	22.11	21.94
HSUPA Subtest-4	21.56	21.86	21.58	22.05	21.81	22.17
HSUPA Subtest-5	21.46	21.58	21.79	22.13	22.25	21.94

Note:

Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, HSDPA/HSUPA SAR evaluation can be excluded.

General Note:

- Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- 2 Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
 - 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
 - 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- 3 For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WLAN 2.4G Conducted output power(dBm):

Mode	Channel	Frequence	Average power(dBm)
	1	2412 MHZ	13.12
802.11 b	6	2437 MHZ	13.14
	11	2462 MHZ	13.15
	1	2412 MHZ	11.53
802.11 g	6	2437 MHZ	11.62
	11	2462 MHZ	11.59
000.44	1	2412 MHZ	11.73
802.11 n 20M	6	2437 MHZ	11.72
20101	11	2462 MHZ	11.74
000.44	3	2422 MHZ	9.69
802.11 n 40M	7	2442 MHZ	9.82
	11	2462 MHZ	9.76

Date of Issue: June 18, 2015

Bluetooth 2.1+EDR Conducted output power(dBm):

		A	verage power(dBr	n)
Channel	Frequency		Date Rate	
		1Mbps	2Mbps	3Mbps
CH00	2402MHZ	4.28	3.67	4.19
CH39	2441MHZ	4.43	3.86	4.40
CH78	2480MHZ	4.37	3.86	4.40

BLE 4.0 Conducted output power(dBm):

Channel	Fraguanay	Average power(dBm)
Channer	Frequency	Date Rate(1Mbps)
CH00	2402MHZ	-6.96
CH19	2440MHZ	-7.03
CH39	2480MHZ	-6.99

According to KDB447498 D01: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

- *mm*)] $\cdot \left[\sqrt{f_{(GHz)}}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,24 where
 - f(GHz) is the RF channel transmit frequency in GHz • Power and distance are rounded to the nearest mW and mm before calculation25

 - The result is rounded to one decimal place for comparison
 - 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below
 - If the test separation distance (antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

	Wireless Interface	Bluetooth
T	5	
Tun	e-up Maximum rated power (mW)	3.162
	Antenna to user (mm)	5
Head	Frequency(GHz)	2.441
	SAR exclusion threshold	0.988
Body	Antenna to user (mm)	10
	Frequency(GHz)	2.441
	SAR exclusion threshold	0.494

Per KDB 447498 D01v05r02 exclusion thresholds is[(max. power of channel, including tune-up tolerance: 3.162 mW)/(min. test separation distance: 5mm)] $\cdot [\sqrt{2.441}] = 0.988 < 3$, Bluetooth RF exposure evaluation is not required.

Page 30 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc. Date of Issue: June 18, 2015 Report No .: C150602S01-SF

Mode	The Tune-up Maximum Power(Customer Declared)(dBm)	Tune up limit	Measured Conduct MaximumPower(dBm)	
GSM 850	32+/-1	33	32.92	
GPRS 850-1TS	32+/-1	33	32.91	
GPRS 850-2TS	32+/-1	33	32.12	
GPRS 850-3TS	30+/-1	31	30.44	
GPRS 850-4TS	29+/-1	30	29.34	
EDGE 850-1TS	26+/-1	27	26.91	
EDGE 850-2TS	26+/-1	27	26.61	
EDGE 850-3TS	25+/-1	26	25.96	
EDGE 850-4TS	25+/-1	26	25.44	
PCS 1900	29+/-1	30	29.69	
GPRS 1900-1TS	29+/-1	30	29.70	
GPRS 1900-2TS	28+/-1	29	28.95	
GPRS 1900-3TS	27+/-1	28	27.28	
GPRS 1900-4TS	26+/-1	27	26.38	
EDGE 1900-1TS	25+/-1	26	25.82	
EDGE 1900-2TS	25+/-1	26	25.51	
EDGE 1900-3TS	24+/-1	25	24.85	
EDGE 1900-4TS	24+/-1	25	24.33	
WCDMA Band II RMC 12.2K	22+/-1	23	22.97	
HSDPA Band II subtest 1	22+/-1	23	21.99	
HSDPA Band II subtest 2	21+/-1	22	21.89	
HSDPA Band II subtest 3	21+/-1	22	21.67	
HSDPA Band II subtest 4	21+/-1	22	21.89	
HSUPA Band II subtest 1	22+/-1	23	22.17	
HSUPA Band II subtest 2	21+/-1	22	21.86	
HSUPA Band II subtest 3	21+/-1	22	21.87	
HSUPA Band II subtest 4	21+/-1	22	21.86	
HSUPA Band II subtest 5	21+/-1	22	21.79	
WCDMA Band V RMC 12.2K	22+/-1	23	22.97	
HSDPA Band V subtest 1	21+/-1	22	21.81	
HSDPA Band V subtest 2	21+/-1	22	21.97	
HSDPA Band V subtest 3	22+/-1	23	21.99	
HSDPA Band V subtest 4	22+/-1	23	22.09	
HSUPA Band V subtest 1	21+/-1	22	21.93	
HSUPA Band V subtest 2	21.5+/-1	22.5	22.06	
HSUPA Band V subtest 3	22+/-1	23	22.11	
HSUPA Band V subtest 4	22+/-1	23	22.17	
HSUPA Band V subtest 5	22+/-1	23	22.25	

Page 31 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

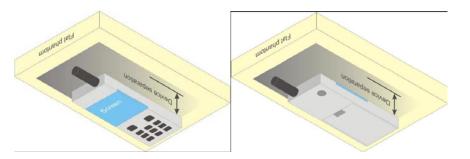
Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

IEEE 802.11b	13+/-1	14	13.15
IEEE 802.11g	11+/-1	12	11.62
IEEE 802.11n(20M)	11+/-1	12	11.74
IEEE 802.11n(40M)	9+/-1	10	9.82
Bluetooth 1Mbps	4+/-1	5	4.43
Bluetooth 2Mbps	3+/-1	4	3.86
Bluetooth 3Mbps	bps 4+/-1		4.40
BLE 4.0	BLE 4.0 -7+/-1		-6.96

So, they are in tune-up range and complied.

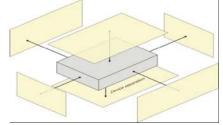
11.5 SAR TEST CONFIGURATIONS


Body-Worn Accessory Exposure Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required.


A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

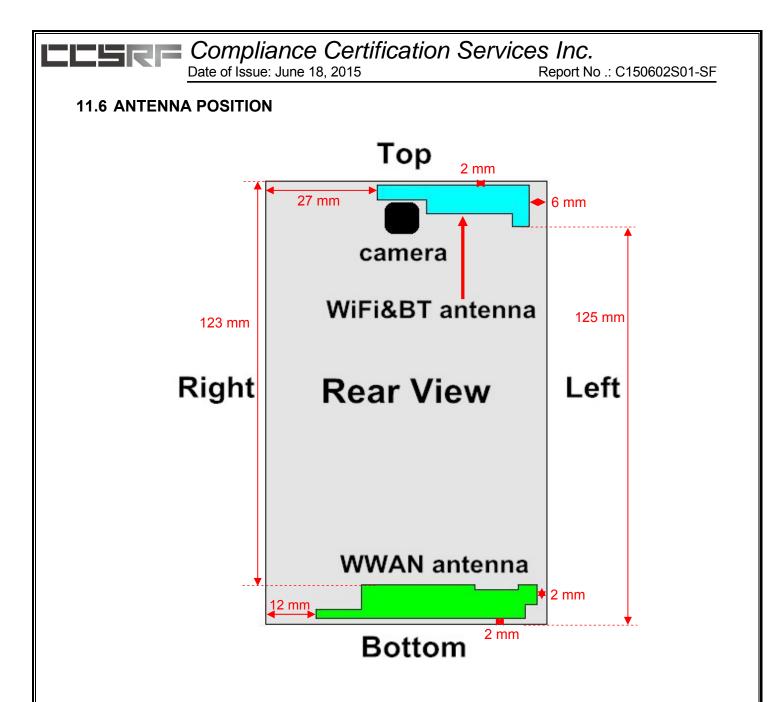


Illustration for Body Worn Position

Hotspot Mode Exposure conditions

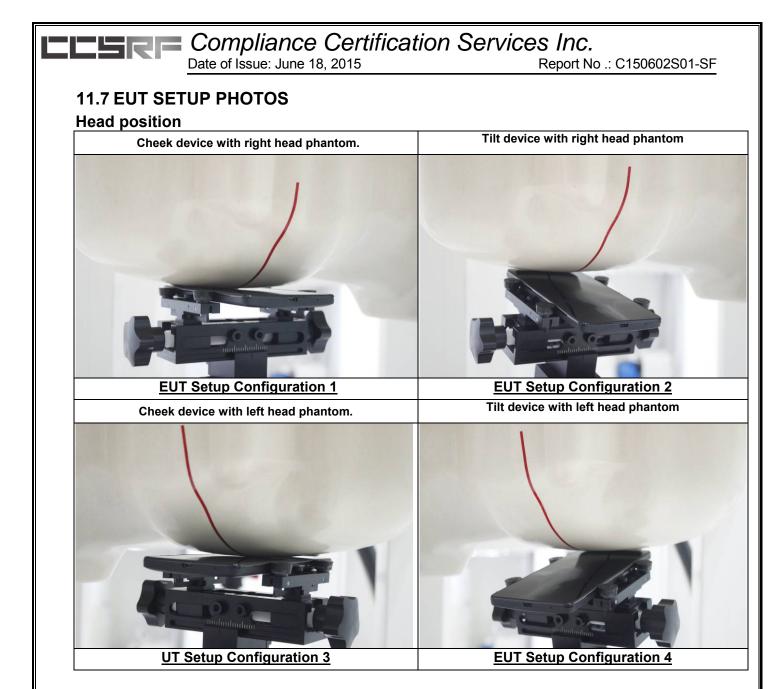
For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225 D06. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Device dimensions (H x W): 141 x 70 mm

Antenna	Wireless Interface		
WWAN Antenna	GSM850/PCS1900 WCDMA Band II/Band V		
WiFi&BT Antenna	WLAN 2.4G Bluetooth		

Test Mode

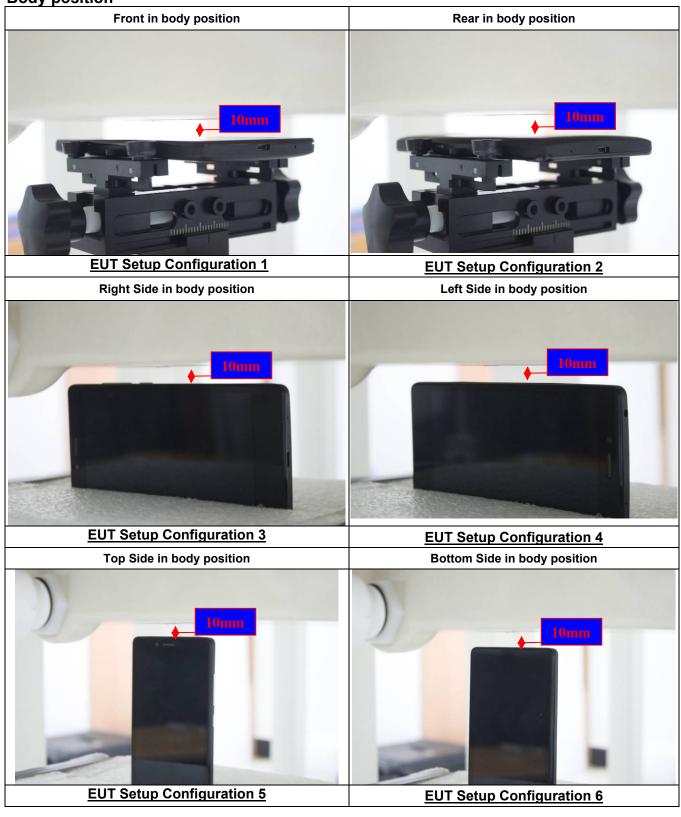
GSM 850/PCS1900	Data transmission mode(GPRS)/Voice mode(GSM)		
WCDMA Band II/Band V	Data transmission mode(12.2k RMC)		
IEEE 802.11b	Data transmission mode(802.11b)		


Date of Issue: June 18, 2015 Report No .: C150602S01-SF

Body Exposure Condition

Distance of the Antenna to the EUT surface/edge							
Test distance: 10 mm							
Antenna	Front	Rear	Right side	Left side	Top side	Bottom side	
	(mm)	(mm)					
WWAN	5<25	2<25	12<25	2<25	123>25	2<25	
WLAN 5<25 2<25 27>25 6<25 2<25 125>25							

Body test position


Distance of the Antenna to the EUT surface/edge Test distance: 10 mm						
Antenna	Front	Rear	Right side	Left side	Top side	Bottom side
WWAN	Yes	Yes	Yes	Yes	No	Yes
WLAN	Yes	Yes	No	Yes	Yes	No

