

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

FCC ID	MWR160100403 RQQHLT-E50UTM		
Compiled by		Mantim	
(position+printed name+signature):	File administrators Martin Ao	Clarceri	
Supervised by (position+printed name+signature):	Test Engineer Yuchao Wang	yuchao.wang DiXon	
Approved by (position+printed name+signature):	Manager Dixon Hao	Dixon	
Date of issue	Jan. 24, 2016		
Representative Laboratory Name .:	Maxwell International Co., Ltd.		
Address	Room 509, Hongfa center building, Guangdong, China	Baoan District, Shenzhen,	
Testing Laboratory Name	Shenzhen CTL Testing Technolo	ogy Co., Ltd.	
Address:	Floor 1-A, Baisha Technology Nanshan District, Shenzhen, China		
Applicant's name	HYUNDAI CORPORATION		
Address	140-2, Kye-dong, Chongro-ku, Seoul, South Korea		
Test specification:			
Standard:	FCC Part 15.247: Operation with 2400-2483.5 MHz and 5725-5850		
TRF Originator	Maximum II International Call Inte		
	Maxwell International Co., Ltd.		
Maxwell International Co., Ltd. All This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi	rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re	erial. Maxwell International Co.,	
Maxwell International Co., Ltd. All a This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w	rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages r ial due to its placement and context.	erial. Maxwell International Co.,	
Maxwell International Co., Ltd. All the This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced material	rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone	erial. Maxwell International Co.,	
Maxwell International Co., Ltd. All a This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi Test item description Trade Mark	rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All a This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi Test item description Trade Mark	rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages n ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Techno	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All n This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced material Test item description	rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Technoon E545	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All m This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Test item description Trade Mark Manufacturer Model/Type reference	rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Technoon E545	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All r This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi Test item description Trade Mark Model/Type reference Listed Models	rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Techno E545	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All r This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced material Test item description Trade Mark Manufacturer Listed Models Modulation Type	rights reserved. whole or in part for non-commercial byright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Techno E545 / GFSK,8DPSK,π/4DQPSK	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All n This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materia Test item description Trade Mark Manufacturer Listed Models Modulation Type Operation Frequency	rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Techno E545 / GFSK,8DPSK,π/4DQPSK From 2402MHz to 2480MHz	erial. Maxwell International Co., esulting from the reader's	
Maxwell International Co., Ltd. All r This publication may be reproduced in Maxwell International Co., Ltd. as cop Ltd. takess no responsibility for and w interpretation of the reproduced materi Test item description Trade Mark Model/Type reference Listed Models Modulation Type Rating	rights reserved. whole or in part for non-commercial pyright owner and source of the mate ill not assume liability for damages re ial due to its placement and context. Mobile Phone HYUNDAI Shenzhen Rainbow Time Techno E545 / GFSK,8DPSK,π/4DQPSK From 2402MHz to 2480MHz DC 3.80V	erial. Maxwell International Co., esulting from the reader's	

TEST REPORT

Test Report No. :		MWR160100403	Jan. 24, 2016 Date of issue		
Equipment under Test	:	Mobile Phone			
Model /Type	:	E545			
Listed Models	:	1			
Applicant	:	HYUNDAI CORPORAT	ION		
Address	:	140-2, Kye-dong, Chon	gro-ku, Seoul, South Korea		
Manufacturer	:	Shenzhen Rainbow Ti	me Technology Co.,Ltd		
Address	:		Technology Building, Science and han District, Shenzhen, China		

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	TEST STANDARDS	4
<u>2</u>	<u>SUMMARY</u>	5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	6
2.4	Short description of the Equipment under Test (EUT)	6
2.5	EUT operation mode	6
2.6 2.7	Internal Identification of AE used during the test Related Submittal(s) / Grant (s)	7 7
2.8	Modifications	7
<u>3</u>	TEST ENVIRONMENT	
3.1	Address of the test laboratory	8
3.2	Test Facility	8
3.3	Environmental conditions	8
3.4	Test Conditions	8
3.5	Summary of measurement results	9
3.6	Equipments Used during the Test	10
<u>4</u>	TEST CONDITIONS AND RESULTS	<u>11</u>
4.1	AC Power Conducted Emission	11
4.2	Radiated Emissions and Band Edge	14
4.3	Maximum Peak Output Power	22
4.4	20dB Bandwidth	23
4.5	Frequency Separation	27
4.6	Number of hopping frequency	29
4.7	Time of Occupancy (Dwell Time)	31
4.8	Spurious RF Conducted Emission	35
4.9 4.10	Pseudorandom Frequency Hopping Sequence Antenna Requirement	48 49
	•	
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	50
<u>6</u>	EXTERNAL PHOTOS OF THE EUT	50
7	INTERNAL PHOTOS OF THE EUT	

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	Jan. 01, 2016
Testing commenced on	:	Jan. 12, 2016
Testing concluded on	:	Jan. 24, 2016

2.2 Product Description

The **HYUNDAI CORPORATION**'s Model: E545 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	E545
Modilation Type	GMSK for GSM/GPRS, 8-PSK for EDGE,QPSK for UMTS
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS FDD Band II/V
· · · ·	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT FCC Operation frequency	2402MHz-2480MHz
HSDPA Release Version	Release 10
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEAN FEE Woodulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	14900_MM1_V03
Software version	HYUNDAI_E545_V5.1.1_20160122
Android version	Android 4.4.2
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/ PCS1900:Power Class 1
GSM/EDGE/GPRS Operation	GSM850 :824.2MHz-848.8MHz/PCS1900:1850.2MHz-1909.8MHz
Frequency	G310030.024.210172-040.010172/FC31900.1030.210172-1909.010172
GSM/EDGE/GPRS Operation	GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900
Frequency Band	GOIVIDU/F GO 1900/GF GOOD/GF GO 1900/EDGE000/EDGE 1900
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.80VDC)
GPRS operation mode	Class B

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow))

DC 3.80V

2.4 Short description of the Equipment under Test (EUT)

2.4.1 General Description

E545 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band I,Band II, Band Vand Band VIII; The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5 EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR

(Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying

in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried

out at the lowest channel, middle channel and highest channel .

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467

26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.6 Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1 Model: 811B INPUT: AC100-240V~ 50/60Hz 0.15A OUTPUT: DC 5.0V 1500mA

*AE ID: is used to identify the test sample in the lab internally.