Date of Issue: June 18, 2015 Report N

Report No .: C150602S01-SF

Body position

Report No .: C150602S01-SF

11.8 SAR MEASUREMENT RESULTS

Head SAR Test Records

Band	Mode	Test Position	Ch.	Freq. (MHZ)	max Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	Voice	Right Cheek	190	836.6	32.92	33	1.019	0.15	0.305	0.311
GSM850	Voice	Right Tilted	190	836.6	32.92	33	1.019	0.02	0.194	0.198
GSM850	Voice	Left Cheek	190	836.6	32.92	33	1.019	0.03	0.289	0.294
GSM850	Voice	Left Tilted	190	836.6	32.92	33	1.019	0.07	0.190	0.194
PCS1900	Voice	Right Cheek	512	1850.2	29.69	30	1.074	0.19	0.100	0.107
PCS1900	Voice	Right Tilted	512	1850.2	29.69	30	1.074	-0.08	0.038	0.041
PCS1900	Voice	Left Cheek	512	1850.2	29.69	30	1.074	0.09	0.109	0.117
PCS1900	Voice	Left Tilted	512	1850.2	29.69	30	1.074	-0.01	0.048	0.052
WCDMA II	RMC 12.2k	Right Cheek	9262	1852.4	22.97	23	1.007	0.03	0.316	0.318
WCDMA II	RMC 12.2k	Right Tilted	9262	1852.4	22.97	23	1.007	0.09	0.102	0.103
WCDMA II	RMC 12.2k	Left Cheek	9262	1852.4	22.97	23	1.007	-0.06	0.237	0.239
WCDMA II	RMC 12.2k	Left Tilted	9262	1852.4	22.97	23	1.007	-0.06	0.126	0.127
WCDMA V	RMC 12.2k	Right Cheek	4132	826.4	22.97	23	1.007	0.04	0.202	0.203
WCDMA V	RMC 12.2k	Right Tilted	4132	826.4	22.97	23	1.007	0.12	0.132	0.133
WCDMA V	RMC 12.2k	Left Cheek	4132	826.4	22.97	23	1.007	0.07	0.181	0.182
WCDMA V	RMC 12.2k	Left Tilted	4132	826.4	22.97	23	1.007	0.11	0.144	0.145
WLAN 2.4G	802.11 b	Right Cheek	11	2462	13.15	14	1.216	0.02	0.042	0.051
WLAN 2.4G	802.11 b	Right Tilted	11	2462	13.15	14	1.216	-0.10	0.043	0.052
WLAN 2.4G	802.11 b	Left Cheek	11	2462	13.15	14	1.216	0.01	0.022	0.027
WLAN 2.4G	802.11 b	Left Tilted	11	2462	13.15	14	1.216	0.05	0.023	0.028

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

SAR for Body-Worn Test Records

Band	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHZ)	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	GPRS 4slots	Front	10	128	824.2	29.34	30	1.164	-0.14	0.297	0.346
GSM850	GPRS 4slots	Rear	10	128	824.2	29.34	30	1.164	0.00	0.567	0.660
PCS1900	GPRS 4slots	Front	10	810	1909.8	26.38	27	1.153	-0.10	0.259	0.299
PCS1900	GPRS 4slots	Rear	10	810	1909.8	26.38	27	1.153	-0.01	0.579	0.668
WCDMA II	RMC 12.2k	Front	10	9262	1852.4	22.97	23	1.007	-0.06	0.572	0.576
WCDMA II	RMC 12.2k	Rear	10	9262	1852.4	22.97	23	1.007	-0.11	1.07	1.077
WCDMA V	RMC 12.2k	Front	10	4132	826.4	22.97	23	1.007	-0.12	0.252	0.254
WCDMA V	RMC 12.2k	Rear	10	4132	826.4	22.97	23	1.007	-0.05	0.441	0.444
WLAN 2.4G	802.11 b	Front	10	11	2462	13.15	14	1.216	-0.07	0.010	0.012
WLAN 2.4G	802.11 b	Rear	10	11	2462	13.15	14	1.216	0.11	0.033	0.040

Note:

According to October 2013TCB Workshop, For GSM / GPRS / EGPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for body-worn SAR testing, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

SAR for Hotspot Test Records

Band	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHZ)	max Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	GPRS 4slots	Front	10	128	824.2	29.34	30	1.164	-0.14	0.297	0.346
GSM850	GPRS 4slots	Rear	10	128	824.2	29.34	30	1.164	0.00	0.567	0.660
GSM850	GPRS 4slots	Right	10	128	824.2	29.34	30	1.164	-0.09	0.664	0.773
GSM850	GPRS 4slots	Left	10	128	824.2	29.34	30	1.164	-0.04	0.615	0.716
GSM850	GPRS 4slots	Bottom	10	128	824.2	29.34	30	1.164	0.02	0.113	0.132
PCS1900	GPRS 4slots	Front	10	810	1909.8	26.38	27	1.153	-0.10	0.259	0.299
PCS1900	GPRS 4slots	Rear	10	810	1909.8	26.38	27	1.153	-0.01	0.579	0.668
PCS1900	GPRS 4slots	Right	10	810	1909.8	26.38	27	1.153	0.12	0.083	0.096
PCS1900	GPRS 4slots	Left	10	810	1909.8	26.38	27	1.153	-0.08	0.095	0.110
PCS1900	GPRS 4slots	Bottom	10	810	1909.8	26.38	27	1.153	-0.04	0.620	0.715
WCDMA II	RMC 12.2k	Front	10	9262	1852.4	22.97	23	1.007	-0.06	0.572	0.576
WCDMA II	RMC 12.2k	Rear	10	9262	1852.4	22.97	23	1.007	-0.11	1.07	1.077
WCDMA II	RMC 12.2k	Rear	10	9400	1880	22.89	23	1.026	0.01	0.973	0.998
WCDMA II	RMC 12.2k	Rear	10	9538	1907.6	22.13	23	1.222	-0.01	0.821	1.003
WCDMA II	RMC 12.2k	Right	10	9262	1852.4	22.97	23	1.007	-0.10	0.156	0.157
WCDMA II	RMC 12.2k	Left	10	9262	1852.4	22.97	23	1.007	-0.08	0.168	0.169
WCDMA II	RMC 12.2k	Bottom	10	9262	1852.4	22.97	23	1.007	-0.11	0.607	0.611
WCDMA V	RMC 12.2k	Front	10	4132	826.4	22.97	23	1.007	-0.12	0.252	0.254
WCDMA V	RMC 12.2k	Rear	10	4132	826.4	22.97	23	1.007	-0.05	0.441	0.444
WCDMA V	RMC 12.2k	Right	10	4132	826.4	22.97	23	1.007	-0.12	0.299	0.301
WCDMA V	RMC 12.2k	Left	10	4132	826.4	22.97	23	1.007	-0.04	0.271	0.273
WCDMA V	RMC 12.2k	Bottom	10	4132	826.4	22.97	23	1.007	-0.14	0.032	0.032
WLAN 2.4G	802.11 b	Front	10	11	2462	13.15	14	1.216	-0.07	0.010	0.012
WLAN 2.4G	802.11 b	Rear	10	11	2462	13.15	14	1.216	0.11	0.033	0.040
WLAN 2.4G	802.11 b	Right	10	11	2462	13.15	14	1.216	0.08	0.00536	0.007
WLAN 2.4G	802.11 b	Тор	10	11	2462	13.15	14	1.216	0.09	0.020	0.024

Repeat SAR measurement result

Band	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHZ)	max Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
WCDMA II	RMC 12.2k	Rear	10	9262	1852.4	22.97	23	1.007	-0.05	1.06	1.067

ERF Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

11.9 REPEATED SAR MEASUREMENT

Band	Mode	Test Position	Dist. (mm)	Ch.	Original Measured SAR1g (mW/g)	1st Repeated SAR1g (mW/g)	Ratio	Original Measured SAR1g (mW/g)	2nd Repeated SAR1g (mW/g)	Ratio
WCDMA II	RMC 12.2k	Rear	10	9262	1.07	1.06	1.009			

Note:

- 1. Per KDB 865664 D01v01,for each frequence band,repeated SAR measurement is required only when the measured SAR is ≥ 0.8W/Kg
- Per KDB 865664 D01v01,if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2 and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg
- 4. The ratio is the difference in percentage between original and repeated measured SAR.

Date of Issue: June 18, 2015 Report N

Report No .: C150602S01-SF

12. SAR HANDSETS MULTI XMITER ASSESSMENT

	Position	Applicable Combination
		WWAN + WLAN
	Head	WWAN + BT
Simultaneous		WWAN + WLAN
Transmission	Body-worn	WWAN + BT
		WWAN + WLAN
	Hotspot	WWAN + BT

Note:

- 1. 2.4GHz WLAN and BT share the same antenna, and cannot transmit simultaneously.
- 2. The reported SAR summation is calculated based on the same configuration and test position.
- 3. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05 based on the formula below.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth:

	Max power	Head (5mm distance)	Body (10mm distance)
Estimated SAR (W/kg)	5 dBm	0.132 W/kg	0.066 W/kg

4. Per KDB 447498 D01v05, simultaneous transmission SAR is compliant if,

1) Scalar SAR summation < 1.6W/kg.

2) SPLSR = (SAR1 + SAR2)1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan

If SPLSR \leqslant 0.04, simultaneously transmission SAR is compliant

3) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg

Result of SUM \sum SAR_{1g} of Head

	SUM ∑SAR1g (GSM850+WLAN(2.4G) or Bluetooth)										
Position	Distance	Stand	alone SAR(1g) [W/kg]	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]					
Position	[mm]	GSM850	GSM850 WLAN 2.4G Bluetooth			WWAN + Bluetooth					
Right Cheek	0	0.311	0.051	0.132	0.362	0.443					
Right Tilted	0	0.198	0.052	0.132	0.250	0.330					
Left Cheek	0	0.294	0.027	0.132	0.321	0.426					
Left Tilted	0	0.194	0.028	0.132	0.222	0.326					

	SUM ∑SAR1g (PCS1900+WLAN(2.4G) or Bluetooth)										
Position	Distance	Stand a	lone SAR(1g	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]						
[mm]		PCS 1900	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth					
Right Cheek	0	0.107	0.051	0.132	0.158	0.239					
Right Tilted	0	0.041	0.052	0.132	0.093	0.173					
Left Cheek	0	0.117	0.027	0.132	0.144	0.249					
Left Tilted	0	0.052	0.028	0.132	0.080	0.184					

	SUM ∑SAR1g (WCDMA Band II+WLAN(2.4G) or Bluetooth)										
Position	Distance	Stand a	lone SAR(1g	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]						
1 Conton	[mm]	WCDMA II	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth					
Right Cheek	0	0.318	0.051	0.132	0.369	0.450					
Right Tilted	0	0.103	0.052	0.132	0.155	0.235					
Left Cheek	0	0.239	0.027	0.132	0.266	0.371					
Left Tilted	0	0.127	0.028	0.132	0.155	0.259					

	SUM ∑SAR1g (WCDMA Band V+WLAN(2.4G) or Bluetooth)										
Position	Distance	Stand a	lone SAR(1g	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]						
rosition	[mm]	WCDMA V	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth					
Right Cheek	0	0.203	0.051	0.132	0.254	0.335					
Right Tilted	0	0.133	0.052	0.132	0.185	0.265					
Left Cheek	0	0.182	0.027	0.132	0.209	0.314					
Left Tilted	0	0.145	0.028	0.132	0.173	0.277					

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

Result of SUM ∑SAR1g for Body worn

	SUM ∑SAR1g (GSM850+WLAN(2.4G) or Bluetooth)											
Position	Distance	Stand	alone SAR(1g) [W/kg]	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]						
	[mm]	GSM850	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth						
Front	10	0.346	0.012	0.066	0.358	0.412						
Rear	10	0.660	0.040	0.066	0.700	0.726						

	SUM ∑SAR1g (PCS1900+WLAN(2.4G) or Bluetooth)								
Position	Distance	Stand alone SAR(1g) [W/kg]			SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]			
	[mm]	PCS1900	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth			
Front	10	0.299	0.012	0.066	0.311	0.365			
Rear	10	0.668	0.040	0.066	0.708	0.734			

	SUM ∑SAR1g (WCDMA Band II+WLAN(2.4G) or Bluetooth)								
Position	Distance	Stand alone SAR(1g) [W/kg]			SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]			
[mm]		WCDMA II	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth			
Front	10	0.576	0.012	0.066	0.588	0.642			
Rear	10	1.077	0.040	0.066	1.117	1.143			

	SUM ∑SAR1g (WCDMA Band V+WLAN(2.4G) or Bluetooth)								
Position	Distance	Stand alone SAR(1g) [W/kg]			SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]			
[mm]		WCDMA V	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth			
Front	10	0.254	0.012	0.066	0.266	0.320			
Rear	10	0.444	0.040	0.066	0.484	0.510			

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

Result of SUM SAR1g for Hotspot

	SUM ∑SAR1g (GSM850+WLAN(2.4G) or Bluetooth)									
Position	Distance	Stand alone SAR(1g) [W/kg]			SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]				
Position	[mm]	GPRS850	WLAN 2.4G Bluetooth	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth				
Front	10	0.346	0.012	0.066	0.358	0.412				
Rear	10	0.660	0.040	0.066	0.700	0.726				
Right Side	10	0.773	0.007	0.066	0.780	0.839				
Left Side	10	0.716		0.066	0.716	0.782				
Top side	10		0.024	0.066	0.024	0.066				
Bottom side	10	0.132		0.066	0.132	0.198				