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: RQQHLT-E50UTM filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4, CISPR 22/EN 55022 and CISPR16-4-1 SVSWR requirements.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Conditions

Test Case	Test Conditions			
Test Case	Configuration	Description		
	Meas. Method	ANSI C63.10:2013		
20dB Emission	Test Environment	NTNV		
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78, TM3_3DH5_Ch00,TM3_3DH5_Ch39,TM3_3DH5_Ch78,		
Carrier Frequency	Meas. Method	ANSI C63.10:2013		
Carrier Frequency Separation	Test Environment	NTNV		
Separation	EUT Conf.	TM1_DH5_Hop, TM3_3DH5_Hop,		
Number of Henning	Meas. Method	ANSI C63.10:2013		
Number of Hopping Channel	Test Environment	NTNV		
Channel	EUT Conf.	TM1_DH5_Hop ,TM3_3DH5_Hop,		
Time of Occupancy (Dwell Time)	Meas. Method	ANSI C63.10:2013		
	Test Environment	NTNV		
	EUT Conf.	TM1_DH5_Ch39 ,TM3_3DH5_Ch39.		
	Meas. Method	ANSI C63.10:2013		
Maximum Peak	Test Environment	NTNV		
Conducted Output Power		TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78,TM2		
Conducted Output I ower	EUT Conf.	_2DH3_Ch00,TM2_2DH3_Ch39,TM2_2DH3_Ch78,TM3		
		_3DH3_Ch00,TM3_3DH3_Ch39,TM3_3DH3_Ch78,		
Bandedge spurious	Meas. Method	ANSI C63.10:2013		
emission	Test Environment	NTNV		
(Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78,		
		TM3_3DH3_Ch00,TM3_3DH3_Ch78,		

	Meas. Method	ANSI C63.10:2013
Conducted RF Spurious	Test Environment	NTNV
Emission	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78, TM3_3DH5_Ch39, TM3_3DH5_Ch78.
Radiated Emissions in the Restricted Bands	Meas. Method	ANSI C63.10:2013 30 MHz to 1 GHz: Pre: RBW=100kHz; VBW=300kHz; Det. = Peak. Final: RBW=120kHz; Det. = CISPR Quasi-Peak. 1 GHz to 26.5GHz: Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak; Sweep-time= Auto; Trace = Single. Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep- time= Auto; Trace≥ MaxHold * 100.
	Test Environment	NTNV
		30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
	EUT Conf.	1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch39,
		TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions	
Test Case	Configuration	Description
AC Dewer Line Conducted	Measurement Method	AC mains conducted.
AC Power Line Conducted	Test Environment	NTNV
	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).

Note:

1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

2. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-					Not applicable for FHSS!
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	🛛 Full	GFSK 8DPSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\mathbb{X}				complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK 8DPSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.205	Band edge compliance	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies

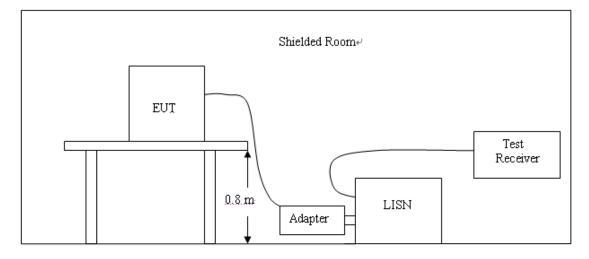
Page 10 of 50

Report No.: MWR160100403

	radiated							
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes		complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes		complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	\boxtimes		complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies

Remark:

- The measurement uncertainty is not included in the test result. NA = Not Applicable; NP = Not Performed We tested all test mode and recorded worst case in report 1.
- 2.
- 3.


3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.12	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	N9030A	MY49430428	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	SCHWARZBECK	FMZB1519	1519-037	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Temperature/ Humidity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
High-Pass Filter	K&L	9SH10- 2700/X12750-O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	K&L	41H10- 1375/U12750-O/O	N/A	2015/05/20	2016/05/19
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2015/06/02	2016/06/01
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/06/02	2016/06/01
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/06/02	2016/06/01
RF Cable	Megalon	RF-A303	N/A	2015/06/02	2016/06/01
Power Sensor	R&S	NRP-Z4	823.3618.03	2015.06.02	2016.06.01
Power Meter	R&S	NRVS	1020.1809.02	2015.06.02	2016.06.01

4 TEST CONDITIONS AND RESULTS

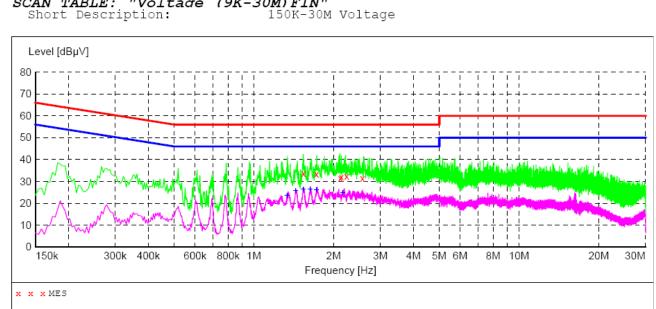
4.1 AC Power Conducted Emission

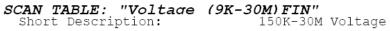
TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

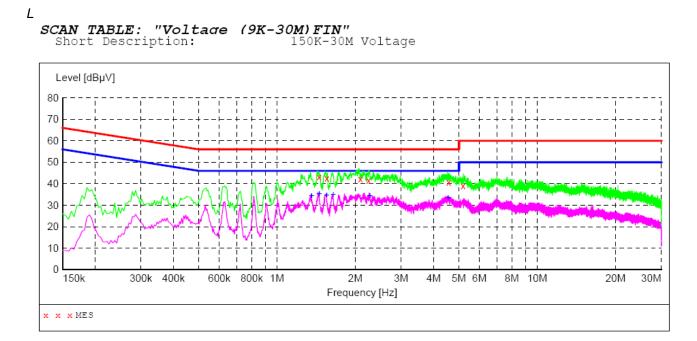

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :


Frequency	Maximum RF Line Voltage (dBµV)					
Frequency (MHz)	CLA	SS A	CLA	SS B		
	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

* Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: We tested Conducted Emission of GFSK, $\pi/4$ DQPSK and 8DPSK mode from 0.15 KHz to 30MHz (DH1, DH3 and DH5) and all channels (low, middle and high), recorded the worst case data at GFSK DH5 middle channel.