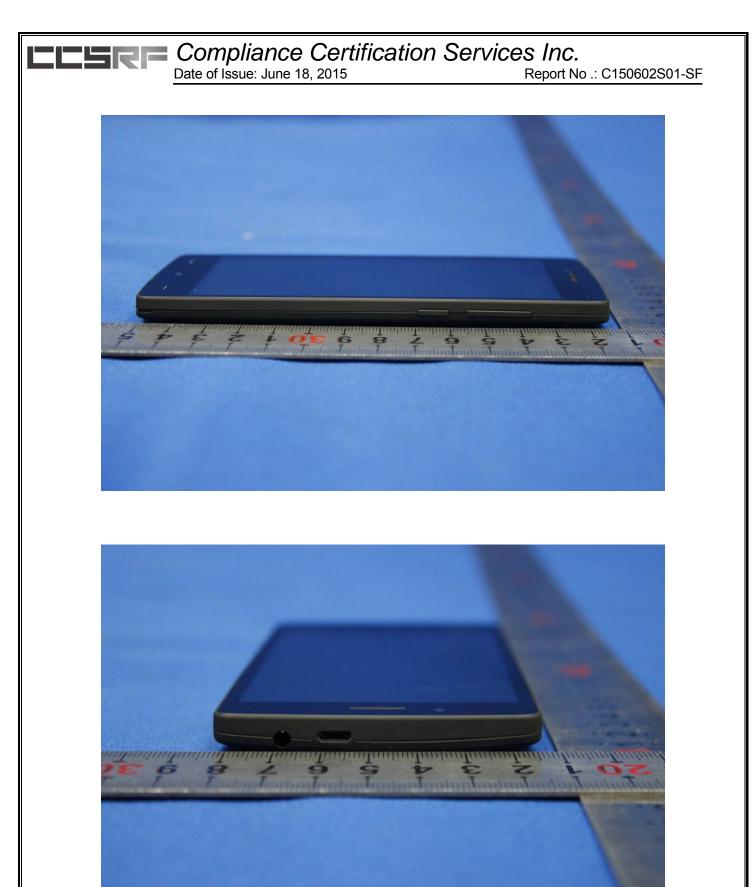
	SUM ∑SAR1g (PCS1900+WLAN(2.4G) or Bluetooth)								
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]				
FOSILION	[mm]	GPRS 1900	Bluetooth	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth			
Front	10	0.299	0.012	0.066	0.311	0.365			
Rear	10	0.668	0.040	0.066	0.708	0.734			
Right Side	10	0.096	0.007	0.066	0.103	0.162			
Left Side	10	0.110		0.066	0.110	0.176			
Top side	10		0.024	0.066	0.024	0.066			
Bottom side	10	0.715		0.066	0.715	0.781			

	SUM ∑SAR1g (WCDMA Band II+WLAN(2.4G) or Bluetooth)								
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]				
FOSILION	[mm]	WCDMA II	II WLAN Bluetooth	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth			
Front	10	0.576	0.012	0.066	0.588	0.642			
Rear	10	1.077	0.040	0.066	1.117	1.143			
Right Side	10	0.157	0.007	0.066	0.164	0.223			
Left Side	10	0.169		0.066	0.169	0.235			
Top side	10		0.024	0.066	0.024	0.066			
Bottom side	10	0.611		0.066	0.611	0.677			

	SUM ∑SAR1g (WCDMA Band V+WLAN(2.4G) or Bluetooth)								
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]				
FOSILION	[mm]	WCDMA V	/ WLAN 2.4G Bluetooth	Bluetooth	WWAN + WLAN(2.4G)	WWAN + Bluetooth			
Front	10	0.254	0.012	0.066	0.266	0.320			
Rear	10	0.444	0.040	0.066	0.484	0.510			
Right Side	10	0.301	0.007	0.066	0.308	0.367			
Left Side	10	0.273		0.066	0.273	0.339			
Top side	10		0.024	0.066	0.024	0.066			
Bottom side	10	0.032		0.066	0.032	0.098			

Compliance Certification Services Inc. Date of Issue: June 18, 2015 Report No .: C150602S01-SF

13. EUT PHOTO





Page 46 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

EQUIPMENT LIST & CALIBRATION STATUS 14.

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Due
РC	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A
Signal Generator	Agilent	83732B	US37101915	05/29/2015	05/28/2016
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	03/03/2015	03/02/2016
Wireless Communication Test Set	R&S	CMU200	SN:109525	01/12/2015	01/11/2016
Power Meter	Agilent	E4416A	GB41292714	03/03/2015	03/02/2016
Peak & Average sensor	Agilent	E9327A	us40441788	03/03/2015	03/02/2016
E-field PROBE	SPEAG	EX3DV4	3798	07/28/2014	07/27/2015
DAE	SPEAG	DEA4	1245	07/22/2014	07/23/2015
DIPOLE 835MHZ ANTENNA	SPEAG	D835V2	4d114	07/30/2013	07/28/2015
DIPOLE 1900MHZ ANTENNA	SPEAG	D1900V2	5d136	07/22/2013	07/20/2015
DIPOLE 2450MHZ ANTENNA	SPEAG	D2450V2	817	07/31/2013	07/29/2015
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A
SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A

15. FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

16. REFERENCES

- Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

Report No .: C150602S01-SF

APPENDIX A: PLOTS OF PERFORMANCE CHECK

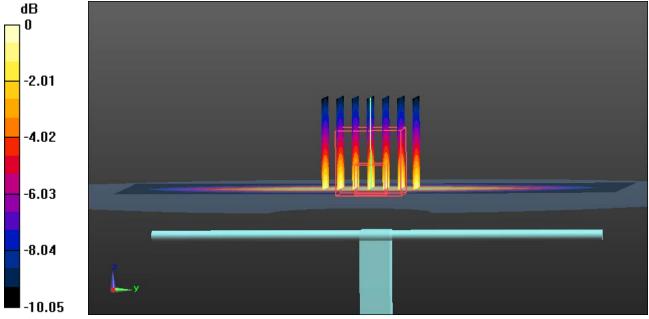
The plots are showing as followings.

Report No .: C150602S01-SF

Test Laboratory: Compliance Certification Services Inc. Date: 6/10/2015 SystemPerformanceCheck-Head D835 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: 4d114 Communication System: UID 0, CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.917 S/m; ϵ_r = 42.883; ρ = 1000 kg/m³ Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3798; ConvF(9.3, 9.3, 9.3); Calibrated: 7/28/2014; • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1245; Calibrated: 7/22/2014 •

• Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Date of Issue: June 18, 2015


- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies Low 1 GHz/Pin=250 mW, dist=15 mm (EX-Probe)/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.92 W/kg

System Performance Check at Frequencies Low 1 GHz/Pin=250 mW, dist=15 mm (EX-

Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.80 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.42 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

ERE Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Date: 6/11/2015

Test Laboratory: Compliance Certification Services Inc. SystemPerformanceCheck-Body D835 DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d114

Communication System: UID 0, CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1

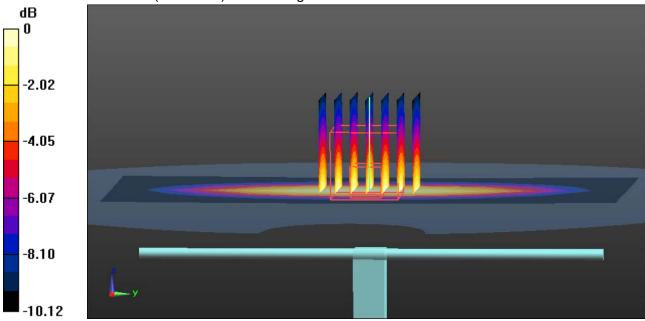
Medium parameters used: f = 835 MHz; σ = 0.992 S/m; ϵ_r = 55.474; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:


- Probe: EX3DV4 SN3798; ConvF(9.22, 9.22, 9.22); Calibrated: 7/28/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/22/2014
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies Low 1 GHz/dist=15mm, Pin=250 mW(EX-Probe)/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.04 W/kg

System Performance Check at Frequencies Low 1 GHz/dist=15mm, Pin=250 mW(EX-

Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.59 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg

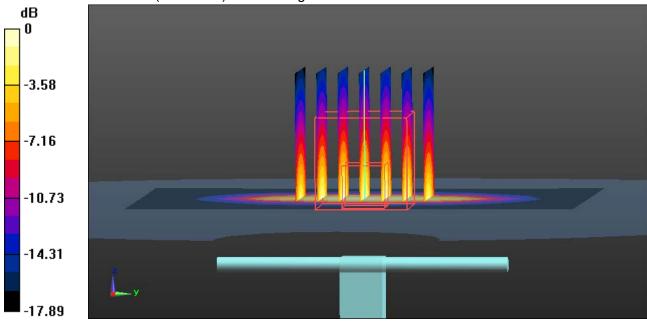
Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg

Report No .: C150602S01-SF

Test Laboratory: Compliance Certification Services Inc. Date: 6/10/2015 **SystemPerformanceCheck-Head D1900 DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d136** Communication System: UID 0, CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.397 S/m; ε_r = 39.497; ρ = 1000 kg/m³ Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(7.75, 7.75, 7.75); Calibrated: 7/28/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/22/2014
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

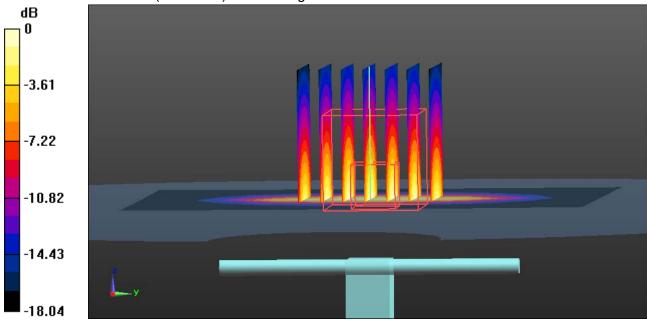
System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.0 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.7 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.69 W/kg; SAR(10 g) = 4.99 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Report No .: C150602S01-SF

Test Laboratory: Compliance Certification Services Inc.Date: 6/11/2015SystemPerformanceCheck-Body D1900DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d136Date: 6/11/2015Communication System: UID 0, CW; Communication System Band: D1900 (1900.0 MHz); Frequency:
1900 MHz;Duty Cycle: 1:1D1900 (1900.0 MHz); Frequency:
1900 MHz; $\sigma = 1.561$ S/m; $\varepsilon_r = 52.321$; $\rho = 1000$ kg/m³Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°CPhantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(7.09, 7.09, 7.09); Calibrated: 7/28/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/22/2014
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 14.5 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 19.8 W/kg SAR(1 g) = 10.7 W/kg; SAR(10 g) = 5.49 W/kg Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

Report No .: C150602S01-SF

Date: 6/12/2015

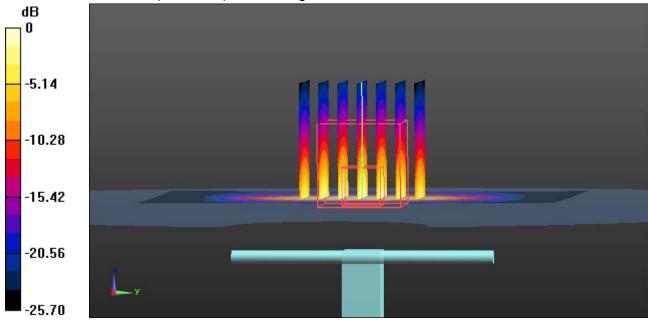
Test Laboratory: Compliance Certification Services Inc. SystemPerformanceCheck-Head D2450 DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 817

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.802 S/m; ϵ_r = 38.777; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(7.04, 7.04, 7.04); Calibrated: 7/28/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/22/2014
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 18.9 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.68 W/kg Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

Report No .: C150602S01-SF

Date: 6/12/2015

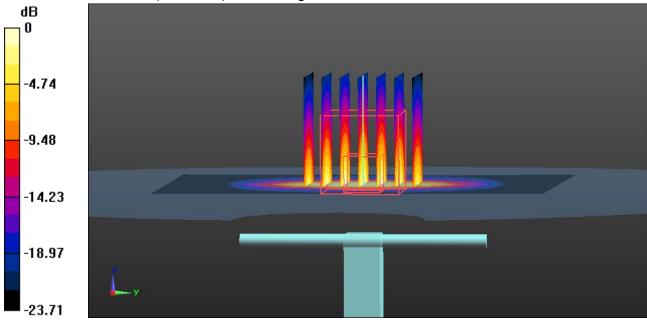
Test Laboratory: Compliance Certification Services Inc. SystemPerformanceCheck-Body D2450 DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 817

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.9 S/m; ϵ_r = 52.48; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(6.82, 6.82, 6.82); Calibrated: 7/28/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/22/2014
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 17.8 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.51 W/kg Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

 Compliance Certification Services Inc.

 Date of Issue: June 18, 2015
 Report No.

Report No .: C150602S01-SF

APPENDIX B: DASY CALIBRATION CERTIFICATE

The DASY Calibration Certificates are showing as followings .