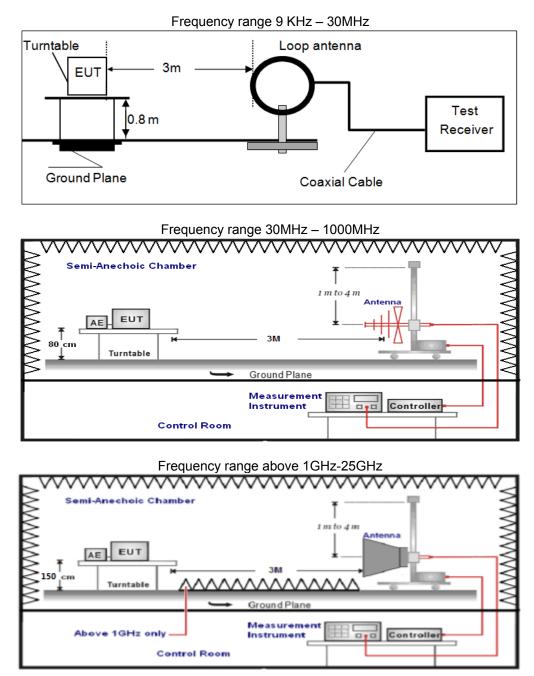
MEASUREMENT RESULT:

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
1.538000	33.70	10.5	56	22.3	QP	N	GND
1.722000	33.40	10.5	56	22.6	QP	Ν	GND
2.118000	31.50	10.5	56	24.5	QP	N	GND
2.134000	32.20	10.5	56	23.8	QP	Ν	GND
2.238000	32.40	10.5	56	23.6	QP	Ν	GND
2.566000	31.60	10.5	56	24.4	QP	Ν	GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
1.334000 1.438000 1.534000 1.630000 1.722000 2.162000	23.70 25.70 26.30 26.40 26.00 24.70	10.5 10.5 10.5 10.5 10.5 10.5	46 46 46 46 46	22.3 20.3 19.7 19.6 20.0 21.3	AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT:


Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
1.450000 1.554000 2.090000 2.246000 4.566000	43.20 42.60 42.10 41.60 40.60	10.5 10.5 10.5 10.5	56 56 56	12.8 13.4 13.9 14.4 15.4	QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND
4.566000 5.186000	40.60 39.10	10.5 10.6	56 60	15.4 20.9	~	Ll Ll	GND GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
1.358000	34.40	10.5	46	11.6	AV	L1	GND
1.454000	35.40	10.5	46	10.6	AV	L1	GND
1.554000	34.70	10.5	46	11.3	AV	L1	GND
1.646000	35.00	10.5	46	11.0	AV	L1	GND
2.278000	34.40	10.5	46	11.6	AV	L1	GND
4.558000	33.20	10.5	46	12.8	AV	L1	GND

4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane for below 1GHz and 1.50m above ground plane for above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768 KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3

18GHz-25GHz	Horn Anternna	1
-------------	---------------	---

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto	Peak
1902-40602	Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

More procudre as follows;

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor					

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

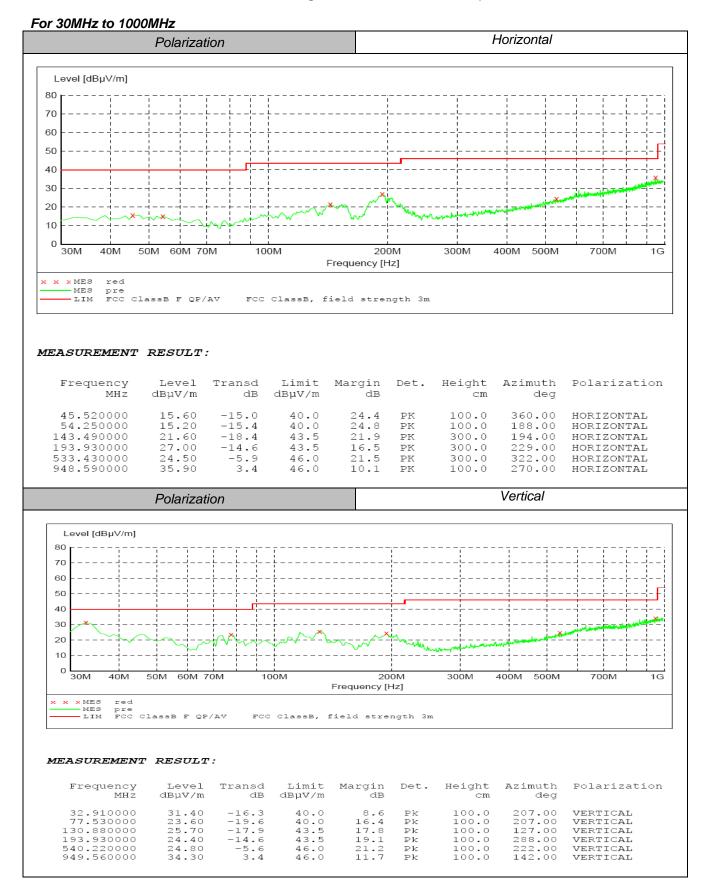
TEST RESULTS

Remark:

1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78).

2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.

3. HORN ANTENNA for the radiation emission test above 1G.


4. We tested both battery powered and powered by adapter charging mode at three orientate ones, recorded worst case at powered by adapter charging mode.

5. "---" means not recorded as emission levels lower than limit.

6. Margin= Limit - Level

For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result	
12.89	47.23	69.54	22.31	QP	PASS	
20.34	42.87	69.54	26.67	QP	PASS	

For 1GHz to 25GHz

Note:We tested GFSK Mode and 8DPSK, rcorded the worst case at the GFSK (DH5) Mode.

	Frequency((MHz):		2402		Polarity:			HORIZO	NTAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2402.00	89.65	PK			56.25	28.78	4.61	0.00	33.4
1	2402.00	79.87	AV			46.47	28.78	4.61	0.00	33.4
2	2390.00	37.18	ΡK	74		3.86	28.72	4.6	0.00	33.32
2	2390.00		AV	54						
3	2400.00	38	ΡK	74	36	4.61	28.78	4.61	0.00	33.39
3	2400.00		AV	54						
4	4804.00	48.56	ΡK	74	25.44	44.05	33.49	6.91	35.89	4.51
4	4804.00		AV	54						
5	5150.75	43.3	ΡK	74	30.7	36.03	34.44	7.12	34.28	7.27
5	5150.75		AV	54						
6	7206.00	42.65	ΡK	74	31.35	31.54	36.95	9.18	35.03	11.11
6	7206.00		AV	54						