Calibrat	tion Laboratory	of		
Schmid Engine	& Partner eering AG trasse 43, 8004 Zurich		Iac-MRA (PMISS) S C C Z Z RUBRATO S	Schweizerischer Kalibrierdie Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
The Swiss		ion Service (SAS) is one of the signatories cognition of calibration (to the EA	n No.: SCS 108
Client	CCS-CN (Auder			o: D835V2-4d114_Jul1
CALIE	BRATION C	ERTIFICATE		
Object		D835V2 - SN: 4d	114	
Calibration	rprocedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits ab	ove 700 MHz
Calibration	date:	July 30, 2013		
The measu	urements and the uncer	tainties with confidence p	onal standards, which realize the physical u robability are given on the following pages a	nd are part of the certificate.
The measu All calibrat	urements and the uncer sons have been conduc	tainties with confidence p		nd are part of the certificate.
The measu All calibrat	urements and the uncer tions have been conduct n Equipment used (M&T	tainties with confidence p	robability are given on the following pages a	nd are part of the certificate.
The measure All calibration Calibration Primary St Power met	urements and the uncer tions have been conduct n Equipment used (M&T tandards ter EPN-442A	tainties with confidence p ted in the closed laborator 'E critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13
The measure All calibration Calibration Primary St Power met Power sen	urements and the uncer tions have been conduct n Equipment used (M&T tandards ter EPN-442A tsor HP 8481A	tainties with confidence p ted in the closed laborator 'E critical for calibration) ID # GB37480704 US37292785	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct=13 Oct=13 Oct=13
The measure All calibration Calibration Primary St Power met Power sen Reference	urements and the uncer tions have been conduct n Equipment used (M&T tandards ter EPN-442A	tainties with confidence p ted in the closed laborator 'E critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13
The measure All calibration Calibration Primary St Power met Power sen Reference Type-N mi	urements and the uncer tions have been conduct n Equipment used (M&T tandards ter EPN-442A tsor HP 8481A ± 20 dB Attenuator	tainties with confidence p ted in the closed laborator 'E critical for calibration) ID # GB37480704 US37292785 SN: 5058 (20k)	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
The measure All calibration Calibration Primary St Power met Power sen Reference Type-N mi	terements and the uncert tions have been conduct tequipment used (M&T tandards ter EPNI-442A tsor HP 8481A e 20 dB Attenuator tematch combination	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14
The measure All calibration Primary St Power met Power sen Reference Type-N mi Reference DAE4	terements and the uncert tions have been conduct tequipment used (M&T tandards ter EPNI-442A tsor HP 8481A e 20 dB Attenuator tematch combination	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
The measure All calibration Calibration Primary St Power met Power sen Reference Type-N mi Reference DAE4 Secondary Power sen	urements and the uncer tions have been conduct in Equipment used (M&T tandards ter EPM-442A ter EPM-442A ter EPM-442A sor HP 8481A sor HP 8481A	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 601	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. 253-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
The measure All calibration Calibration Primary St Power met Power sen Reference Type-N mi Reference DAE4 Secondary Power sen RF genera	urements and the uncer tions have been conduct in Equipment used (M&T tandards ter EPM-442A ter EPM-442A ter EPM-442A sor HP 8481A 20 dB Attenuator ternatch combination > Probe ES3DV3	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US3729278S SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measure All calibration Calibration Primary St Power met Power sen Reference Type-N mi Reference DAE4 Secondary Power sen RF genera	urements and the uncer tions have been conduct in Equipment used (M&T tandards ter EPM-442A ter EPM-442A ter EPM-442A tor HP 8481A sor HP 8481A tor HP 8481A ator F&S SMT-06	tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check
The measure All calibration Calibration Primary St Power met Power sen Reference Type-N mi Reference DAE4 Secondary Power sen RF genera	urements and the uncer tions have been conduct in Equipment used (M&T tandards ter EPM-442A ter EPM-442A ter EPM-442A ter EPM-442A tor HP 8481A sor HP 8481A ator R&S SMT-06 unalyzer HP 8753E	tainties with confidence p ted in the closed laborator E critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
The measure All calibration Primary St Power met Power sen Reference DAE4 Secondary Power sen RF genera Network A	urements and the uncer lions have been conduct in Equipment used (M&T tandards ter EPN-442A isor HP 8481A isor HP 8481A isor HP 8481A ator R&S SMT-06 unalyzer HP 8753E	tainties with confidence p ted in the closed laborator E critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 206 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function	nd are part of the certificate. *C and humidity < 70%. Cot-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
The measure All calibration Primary St Power met Power sen Reference DAE4 Secondary Power sen RF genera Network A Calibrated	urements and the uncer tions have been conduct in Equipment used (M&T tandards tor EPM-442A tor EPM-442A isor HP 8481A isor HP 8481A ator R&S SMT-06 unalyzer HP 8753E i by:	tainties with confidence provided in the closed laborator E critical for calibration) ID # GB37480704 US37292783 SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Claudio Leubler Katja Pokovic	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	rC and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check:

Page 60 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

ERF Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d114 Jul13

Page 2 of 8

Page 61 of 110

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.50 W/kg ± 17.0 % (k=2)
	51	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.58 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.32 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d114_Jul13

Page 3 of 8

Page 62 of 110

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No .: C150602S01-SF

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 1.3 jΩ
Return Loss	- 32.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω - 3.0 JΩ	
Return Loss	- 29.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.399 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	June 29, 2010	

Page 4 of 8

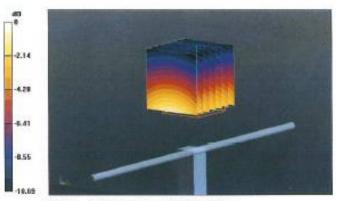
Report No .: C150602S01-SF

DASY5 Validation Report for Head TSL

Date: 30.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

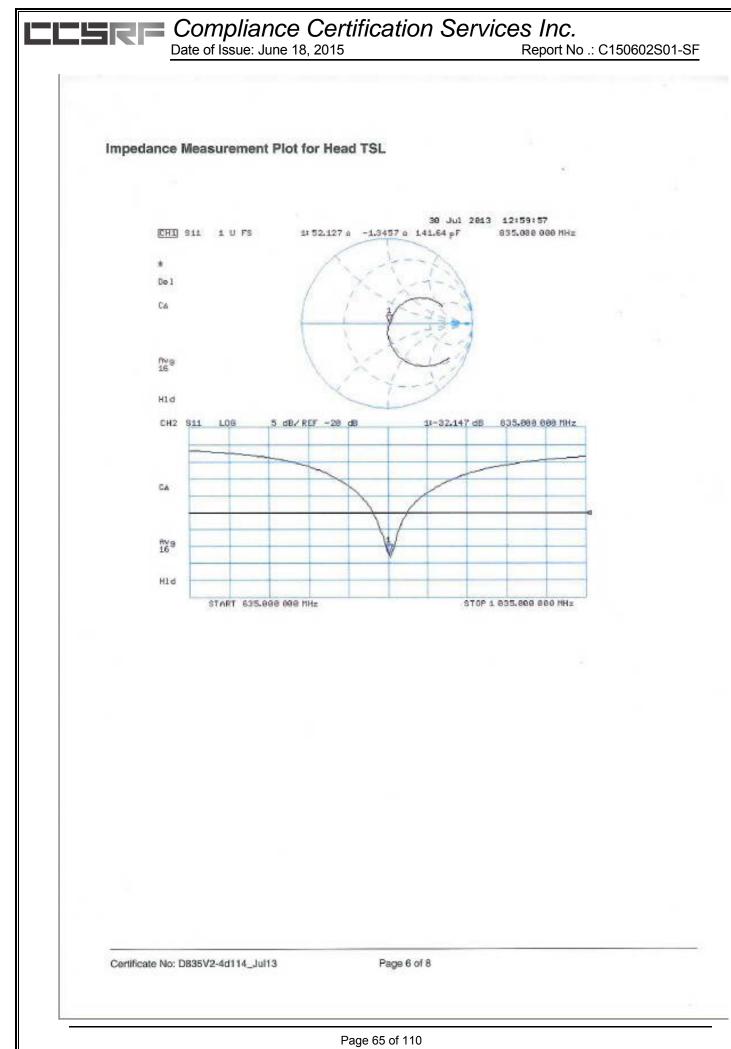
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114


Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.702 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.81 W/kg

0 dB = 2.81 W/kg = 4.49 dBW/kg

Certificate No: D835V2-4d114_Jul13

Page 5 of 8

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No .: C150602S01-SF

DASY5 Validation Report for Body TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

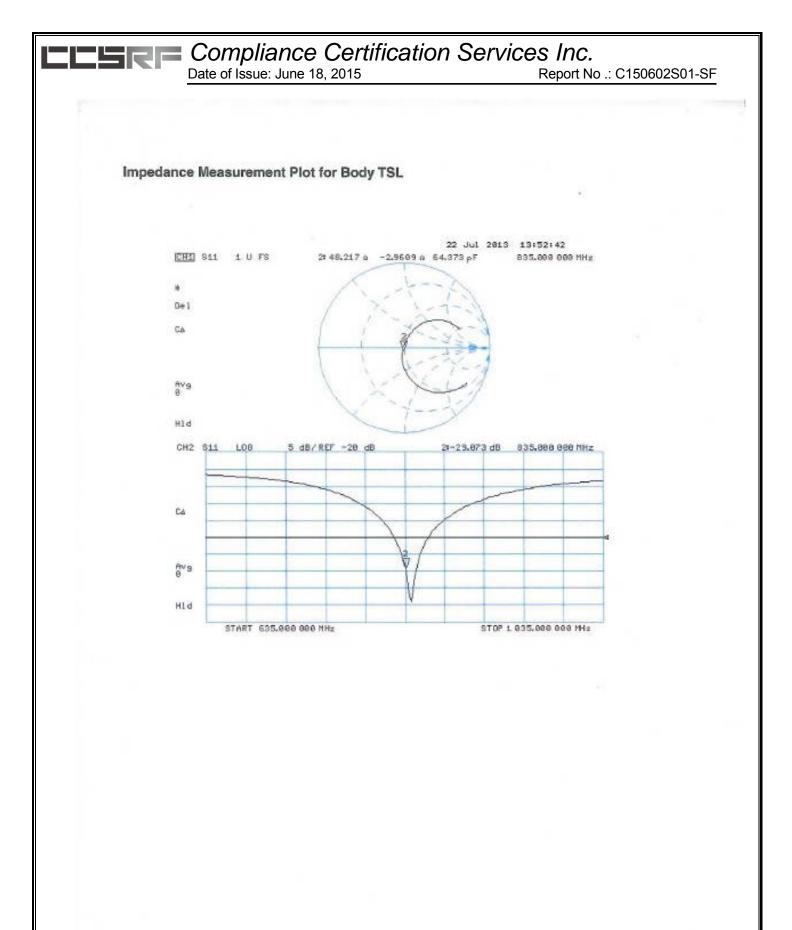
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.853 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Certificate No: D835V2-4d114_Jul13

Page 7 of 8

Certificate No: D835V2-4d114_Jul13

Page 8 of 8

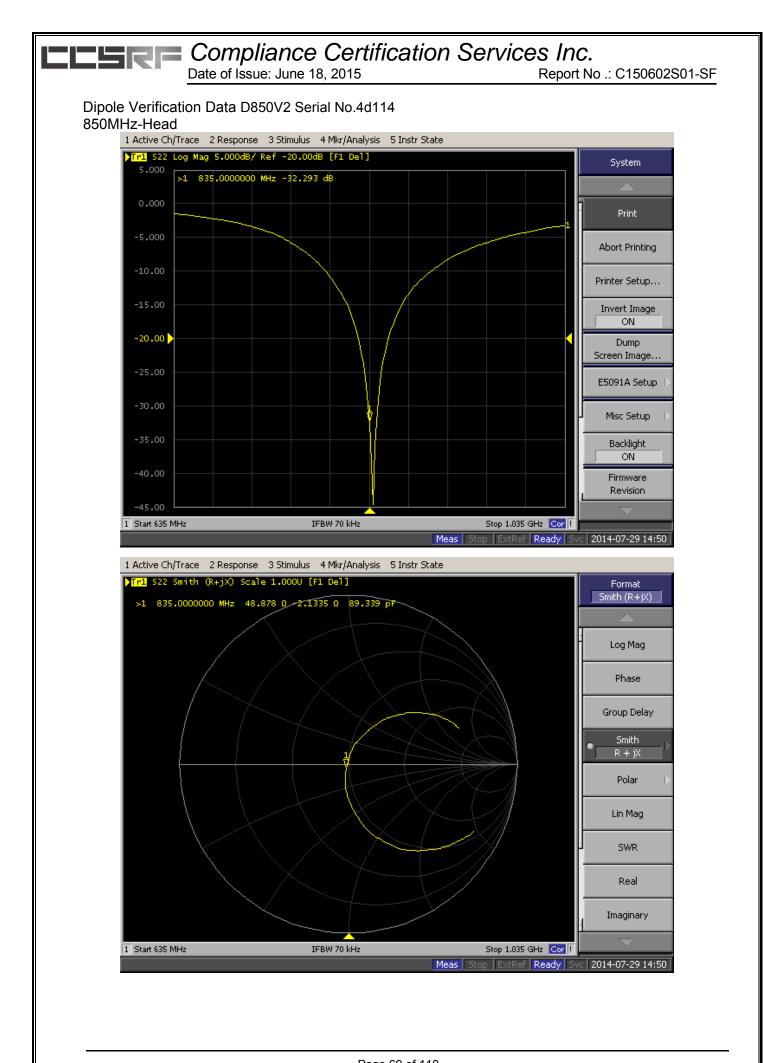
EVALUATE: Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

D835V2, Serial No.4d114 Extended Dipole Calibrations

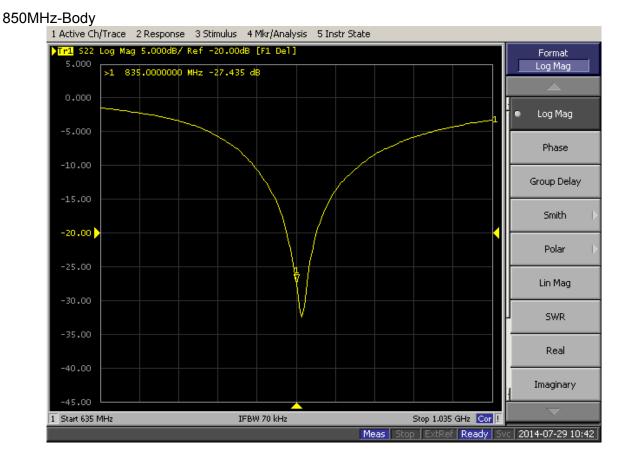
Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not

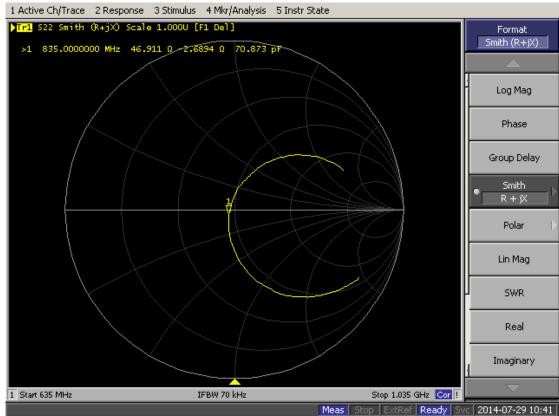

calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration

		D850	V2 Serial No.4	d114		
			850 Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.30.2013	-32.147		52.127		-1.346	
7.29.2014	-32.293	0.45	48.878	3.249	-2.134	0.788

		D850	V2 Serial No.4	d114		
			850 Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.30.2013	-29.073		48.217		-2.961	
7.29.2014	-27.435	5.63	46.911	1.306	-2.689	0.272


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Page 69 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue: June 18, 2015 Report N

Report No .: C150602S01-SF

Calibration Laborato Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuri		AC MRA	Servizio svizzero di taratura
Accredited by the Swiss Accred The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signatorie	is to the EA	No.: SCS 108
Client CCS-CN (Aud			o: D1900V2-5d136_Jul
CALIBRATION	CERTIFICATE		
Object	D1900V2 - SN: 5	id136	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
The measurements and the une	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar	nd are part of the certificate.
This calibration certificate docu The measurements and the un-	ments the traceability to nat sertainties with confidence p ucted in the closed laborato		nd are part of the certificate.
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration)	robability are given on the following pages ar ry facility: environment temperature $(22\pm3)^{\circ}$	nd are part of the certificate. C and humidity < 70%.
This calibration certificate docu The measurements and the unit All calibrations have been cond	ments the traceability to nat sertainties with confidence p ucted in the closed laborato	robability are given on the following pages ar ry facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.)	nd are part of the certificate.
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration)	robability are given on the following pages ar ry facility: environment temperature $(22\pm3)^{\circ}$	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 5047.3 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 5047.3 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	robability are given on the following pages ar ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ments the traceability to nat entainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 5047.3 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ments the traceability to nat certainties with confidence p ucted in the closed laborato STE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dao-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	nd are part of the certificate. C and humidity < 70%. Cot-13 Cot-13 Cot-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ments the traceability to nat certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dao-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ments the traceability to nat certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dao-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

Page 71 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d136_Jul13

Page 2 of 8

Page 72 of 110

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5 29 W/kg

SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
SAR measured	250 mW input power	10.0 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	40.5 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
	10000 000000 00000 00000 00000 00000000		

W input power 5.37 W/kg
nalized to 1W 21.6 W/kg ± 16.5 % (k=2)
-

Certificate No: D1900V2-5d136_Jul13

Page 3 of 8

Page 73 of 110

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 7.2 jΩ		
Return Loss	- 22.5 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 7.3 jΩ		
Return Loss	- 22.1 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the 'Measurement Conditions' paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	April 14, 2010		

Certificate No: D1900V2-5d136_Jul13

Page 4 of 8

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

DASY5 Validation Report for Head TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

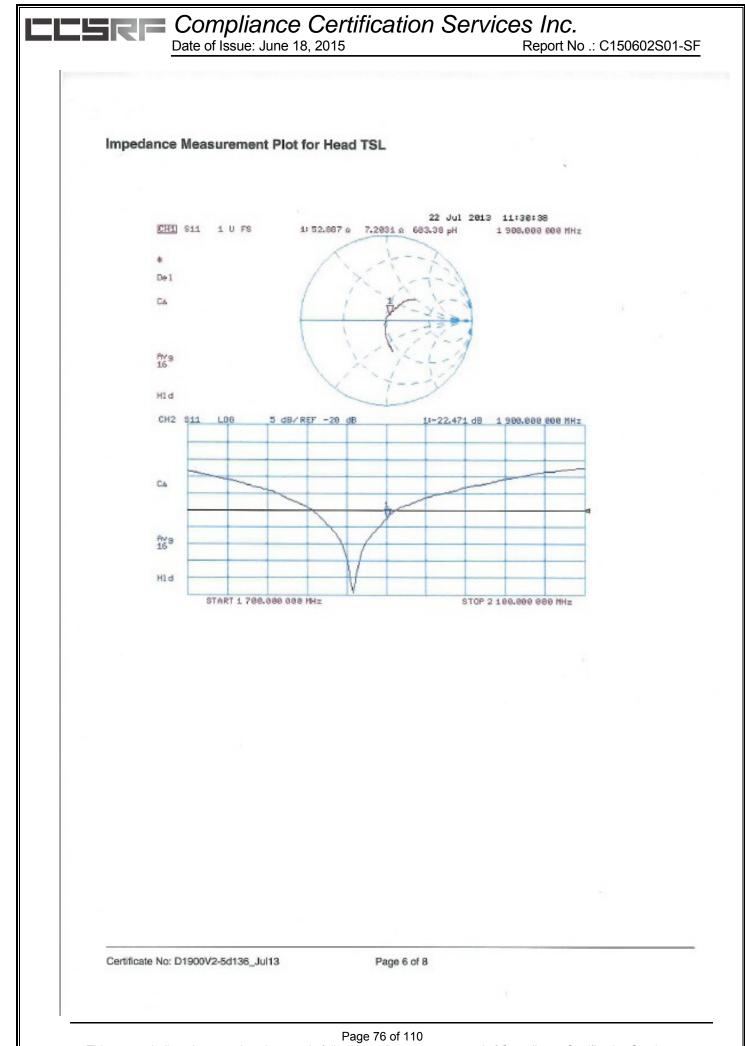
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136

Communication System: UID 0 - CW ; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.803 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

Certificate No: D1900V2-5d136_Jul13

Page 5 of 8

Date of Issue: June 18, 2015

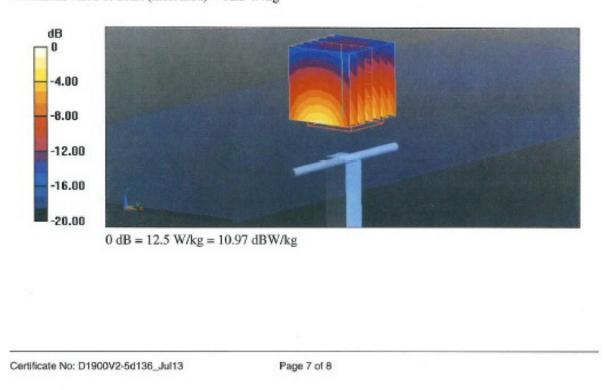
Report No .: C150602S01-SF

DASY5 Validation Report for Body TSL

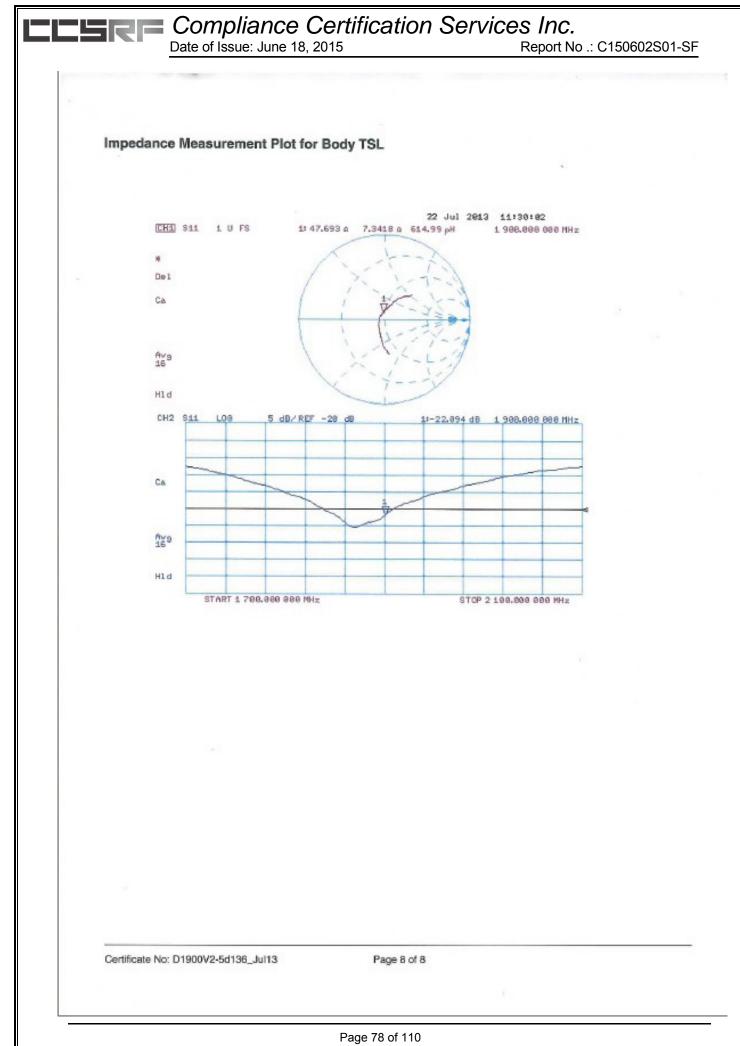
Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136


Communication System: UID 0 - CW ; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

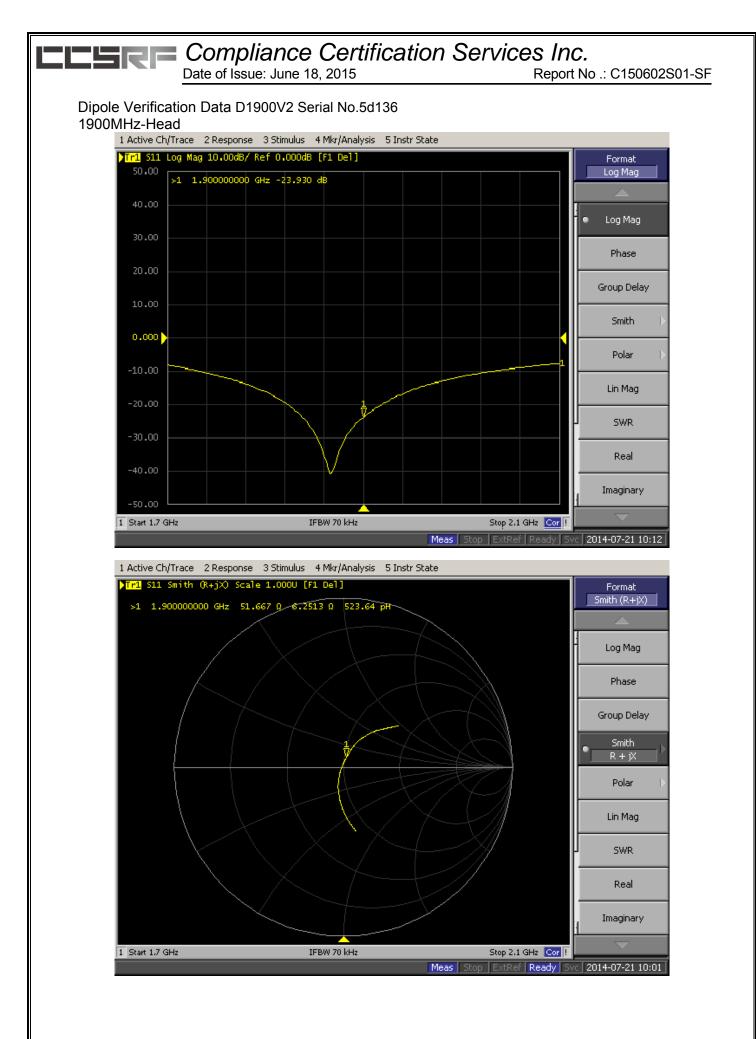
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.803 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 12.5 W/kg

Page 77 of 110

CERE Compliance Certification Services Inc.