	Frequency(2402			Polarity:		VERTICAL		
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2402.00	90.02	ΡK			56.62	28.78	4.61	0.00	33.4
1	2402.00	80.56	AV			47.16	28.78	4.61	0.00	33.4
2	2390.00	37.88	ΡK	74	36.12	4.56	28.72	4.6	0.00	33.32
2	2390.00		AV	54						
3	2400.00	36.86	ΡK	74	37.14	3.47	28.78	4.61	0.00	33.39
3	2400.00		AV	54						
4	4804.00	45.87	ΡK	74	28.13	41.36	33.49	6.91	35.89	4.51
4	4804.00		AV	54						
5	5015.20	42.19	ΡK	74	31.81	35.35	34.03	7.04	34.24	6.84
5	5015.20		AV	54						
6	7206.00	42.47	ΡK	74	31.53	31.36	36.95	9.18	35.03	11.11
6	7206.00		AV	54						

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

 Emission level (dBuV/m) = Raw value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit.
 RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Page 20 of 50

Report No.: MWR160100403

	Frequency(MHz):		2441			Polarity:		HORIZO	NTAL
No.	Frequency (MHz)	Emissi Leve (dBuV/		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2441.00	88.96	ΡK			55.45	28.85	4.66	0.00	33.51
1	2441.00	79.56	AV			46.05	28.85	4.66	0.00	33.51
2	4458.50	39.26	ΡK	74	34.74	34.25	32.86	6.69	34.54	5.01
2	4458.50		AV	54						
3	4882.00	45.19	ΡK	74	28.81	38.93	33.6	6.95	34.3	6.26
3	4882.00	-	AV	54						
4	5150.50	40.15	ΡK	74	33.85	32.74	34.44	7.12	34.14	7.41
4	5150.50		AV	54						
5	7323.00	43.66	ΡK	74	30.34	31.96	37.46	9.23	35	11.7
5	7323.00		AV	54						

	Frequency((MHz):		244	11		Polarity:		VERTI	CAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2441.00	89.93	ΡK			56.42	28.85	4.66	0.00	33.51
1	2441.00	80.35	AV			46.84	28.85	4.66	0.00	33.51
2	4235.70	39.81	ΡK	74	34.19	35.11	32.82	6.54	34.67	4.7
2	4235.70		AV	54						
3	4882.00	45.35	ΡK	74	28.65	39.09	33.6	6.95	34.3	6.26
3	4882.00		AV	54						
4	5150.75	40.15	ΡK	74	33.85	32.74	34.44	7.12	34.14	7.41
4	5150.75		AV	54						
5	7323.00	43.96	ΡK	74	30.04	32.26	37.46	9.23	35	11.7
5	7323.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.

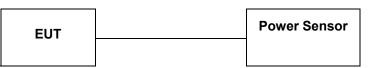
- 4. -- Mean the PK detector measured value is below average limit.5. The other emission levels were very low against the limit.

6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Page 21 of 50

Report No.: MWR160100403

	Frequency((MHz):		2480			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2480.00	88.68	ΡK			55.06	28.92	4.7	0.00	33.62
1	2480.00	79.38	AV			45.76	28.92	4.7	0.00	33.62
2	2483.50	39.68	ΡK	74	34.32	6.05	28.93	4.7	0.00	33.63
2	2483.50		AV	54						
3	2500.00	37.29	ΡK	74	36.71	3.61	28.96	4.72	0.00	33.68
3	2500.00		AV	54						
4	4960.00	46.33	ΡK	74	27.67	41.41	33.84	7	35.92	4.92
4	4960.00		AV	54						
5	5387.50	44.4	ΡK	74	29.6	36.79	34.73	7.25	34.37	7.61
5	5387.50		AV	54						
6	7440.00	43.49	ΡK	74	30.51	31.54	37.64	9.28	34.97	11.95
6	7440.00		AV	54						


	Frequency	(MHz):		2480		Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2480.00	89.76	ΡK			56.14	28.92	4.7	0.00	33.62
1	2480.00	79.58	AV			45.96	28.92	4.7	0.00	33.62
2	2483.50	38.6	ΡK	74	35.4	4.97	28.93	4.7	0.00	33.63
2	2483.50		AV	54						
3	2500.00	37.36	ΡK	74	36.64	3.68	28.96	4.72	0.00	33.68
3	2500.00		AV	54						
4	4960.00	46.33	ΡK	74	27.67	41.41	33.84	7	35.92	4.92
4	4960.00		AV	54						
5	5210.75	40.35	ΡK	74	33.65	32.96	34.55	7.15	34.31	7.39
5	5210.75		AV	54						
6	7440.00	41.49	ΡK	74	32.51	29.54	37.64	9.28	34.97	11.95
6	7440.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

4.3 Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power: Connent antenna port into power meter and reading Peak values.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	4.79	30	PASS
39	2441	5.11	30	PASS
78	2480	4.69	30	PASS

Note:

1. The test results including the cable lose.

4.3.2 $\pi/4$ DQPSK Test Mode

A. Test Verdict

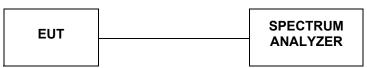
Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	4.01	21	PASS
39	2441	4.29	21	PASS
78	2480	3.81	21	PASS

Note:

1. The test results including the cable lose.

4.3.3 8DPSK Test Mode

A. Test Verdict


Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	•	
00	2402	3.87	21	PASS
39	2441	4.03	21	PASS
78	2480	3.85	21	PASS

Note:

1. The test results including the cable lose.

4.4 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

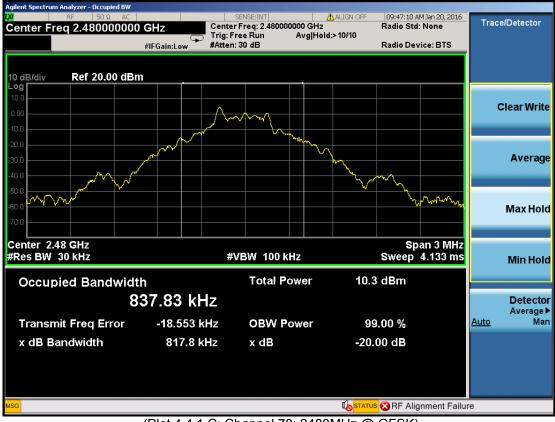
<u>LIMIT</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

4.4.1 GFSK Test Mode


A. Test Verdict

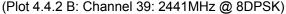

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	0.8259	Plot 4.4.1 A	/	PASS
39	2441	0.8230	Plot 4.4.1 B	/	PASS
78	2480	0.8178	Plot 4.4.1 C	/	PASS

Note: 1. The test results including the cable lose.

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)

4.4.2 8DPSKTest Mode

A. Test Verdict

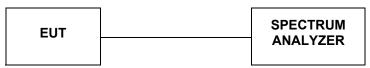

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.159	Plot 4.4.2 A	/	PASS
39	2441	1.156	Plot 4.4.2 B	/	PASS
78	2480	1.158	Plot 4.4.2 C	/	PASS

Note: 1.The test results including the cable lose.