Date of Issue: June 18, 2015

D1900V2, Serial No.5d136 Extended Dipole Calibrations

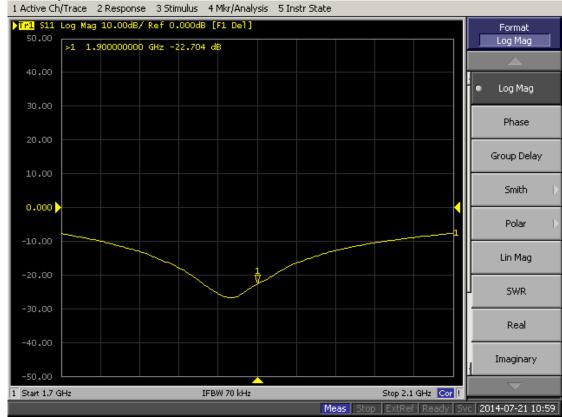

Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

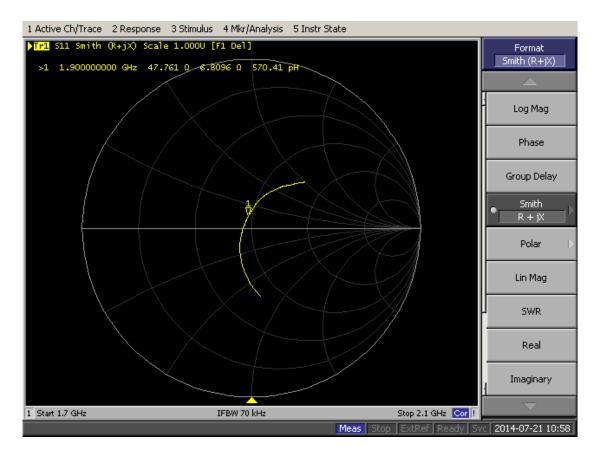
Justification of the extended calibration

D1900V2 Serial No.5d136						
	1900 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.22.2013	-22.471		52.887		7.2031	
7.21.2014	-23.930	6.49	51.667	1.22	6.2513	0.9518

D1900V2 Serial No.5d136						
	1900 Body					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.22.2013	-22.094		47.693		7.3418	
7.21.2014	-22.704	2.76	47.761	0.068	6.8096	0.5322

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




Page 80 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue: June 18, 2015 Report No.

Report No .: C150602S01-SF

1900MHz-Body

Inibration Laboratory of Primid & Partner Engineering AG geneuestrasse 43, 6004 Zurich, Switzerland Image: Section 2000 Section
a Swiss Accreditation Service is one of the signatories to the EA Hillateral Agreement for the recognition of calibration certificates ent <u>CCS-CN (Auden)</u> Certificate No: D2450V2-817_Ju ALIBRATION CERTIFICATE Detect D2450V2 - SN: 817 alteration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz alteration date: July 31, 2013 His calibration certificate documents the traceability to national standards, which resize the physical units of measurements (S), the measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. I calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. allocations Equipment used (MATE entited for calibration) thmary Standerds <u>10 4</u> <u>Cal Date (Certificate No.)</u> <u>Scheduled Calibration</u> performed PM-442A <u>0837460704 01-Nor-12 (No. 217-01640)</u> Oct-13 performance PM-442A <u>0837460704 01-Nor-12 (No. 217-01640)</u> Oct-13 performed PM 8461A <u>VS37282783 01-Nor-12 (No. 217-01640)</u> Oct-13 performed PM 8461A <u>VS37282783 01-Nor-12 (No. 217-01640)</u> Oct-13 performed PM 8461A <u>VS37282783 01-Nor-12 (No. 217-01739)</u> Apr-14 SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 SN: 505 28-Dec-12 (No. ES3-3205, Dec12) Dec-13 AE4
ent CCS-CN (Auden) Centificate No: D2450V2-817_Ju ALIBRATION CERTIFICATE bject D2450V2 - SN: 817 alibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz alibration date: July 31, 2013 tis calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), te measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. tis calibration bave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. alibration Equipment used (M8TE critical for calibration) timary Standards ID 4 Cal Date (Certificate No.) Scheduled Calibration Six 5056 (20k) over sensor HP 8481A QB37400704 01-Nov-12 (No. 217-01640) Oct-13 over sensor HP 8481A QB37400704 01-Nov-12 (No. 217-01739) Apr-14 over sensor HP 8481A QB37400704 01-Nov-12 (No. 217-01739) Apr-14 over sensor HP 8481A QB37400704 01-Nov-12 (No. 217-01739) Apr-14 over sensor HP 8481A QB37400704 01-Nov-12 (No. 217-01739) Apr-14 over sensor HP 8481A SN: 5047.3 / 060327 04-Apr-13 (No. 217-01739)
bject D2450V2 - SN: 817 alibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz alibration date: July 31, 2013 tie calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), te measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. I calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. alibration Equipment used (M&TE critical for calibration) timary Standards ID 4 Cal Date (Certificate No.) Scheduled Calibration Oct-13 ower renter EPM-442A UB37282783 01-Nov-12 (No. 217-01640) Oct-13 ower renter EPM-442A UB37282783 01-Nov-12 (No. 217-01736) Apr-14 Sh: 5058 (20k) 04-Apr-13 (No. 217-01739) Apr-14 Sh: 5058 (20k) 04-Apr-13 (No. 217-01739) Apr-14 Sh: 501 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
alibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz alibration date: July 31, 2013 tis calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), te measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. I calibration Equipment used (M&TE critical for calibration) timary Standards ID 4 Cal Date (Certificate No.) Schaduled Calibration timary Standards ID 4 Cal Date (Certificate No.) Schaduled Calibration timary Standards ID 4 Cal Date (Certificate No.) Schaduled Calibration swer meter EPM-442A GB37460704 01-Nov-12 (No. 217-01640) Oct-13 swer sensor HP 8481A US37292783 01-Nov-12 (No. 217-01736) Apr-14 shi: 5056 (20k) 04-Apr-13 (No. 217-01739) Apr-14 shi: 5056 (20k) 04-Apr-13 (No. 217-01739) Apr-14 shi: 5056 (20k) 04-Apr-13 (No. DAE4-601_Apr13) Apr-14 shi: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
Calibration procedure for dipole validation kits above 700 MHz alibration date: July 31, 2013 tis calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), the measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. I calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.
tis calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), the measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. I calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. alibration Equipment used (M&TE critical for calibration) <u>timary Standards ID 4 Cal Date (Certificate No.) Scheduled Calibration</u> <u>wer meter EPM-442A (B37480704 01-Nov-12 (No. 217-01640) Oct-13</u> over sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 efference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 per N mismatch combination SN: 5058 (20k) 04-Apr-13 (No. 217-01739) Apr-14 efference Probe ES3DV3 N: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 AE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
te measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. I calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. alibration Equipment used (M&TE critical for calibration) timary Standards ID # Cal Date (Certificate No.) Scheduled Calibratio over meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 over sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 eference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 sN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 eference Probe ES3DV3 N: 3205 2B-Dac-12 (No. DAE4-601_Apr13) Apr-14
ower meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 ower sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 ofference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 ope-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 eference Probe ES3DVS SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 AE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
ower sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 eference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 rpe-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 eference Probe ES3DVS SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 AE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
efference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 (pe-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 efference Probe ES3DV3 SN: 3205 28-Dat-12 (No. ES3-3205_Dec12) Dec-13 AE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
Apre-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 eference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 AE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
eference Probe ES3DVS SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 AE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14
scondary Standards ID # Check Date (in house) Scheduled Check
ower sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-
Figenerator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct- In house check: Oc
Name Function Signature
alibrated by: Israe El-Nacuq Laboratory Technician Mrau Cl-S pproved by: Katja Pokovic Technical Manager
oproved by: Katja Pokovic Technical Manager

ERE Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlacher Kalibrierdienst S

Service suisse d'étalonnece

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-817_Jul13

Page 2 of 8

Page 83 of 110

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

- C Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)
	and a state of the	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.87 W/kg

Certificate No: D2450V2-817_Jul13

Page 3 of 8

Page 84 of 110

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 2.9 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 4.5 jΩ	
Return Loss	- 27.0 dB	

General Antenna Parameters and Design

Enobline and a for	Electrical Delay (one direction)	1.159 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the 'Measurement Conditions' paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 23, 2007	

Certificate No: D2450V2-817_Jul13

Page 4 of 8

Date of Issue: June 18, 2015

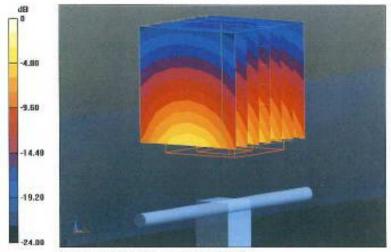
Report No .: C150602S01-SF

DASY5 Validation Report for Head TSL

Date: 31.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

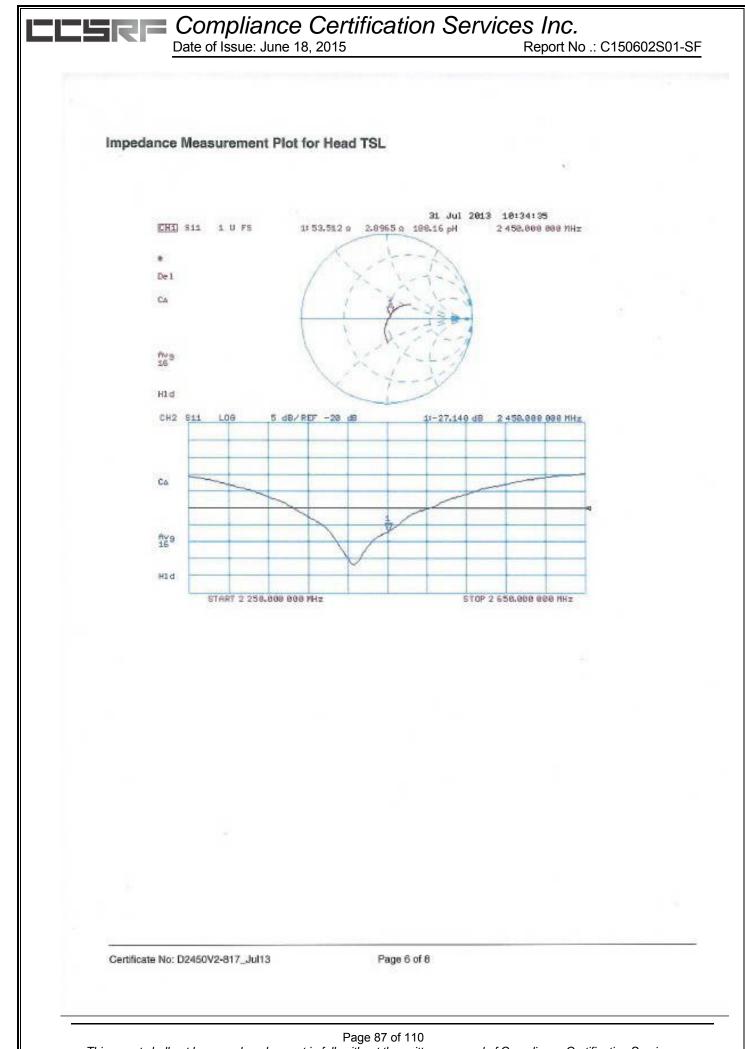
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.781 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg


Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Certificate No: D2450V2-817_Jul13

Page 5 of 8

Date of Issue: June 18, 2015

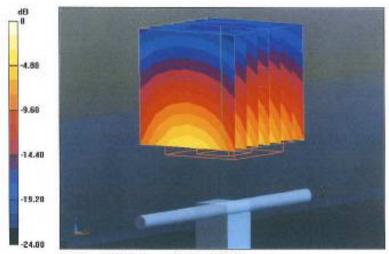
Report No .: C150602S01-SF

DASY5 Validation Report for Body TSL

Date: 31.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

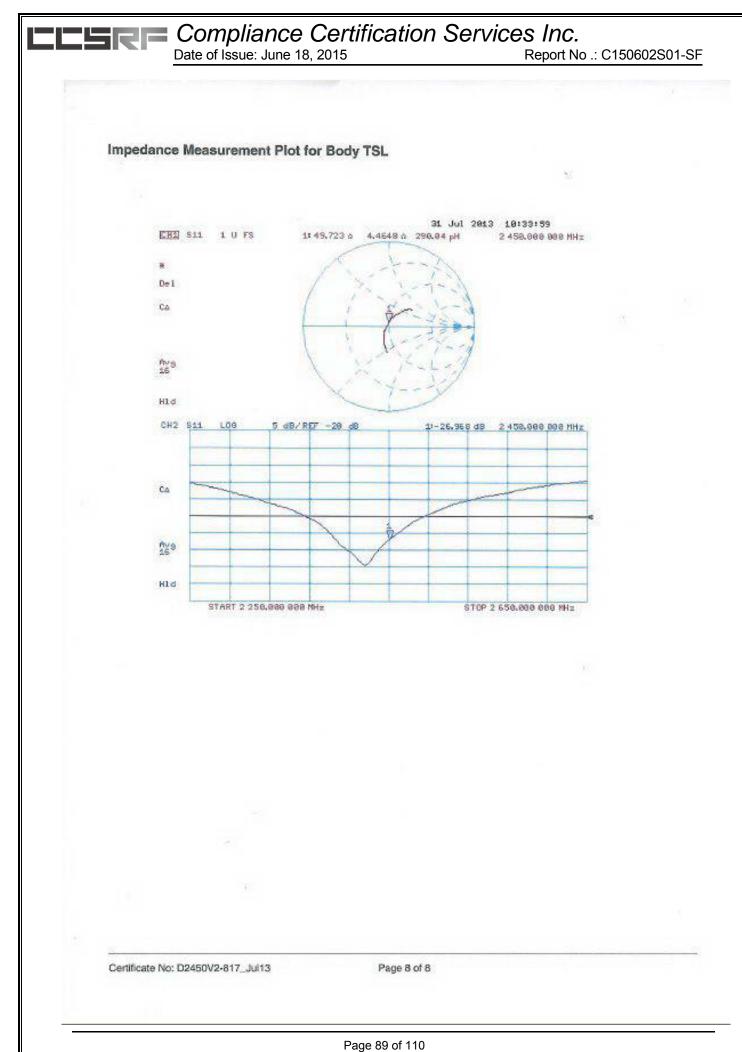
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_c = 50.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.151 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Certificate No: D2450V2-817_Jul13

Page 7 of 8

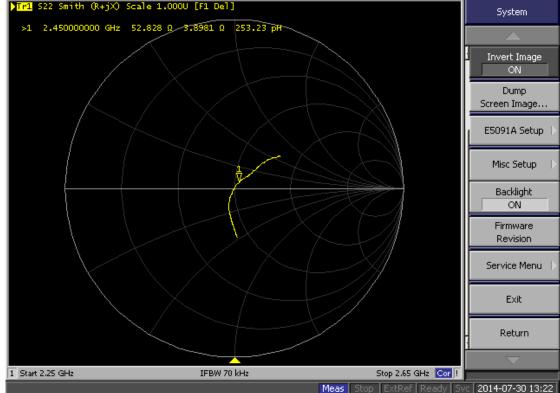
CHRE Compliance Certification Services Inc.

Date of Issue: June 18, 2015

D2450V2, Serial No.817 Extended Dipole Calibrations

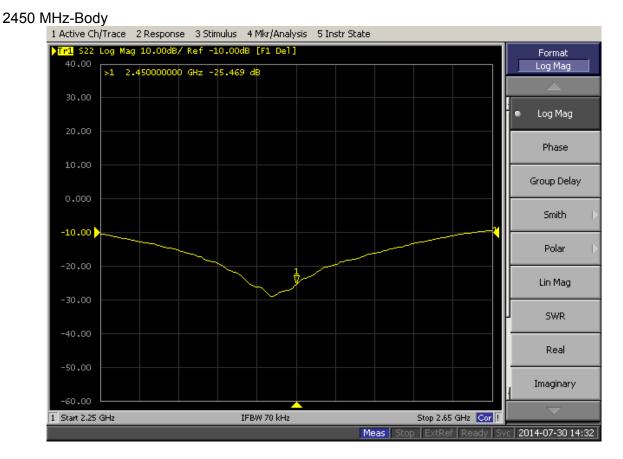
Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

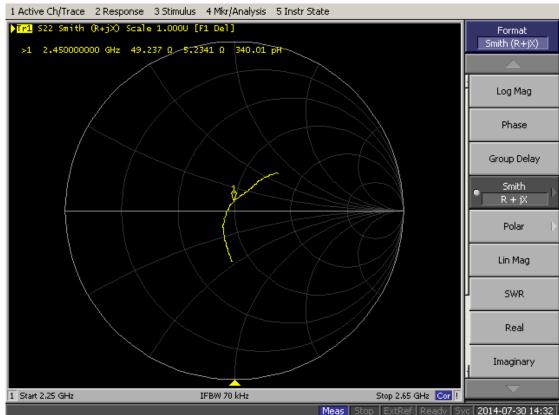
Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

D2450V2 Serial No.817						
	2450 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.31.2013	-27.140		53.512		2.897	
7.30.2014	-26.620	1.92	52.828	0.684	3.898	0.911

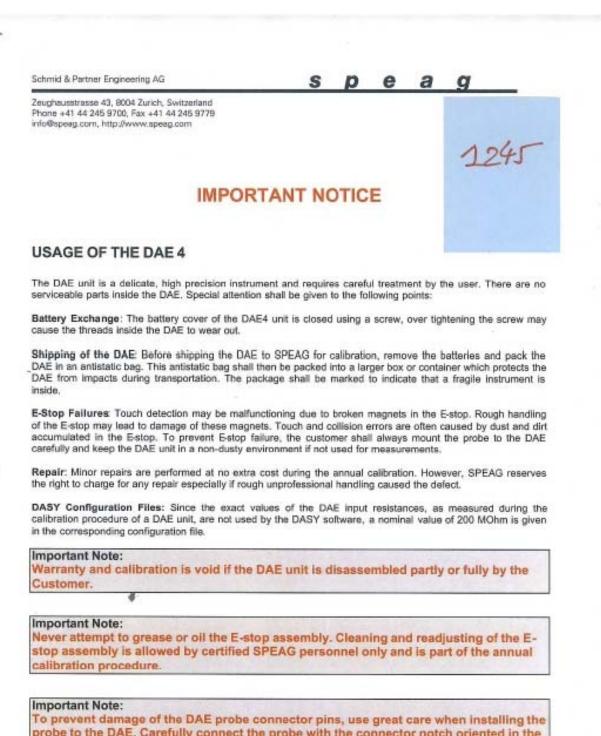
		D245	50V2 Serial No	.817		
			2450 Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.31.2013	-26.968		49.723		4.465	
7.30.2014	-25.469	5.56	49.237	0.486	5.234	0.769


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Date of Issue: June 18, 2015 Report N

Report No .: C150602S01-SF



Page 92 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Page 93 of 110

Calibration Laborator Schmid & Partner Engineering AG Joughausstrasse 43, 8004 Zurle		BIC MEA	Schweizerischer Kalibrierdier Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatories	to the EA	No.: SCS 108
Client CCS-CN (Aude			DAE4-1245_Jul14
CALIBRATION	ERTIFICATE		20
Object		04 BM - SN: 1245	
Calibration procedure(s)	QA CAL-06.v26 Calibration proces	dure for the data acquisition elect	ronics (DAE)
Calibration date:	July 22, 2014		
The measurements and the unco	ntainties with confidence pr	mail standards, which realize the physical unit obability are given on the following pages and γ facility: environment temperature (22 \pm 3) ² C	are part of the certificate.
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards	Intainties with confidence protected in the closed laboratory TE critical for calibration)	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	and humidity < 70%. Scheduled Calibration
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	Intainties with confidence pro- cted in the closed laboratory TE critical for calibration)	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976)	are part of the certificate. and humidity < 70%.
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID #	obability are given on the following pages and (facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Chack
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ID # ID # ID # ID # SN: 0810276 ID # SE UWS 053 AA 1001	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-14
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # ID # ID # ID # SN: 0810276 ID # SE UWS 053 AA 1001	obability are given on the following pages and (facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-14 (in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810276 ID # SN: 0810276 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15 In house check: Jan-15 In house check: Jan-15
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810276 ID # SN: 0810276 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check) Function	and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15 In house check: Jan-15 In house check: Jan-15
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # ID # ID # SN: 0610276 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002 Name R.Mayoraz Fin Bomholt	obability are given on the following pages and recility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check) Function Technician	and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15 In house check: Jan-15

Page 94 of 110 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland

SHISS CRUBRAT

s

C

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnege Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1245_Jul14

Page 2 of 5

Page 95 of 110

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = full range = -100...+300 mV 6.1µV, Low Range: 1LSB = full range = -1.....+3mV 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	405.988 ± 0.02% (k=2)	404.710 ± 0.02% (k=2)	405.849 ± 0.02% (k=2)
Low Range	4.00335 ± 1.50% (k=2)	3.98492 ± 1.50% (k=2)	4.02547 ± 1.50% (k=2)

Connector Angle

5°±1°
1

Certificate No: DAE4-1245_Jul14

đ

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199996.75	-0.27	-0.00
Channel X	+ Input	20001.39	1.15	0.01
Channel X	- Input	-20000.78	0.74	-0.00
Channel Y	+ Input	199998.13	1.27	0.00
Channel Y	+ Input	20000.37	0.12	0.00
Channel Y	- Input	-20002.24	-0.66	0.00
Channel Z	+ Input	199998.24	1.21	0.00
Channel Z	+ Input	20000.36	0.20	0.00
Channel Z	- Input	-20001.75	-0.03	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.33	-0.09	-0.00
Channel X + Input	200.90	0.40	0.20
Channel X - Input	-198.83	0.46	-0.23
Channel Y + Input	2000.00	-0.26	-0.01
Channel Y + Input	199.61	-0.91	-0.45
Channel Y - Input	-200.08	-0.81	0.41
Channel Z + Input	2001.30	1.40	0.07
Channel Z + Input	200.05	-0.31	-0.15
Channel Z - Input	-200.89	-1.31	0.66

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-7.83	-9.32
	- 200	10.88	9.44
Channel Y	200	-7.71	-8.33
	- 200	5.77	5.63
Channel Z	200	-5.90	-5.96
	- 200	4.79	4.74

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.85	-2.60
Channel Y	200	9.53		4.34
Channel Z	200	9.98	6.64	-

Certificate No: DAE4-1245_Jul14

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15875	16740
Channel Y	16455	16504
Channel Z	15939	16860

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	1.16	-0.50	2.34	0.49
Channel Y	-0.81	-2.25	0.40	0.49
Channel Z	-0.59	-1.82	0.83	0.56

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1245_Jul14

Page 5 of 5

		- 1.5.5 (Control - 1.5.5)	
Calibration Laborator Schmid & Partner Engineering AG		itantina (m -) c	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura
Zeughausstrasse 43, 8004 Zuric	h, Switzerland	Carly Corps	Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the n	e is one of the signatories	to the EA	o.: SCS 108
Client CCS-CN (Aude	n)	Certificate No:	EX3-3798_Jul14
CALIBRATION 0	CERTIFICATE		Land and State
Object	EX3DV4 - SN:379	98	
Calibration procedure(s)		A CAL-14.v4, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v6
Calibration date:	July 28, 2014		
-			
		enal standards, which realize the physical units obability are given on the following pages and	
The measurements and the unor	artainties with confidence proceed in the closed laboratory		are part of the certificate.
The measurements and the unor All calibrations have been condu . Calibration Equipment used (M&	artainties with confidence pro- cted in the closed laboratory TE critical for calibration}	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C s	are part of the certificate. and humidity < 70%.
The measurements and the unor	artainties with confidence proceed in the closed laboratory	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	are part of the certificate.
The measurements and the unor All calibrations have been condu . Calibration Equipment used (M& Primary Standards	artainties with confidence protocol of the closed laboratory TE critical for calibration)	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C s	are part of the certificate. Ind humidity < 70%. Scheduled Calibration
The measurements and the unor All calibrations have been condu . Calibration Equipment used (M& Primary Standards Power meter E44198	artainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911)	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15
The measurements and the unor All calibrations have been condu . Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c)	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b)	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013	cbability are given on the following pages and y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-13 (No. ES3-3013_Dec13)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b)	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013	cbability are given on the following pages and it y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01910) 03-Apr-13 (No. ES3-3013_Dac13) 13-Dac-13 (No. DAE4-660_Dec13) Check Date (in house)	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 9649C	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5077 (20x) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700	cbability are given on the following pages and in the second se	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E44194 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660	cbability are given on the following pages and it y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01910) 03-Apr-13 (No. ES3-3013_Dac13) 13-Dac-13 (No. DAE4-660_Dec13) Check Date (in house)	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 9649C	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5077 (20x) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700	cbability are given on the following pages and in the second se	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 9649C	atainties with confidence pro- cled in the closed laborator; TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	obsblifty are given on the following pages and its specific environment temperature (22 ± 3)*C at the specific environment (22 ± 3)*C at the specific environment temperature (22 ± 3)*C at the specific environment (22 ± 3)*C at the specifi	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8649C Network Analyzer HP 8753E	atainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name	obsblifty are given on the following pages and its specific environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dac-13 (No. DAE4-660_Dec13) Check Date (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Celibrated by: Approved by:	etainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US3642U01700 US37390585 Name Claudio Leuther Katja Pokovic	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. DAE4-660, Dec13) 13-Dec-13 (No. DAE4-660, Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Technical Manager	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Celibrated by: Approved by:	etainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID GB41293874 MY41499087 SN: S5064 (3c) SN: S5064 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US3642U01700 US37390585 Name Claudio Leuther Katja Pokovic	obsblifty are given on the following pages and it y facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 90-Dec-13 (No. DAE4-660_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function Laboratory Technician	are part of the certificate. Ind humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14 Signature Signature Market Apr-16 Signature Market Apr-16 Signature Market Apr-16 Market Apr-16

RE Compliance Certification Services Inc.