Agilent Spectrum Analyzer - Occupied BW	GH7 Center		ALIGN OFF z bid:>10/10	09:48:34 A Radio Std Radio Dev		Trace	e/Detector
10 dB/div Ref 20.00 dBr Log 10.0 0.00	n					c	Clear Write
-20.0 -30.0 -40.0 -50.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~		Average
-60.0				0.7			Max Hold
Center 2.402 GHz #Res BW 30 kHz Occupied Bandwidt		VBW 100 kHz Total Power	9.40	sp Sweep dBm	an 3 MHz 4.133 ms		Min Hold
	1010 MHz						Detector
Transmit Freq Error x dB Bandwidth	-17.637 kHz 1.159 MHz	OBW Power x dB		.00 % 00 dB		<u>Auto</u>	Average ► Man
MSG				🔀 RF Alig	Inment Failur	e	

(Plot 4.4.2 A: Channel 00: 2402MHz @ 8DPSK)

Agilent Spectrum Analyzer - Occupied BW XM RF 50 Ω AC Center Freq 2.441000000	GH7 Center		ALIGN OFF	09:49:19 A Radio Std: Radio Dev		Frequency
10 dB/div Ref 20.00 dBm						Center Freq 2.441000000 GHz
-10.0	A A A A A A A A A A A A A A A A A A A					2.44100000 GH2
-40.0 -50.0 -60.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~^~	
-70.0 Center 2.441 GHz #Res BW 30 kHz	#	VBW 100 kHz			an 3 MHz 4.133 ms	CF Step 300.000 kHz
Occupied Bandwidth	י 0987 MHz	Total Power	9.72	dBm		<u>Auto</u> Man Freq Offset
Transmit Freq Error x dB Bandwidth	-17.406 kHz 1.156 MHz	OBW Power x dB		0.00 % 00 dB		0 Hz
			r] ereman			
MSG	Plot 4 4 2 B [·] Ch	oppol 20: 2441	-	-	nment Failur	e



(Plot 4.4.2 C: Channel 78: 2480MHz @ 8DPSK)

4.5 Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz.

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.5.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440			25KHz or the	
39	2441	1.002	Plot 4.6.1 A	2/3*20dB bandwidth	PASS

B. Test Plots

(Plot 4.6.1 A: Channel 39: 2441MHz @ GFSK)

4.5.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440			25KHz or the	
39	2441	0.999	Plot 4.6.2 A	2/3*20dB bandwidth	PASS

(Plot 4.6.2 A: Channel 39: 2441MHz @ 8DPSK)

4.6 Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100 KHz and VBW=300 KHz.

<u>LIMIT</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.6.1 GFSK Test Mode

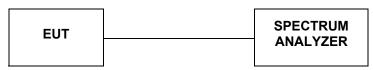
A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

(Plot 4.7.1 A1: @ GFSK)

4.6.2 8DPSK Test Mode

A. Test Verdict


Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A1	≥15	PASS

(Plot 4.7.2 A1: @ 8DPSK)

4.7 Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz, Span=0Hz.

<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hop/s]/79 [ch]=3.38 [hop/s];

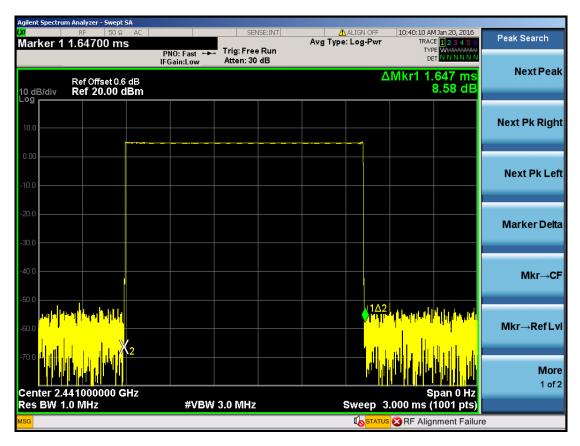
The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

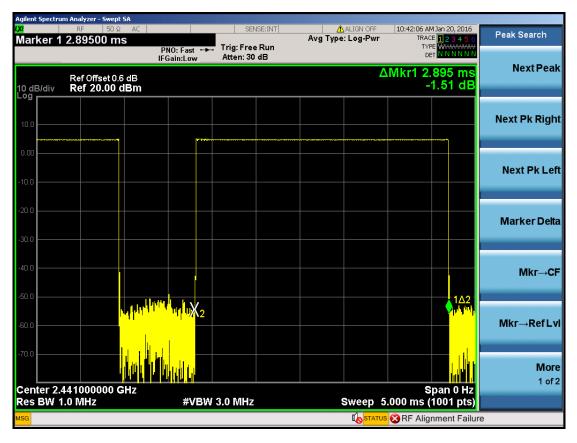
Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

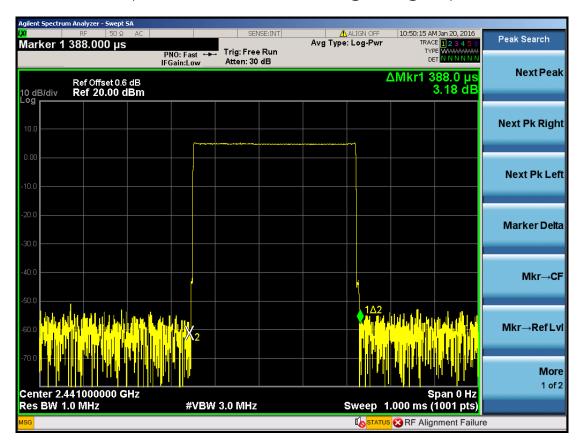

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2441	0.386	0.124	0.4	Plot 4.8.1 A	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	cond	
DH3	2441	1.647	0.264	0.4	Plot 4.8.1 B	PASS
DID	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4 ·	÷ 79) ×31.6 Sec	cond	
DH5	2441	2.895	0.309	0.4	Plot 4.8.1 C	PASS
DHS	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Se	cond	