Date of Issue: June 18, 2015

Report No .: C150602S01-SF

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SPRATE S ST

Schweizerischer Kalibrierdienst Service sulsse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	creat factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization o	φ rotation around probe axis
Polarization 3	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques*, June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3798_Jul14

Page 2 of 11

EX3DV4 - SN:3798

July 28, 2014

Probe EX3DV4

SN:3798

Manufactured: April 5, 2011 Calibrated:

July 28, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3798_Jul14

Page 3 of 11

EX3DV4- SN:3798

July 28, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (uV/(V/m)2)A	0.54	0.51	0.59	± 10.1 %
DCP (mV) [#]	97.6	99.3	96.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^L (k=2)
0	CW	X	0.0	0.0	1.0	0.00	145.7	±2.7 %
		Y	0.0	0.0	1.0	100000	142.0	-
		Z	0.0	0.0	1.0		132.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
⁶ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the section of t field value.

Certificate No: EX3-3798_Jul14

Page 4 of 11

1

EX3DV4-SN:3798

July 28, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth [®] (mm)	Unct. (k#2)
835	41.5	0.90	9.30	9.30	9.30	0.28	1.12	± 12.0 %
900	41.5	0.97	9.13	9.13	9,13	0.58	0.68	± 12.0 %
1810	40.0	1.40	7.82	7.82	7.82	0.41	0.81	± 12.0 %
1900	40.0	1.40	7.75	7.75	7.75	0.40	0.83	± 12.0 %
2450	39.2	1.80	7.04	7.04	7.04	0.33	0.92	± 12.0 %
5200	36.0	4.66	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.60	4.60	4.60	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.67	4.67	4.67	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.56	4.56	4.56	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.55	4.55	4.55	0.40	1.80	± 13.1 %

Callbration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), etse it is restricted to ± 50 MHz. The uncertainty is the RSS of the Com/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

⁶ At frequencies below 3 GHz, the validity of tissue parameters (s and d) can be relaxed to ± 10% if liquid companiation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and d) is restricted to ± 5%. The uncertainty is the RSS of the Conde uncertainty for indicated to area tissue parameters.

measured start values. At requercises above 3 GHz, the value of resce parameters is most of a hand data to 500 million extending the terms of a function of the convert of

Certificate No: EX3-3798_Jul14

Page 5 of 11

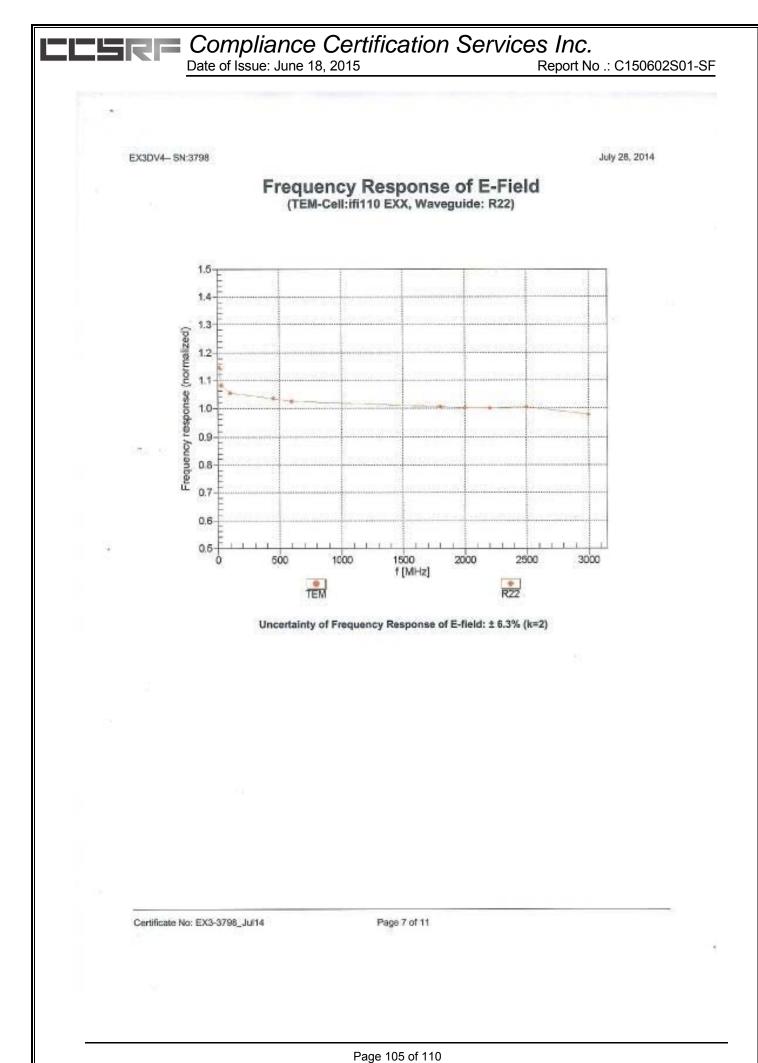
EX3DV4- SN:3798

July 28, 2014

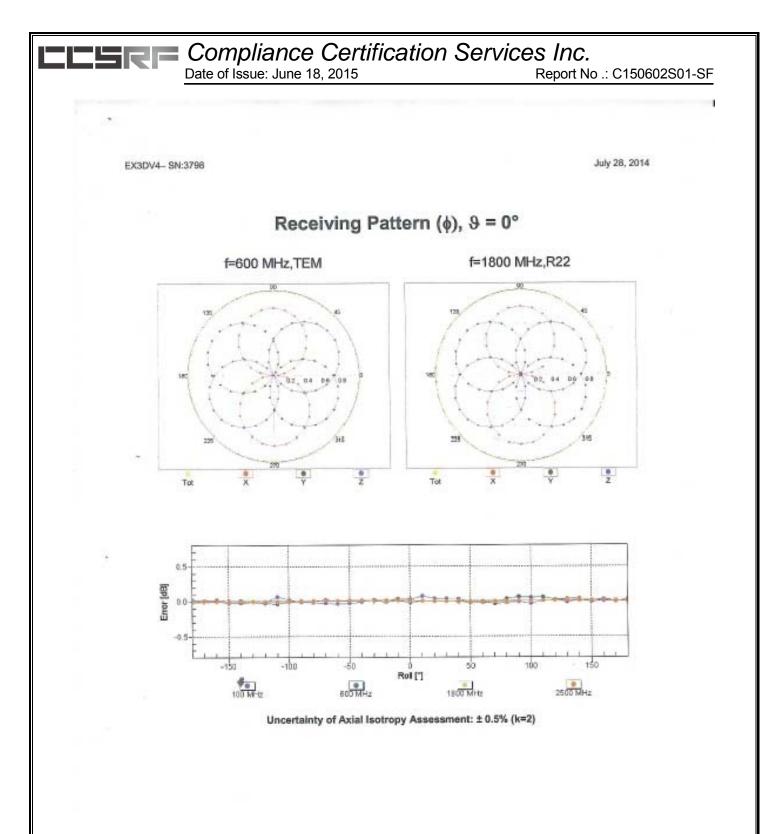
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^P	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^a (mm)	Unct. (k=2)
835	55.2	0.97	9.22	9.22	9.22	0.32	1.07	± 12.0 %
900	55.0	1.05	8.96	8.96	8.96	0.55	0.76	± 12.0 %
1810	53.3	1.52	7.26	7.26	7.26	0.46	0.80	± 12.0 %
1900	53.3	1.52	7.09	7.09	7.09	0.38	0.87	± 12.0 %
2450	52.7	1.95	6.82	6.82	6.82	0.77	0.58	± 12.0 %
5200	49.0	5.30	4.41	4.41	4.41	0.45	1.90	± 13,1 %
5300	48.9	5.42	4.23	4.23	4.23	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.91	3.91	3.91	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.75	3.75	3.75	0.50	1.90	±13.1 %
5800	48.2	6.00	4.09	4.09	4.09	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

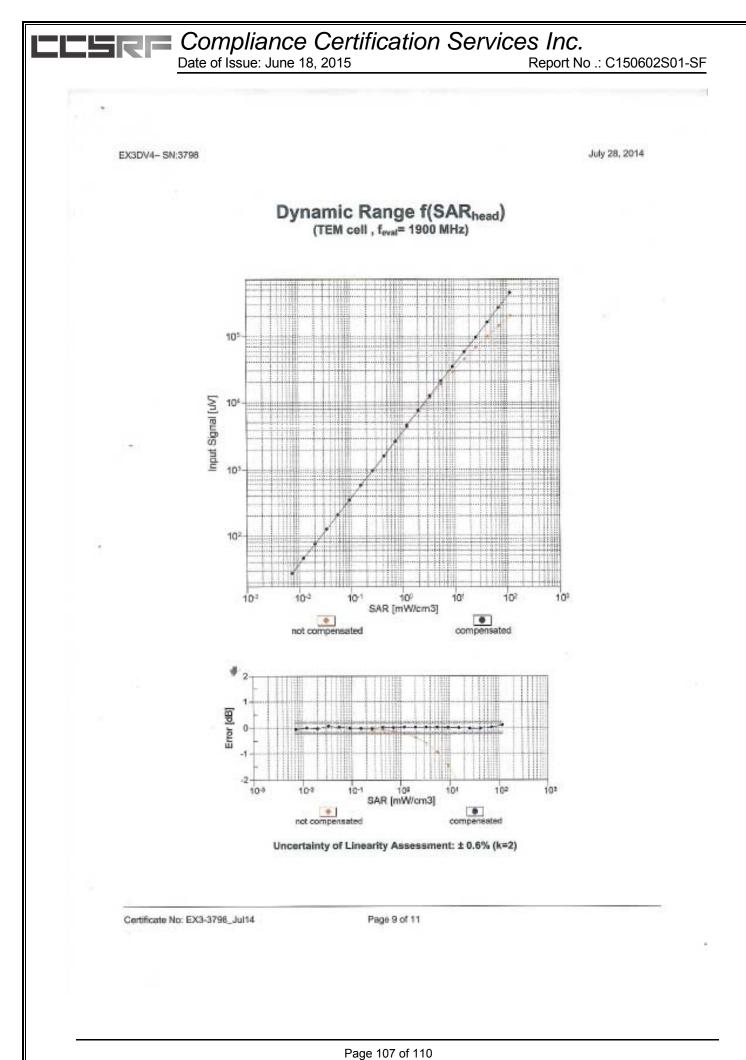

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

At traquancies below 3 GHz, the validity of tissue parameters (s and r) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and r) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

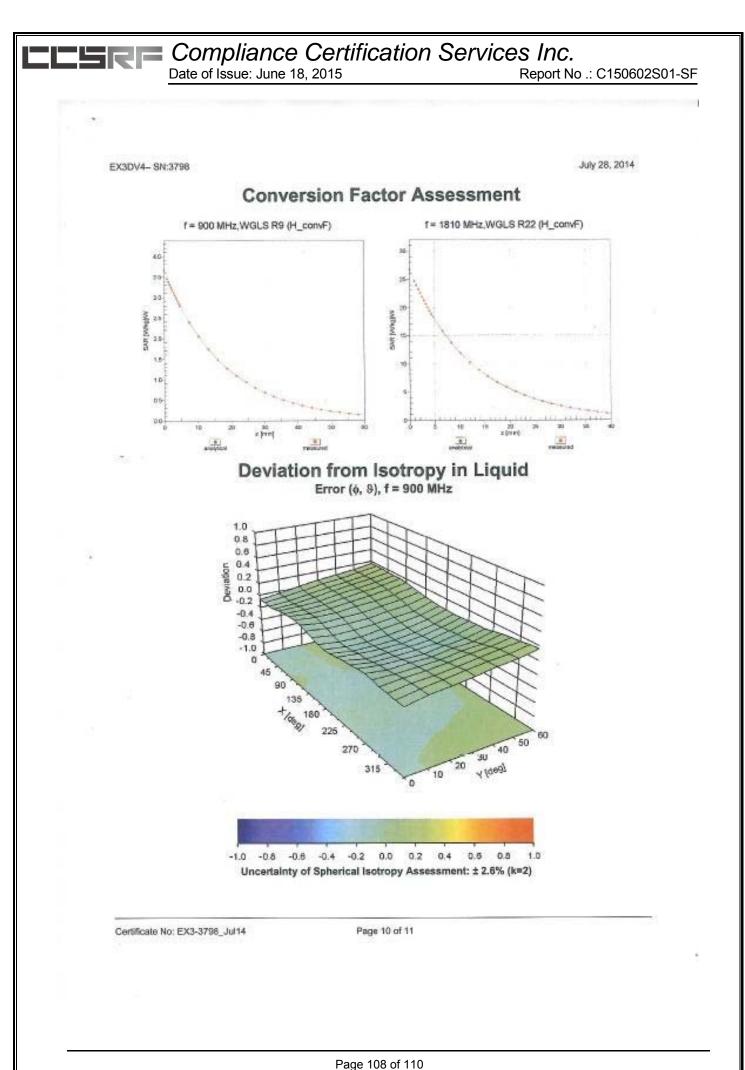

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is atways less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3798_Jul14

Page 6 of 11



This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.



Certificate No: EX3-3798_Jul14

Page 8 of 11

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

EX3DV4- SN:3798

July 28, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-39.7
Machanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3798_Jul14

Page 11 of 11

Compliance Certification Services Inc. Date of Issue: June 18, 2015 Report No .: C150602S01-SF

APPENDIX C: PLOTS OF SAR TEST RESULT

The plots are showing in the file named Appendix C Plots of SAR Test Result

END REPORT