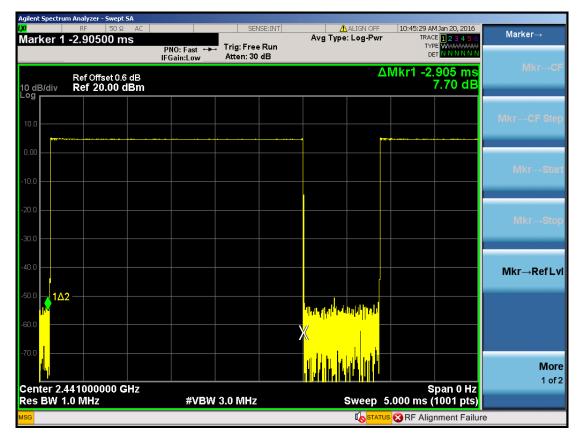

4.7.1 GFSK Test Mode

4.7.2 8DPSK Test Mode


Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2441	0.388	0.124	0.4	Plot 4.8.2 A	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	ond	
DH3	2441	1.656	0.265	0.4	Plot 4.8.2 B	PASS
DHS	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4 ·	÷ 79) ×31.6 Sec	ond	
DH5	2441	Plot 4.8.2 C	PASS			
	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Sec	cond	

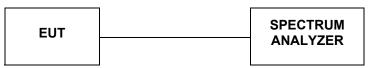

(Plot 4.8.1.A: Channel 39: 2441MHz @ GFSK @ DH1)

(Plot 4.8.1.B: Channel 39: 2441MHz @ GFSK @ DH3)


(Plot 4.8.1.C: Channel 39: 2441MHz @ GFSK @ DH5)

(Plot 4.8.2.A: Channel 39: 2441MHz @ 8DPSK @ DH1)

Agilent Spectrum Analyzer - Swept SA					
LX/ RF 50Ω AC	SEN	ISE:INT	\Lambda ALIGN OFF	10:48:29 AM Jan 20, 2	
Marker 1 1.65600 ms			「ype: Log-Pwr	TRACE 1 2 3 4	
Р	NO: Fast 🛶 Trig: Free			TYPE WWWWWW DET N N N N	N N
IF(Gain:Low Atten: 30	dB		Del	
			٨	Mkr1 1.656 r	Next Peak
Ref Offset 0.6 dB				0.72 (
10 dB/div Ref 20.00 dBm				0.720	
10.0					Next Pk Right
10.0					
			·1		
0.00					
					Next Pk Left
-10.0					
-20.0					
					Marker Delta
-30.0					
-40.0					
-40.0					Mkr→CF
-50.0				2	
فأعتب والمتكلف والمتعار والمتعار					, die
			a di na		
-60.0				, i i i	Mkr→RefLvl
the second state of the second					
			d L.	t dual t	
-70.0					
			- III.		More
			' <mark> </mark> '	از ال کار کار کار کار کار	1 of 2
Center 2.441000000 GHz				Span 0	Hz
Res BW 1.0 MHz	#VBW 3.0 MHz		Sweep 3	.000 ms (1001 p	ts)
				58	
MSG				😵 RF Alignment F	ailure


(Plot 4.8.2.B: Channel 39: 2441MHz @ 8DPSK @ DH3)

(Plot 4.8.2.C: Channel 39: 2441MHz @ 8DPSK @ DH5)

4.8 Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measurement frequency range from 9KHz to 26.5GHz.

<u>LIMIT</u>

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

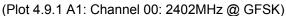
Remark:

1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

2.For 9KHz -30MHz,Because there was only background, So We did not recorded data.

4.8.1 GFSK Test Mode

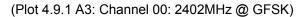
Α.	Test Verdict	

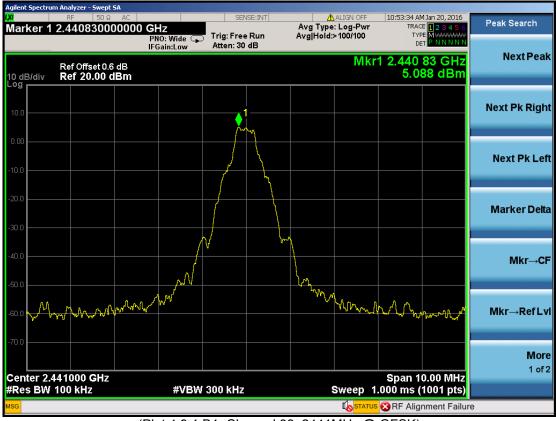

Channel	Frequency (MHz)	Frequency Range		Refer to Plot		Limit (dBc)	Verdict
00	2402	2.402 GHz		Plot 4.9.1 A1			PASS
		30MHz-3GHz		Plot 4.9.1 A2		-20	PASS
		3GHz-25GHz		Plot 4.9.1 A3		-20	PASS
39	2441	2.441 GHz		Plot 4.9.1 B1			PASS
		30MHz-3GHz		Plot 4.9.1	B2	-20	PASS
		3GHz-5GHz		Plot 4.9.1 B3		-20	PASS
78	2480	2.480 GHz		Plot 4.9.1 C1			PASS
		30MHz-3GHz		Plot 4.9.1 C2		-20	PASS
		3GHz-5GHz		Plot 4.9.1 C3		-20	PASS
Conducted	Left Band	edge hoping on Plot		4.9.1 D1		-20	PASS
bandedge Right Ba		d edge hoping on Plot		4.9.1 D2		-20	PASS

Note:

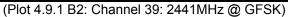
1. The test results including the cable lose.

2. For Conducted bandedge. We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

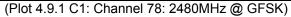




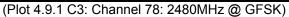
(Plot 4.9.1 A2: Channel 00: 2402MHz @ GFSK)

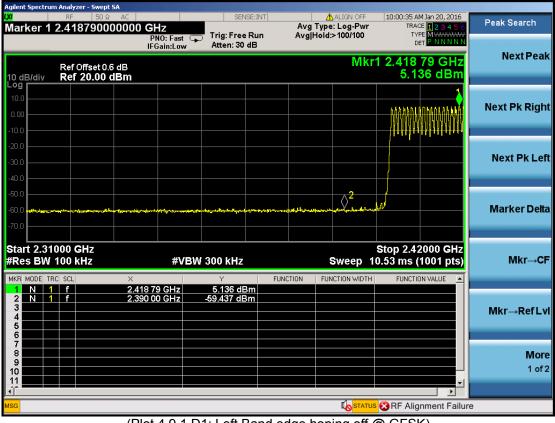

Agilent	Spectrum Analyzer - Swept SA					
<mark>(XI</mark>	RF 50Ω AC		SENSE:INT	ALIGN OFF		Peak Search
Mar	ker 1 23.10800000		Trig: Free Run	Avg Type: Log-Pw Avg Hold: 1/100	/r TRACE 1 2 3 4 5 6 TYPE MWWWW	
		PNO: Fast 😱	Atten: 30 dB	inglitera. Intee	DET P NNNN	
		II Odinizova				Next Peak
	Ref Offset 0.6 dB				Mkr1 23.108 GHz	
10 dE	B/div Ref 20.00 dBm	1			-48.053 dBm	
Log						
						Next Pk Right
10.0						Next PK Right
0.00						
0.00						
						Next Pk Left
-10.0						
					-15.22 dBm	
-20.0						
						Marker Delta
-30.0						
-40.0						Mkr→CF
					▲ 1	IVIKI-)
-50.0						
-50.0					while the way and the part of	
		arlancutation particulation and	Mar Harrison Barrison	ANA WAY AND	The second se	
-60.0	AND REALING TO AND	and the marked of the second	they why they are			Mkr→RefLvl
		· · ·				
-70.0						
-10.0						More
Star	t 3.00 GHz				Stop 25.00 GHz	1 of 2
	s BW 100 kHz	#VBW 3	00 kHz	Swoo	ep 2.103 s (1001 pts)	
WING.	S DW TOO KHZ	#VDVV .				
MSG					<mark>πυs</mark> 🐼 RF Alignment Failu	re
				-0 <mark>-</mark>		

(Plot 4.9.1 B1: Channel 39: 2441MHz @ GFSK)


Agilent	Spectrum	Analyzer - Swep						1		
<mark>w</mark> Mari	ker 1 2	RF 50 ۵ 2.7980400	00000 G				ALIGN OFF	TRAC	M Jan 20, 2016 CE	Peak Search
				PNO: Fast 📮 Gain:Low	Atten: 30	Arginola.		D	T P NNNNN	NextDeck
10 dE		Ref Offset 0. Ref 20.00					MI	r1 2.79) -55 5	8 0 GHz 34 dBm	Next Peak
	5/017	Rel 20.00	чып							
										Next Pk Right
10.0										Next i k Right
0.00										
0.00										Next Pk Left
-10.0										Next I K Len
									-14.91 dBm	
-20.0										Marker Delta
-30.0										Warker Deita
-30.0										
-40.0										Mkr→CF
										Miki —/Ci
-50.0									1	
						 العربين والم	enter and under a	4 yourself week	and how all man	Mkr→RefLvl
-60.0	ul (manifility)	w.w.w.w.l	www.www.	particle work hit in	ça biyer filmiştiyen		a shi na shika			wiki → Kei ⊑vi
-70.0										
										More
Star	t 30 M	-17						Stop 3	.000 GHz	1 of 2
		00 kHz		#VBW	300 kHz		Sweep 2	283.9 ms (1001 pts)	
MSG								s 🐼 RF Alig	nment Failur	e

(Plot 4.9.1 B3: Channel 39: 2441MHz @ GFSK)


Agilent Spectrum Analyzer - Swept SA I <mark>XI</mark> RF 50 Ω AC	SENSE:INT	ALIGN OFF	10:54:02 AM Jan 20, 2016	De la Caracte
Marker 1 2.47983000000	PNO: Wide 🧊 Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456 TYPE M MANAAAA DET P N N N N N	Peak Search
Ref Offset 0.6 dB 10 dB/div Ref 20.00 dBm	IFGain:Low Atten: 30 dB	Mkr	1 2.479 83 GHz 4.715 dBm	NextPeak
10.0				Next Pk Right
-10.0				Next Pk Lef
-20.0				Marker Delta
-40.0				Mkr→CF
-50.0	1 min and a second s	Mun Mun Mun	ᡗᠬᢦ᠋ᡅ᠆ᠬᡆᡊᠼᢧᠧ᠕᠕	Mkr→RefLv
-70.0 Center 2.480000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sween 1	Span 10.00 MHz .000 ms (1001 pts)	More 1 of 2
MSG			RF Alignment Failure)



gilent Spectrum Analyzer - Swept SA				
Marker 1 2.75052000000	GHz	ALIGN OFF Avg Type: Log-Pwr	11:05:28 AM Jan 20, 2016 TRACE 1 2 3 4 5 6	Peak Search
Ref Offset 0.6 dB 10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold: 19/100	rt 2.750 5 GHz -55.740 dBm	Next Peak
10.0				Next Pk Right
10.0			-15.29 dBm.	Next Pk Left
-20.0				Marker Delta
-40.0				Mkr→CF
-60.0	yllichaily wethy any drive of the assessed of the second	ugan habaalaa waxaa kadahaa dhadhadha	and how with the left have been de	Mkr→RefLvl
-70.0 Start 30 MHz			Stop 3.000 GHz	More 1 of 2
#Res BW 100 kHz	#VBW 300 kHz		283.9 ms (1001 pts)	
<mark>/ISG</mark>	Plot 4 9 1 C2: Channel	<u> </u>	RF Alignment Failure	e

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

Agilent Sp	ectrum Analyzer - Swept SA					
<mark>w</mark> Marke	RF 50 Ω AC er 1 23.240000000	000 GHz PNO: East Trig: Fre	eRun A	Avg Type: Log-Pwr Avg Hold: 1/100	11:05:50 AM Jan 20, 2016 TRACE 1 2 3 4 5 6 TYPE M	Peak Search
10 dB/d	Ref Offset 0.6 dB liv Ref 20.00 dB m	IFGain:Low Atten: 30) dB	М	kr1 23.240 GHz -48.848 dBm	Next Peak
10.0						Next Pk Right
-10.00					-15.29 dBm	Next Pk Left
-20.0 —						Marker Delta
-40.0					1 4-11-14-10-14-10-1-1-10-1-10-1-1-1-1-1-1	Mkr→CF
-60.0 Art	thathadaan a talan a ta	uzhhandizativan trivitarilariyanaf	, Malanithin der	nt offenting and	And Independent of the second s	Mkr→RefLvl
Start 3	3.00 GHz 3W 100 kHz	#VBW 300 kHz		Sweep	Stop 25.00 GHz 2.103 s (1001 pts)	More 1 of 2
MSG					RF Alignment Failur	e

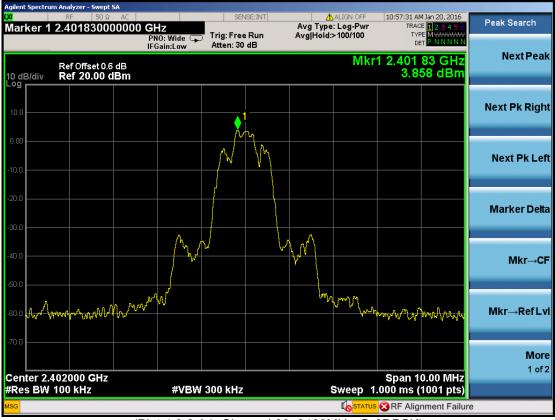
(Plot 4.9.1 D1: Left Band edge hoping off @ GFSK)

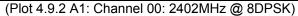
Agilen	t Spec	trum	Analy	zer - Swept 9	5A											
<mark>LXI</mark>			RF	50 Ω	AC			SEN	ISE:INT	0		ALIGN OFF		AM Jan 20, 2016 ICE <mark>1 2 3 4 5 6</mark>		Peak Search
Mar	ker	1 2	.4/	084000	00000 GH	IZ 10: Fast		ig: Free	Run			> 100/100	T,			
						Gain:Low		ten: 30					1	DET PNNNNN		
												Mkr	1 2.470	84 GHz		NextPeak
10 d	B/di∖	,		Offset 0.6 5 20.00 d									4.7	'39 dBm		
Lõg		4		20100 0												
10.C	⊢♦	<u> </u>														
0.00	λĤ	Ηų	ſ'n	MM	ነ ሥነ ሥነ ሶ	<u>\ M</u>										Next Pk Right
-10.0	14	ι/ '	۱J)		$\gamma \gamma \gamma$											
-20.0		V	1	γţΨ	V * V	Υį										
																Next Pk Left
-30.0			\rightarrow													NEAL FR LEIL
-40.0						N										
-50.0								<u>,</u>								
-60.0							"Ruw	2 Maril	Antone and		وروسالي	and the second street of the	ليحميها محمها	mounders		Marker Delta
-70.0																
-70.0																
Sta	rt 2.4	470	00	GHz									Stop 2.5	0000 GHz		
	s Bl					#V	SW 30 0	0 kHz			5	Sweep 2	.933 ms	(1001 pts)		Mkr→CF
мкв	MODE	TBC	SCI	1	×			Y	FI	INCTION	ELIN	ICTION WIDTH	FUNCT	ION VALUE		
1	N	1	f		2.470 84	4 GHz		739 dE					101101			
2	Ν	1	f		2.483 50	0 GHz	-60.	053 dE	3m							
4											\vdash					Mkr→RefLvl
5																
6																
8																More
9 10																1 of 2
11																
1																
MSG													🛚 🔀 RF Ali	gnment Failu	ire	

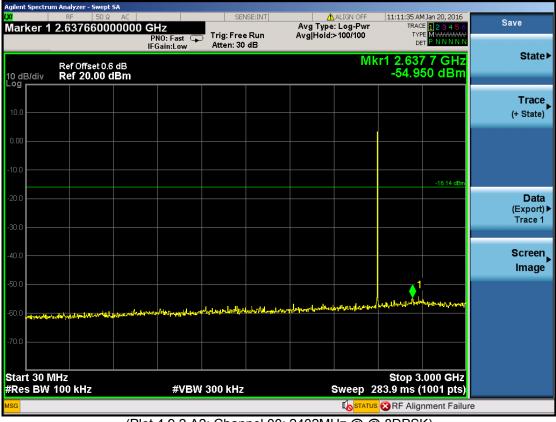
(Plot 4.9.1 D2: Right Band edge hoping off @ GFSK)

4.8.2 8DPSK Test Mode

A. Test Verdict

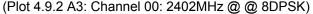

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		2.402 GHz	Plot 4.9.2 A1		PASS
00	2402	30MHz-3GHz	Plot 4.9.2 A2	-20	PASS
		3GHz-25GHz	Plot 4.9.2 A3	-20	PASS
		2.402 GHz	Plot 4.9.2 B1		PASS
39	2441	30MHz-3GHz	Plot 4.9.2 B2	-20	PASS
		3GHz-25GHz	Plot 4.9.2 B3	-20	PASS
		2.402 GHz	Plot 4.9.2 C1		PASS
78	2480	30MHz-3GHz	Plot 4.9.2 C2	-20	PASS
		3GHz-25GHz	Plot 4.9.2 C3	-20	PASS
Conducted	Left Band edge	e hoping on	Plot 4.9.2 D1	-20	PASS
bandedge			Plot 4.9.2 D2	-20	PASS


Note:

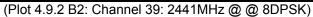

1. The test results including the cable lose.

2. For Conducted bandedge. We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

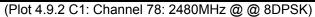
B. Test Plots



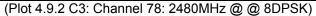
(Plot 4.9.2 A2: Channel 00: 2402MHz @ @ 8DPSK)

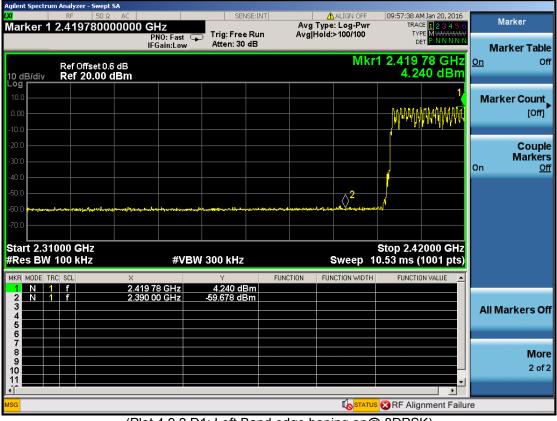

Agilent	Spectrum Analyzer - Swep								
<mark>LXI</mark>	RF 50 \$		SEN	SE:INT		ALIGN OFF		1 Jan 20, 2016 E <mark>1 2 3 4 5 6</mark>	Peak Search
Mar	ker 1 23.240000	PNO: Fast	Trig: Free	Run	Avg Type Avg Hold:		TYP	E M WARANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
		IFGain:Low	Atten: 30				DE	TPNNNNN	
						M	kr1 23 2	40 GHz	Next Peak
	Ref Offset 0					IVI	_17.7	40 GH2 48 dBm	
10 dE Log _I	3/div Ref 20.00	dBm						to ubili	
3									
									Next Pk Right
10.0									
0.00									
									Next Pk Left
-10.0									NEXLER LEIL
-10.0								-16.14 dBm	
								-16,14 GBM	
-20.0									Marilian Dalla
									Marker Delta
-30.0									
-40.0									
-40.0								1	Mkr→CF
								•	
-50.0							angles flograd Market Market	مدر ارداره المتحامط فلقهم	
					H. Make	A AND A WAY	and holy and	an in Mil	
-60.0	the and the state of the second	the lideble mater with	المحليلة في المان المسلم ا	N. Mary	M. A 10.	1 * ***			Mkr→RefLvl
	of diameters in the second sec	And the claim date of the second s							
-70.0									
-70.0									
									More
Stor	t 3.00 GHz			~			Stop 2		1 of 2
	s BW 100 kHz	#)//	3W 300 kHz			Swoon	2 103 et	5.00 GHz 1001 pts)	
#RC	S DW TOU KHZ	# VI	599-500 KHZ						
MSG							🛛 RF Alig	nment Failur	e
								-	

(Plot 4.9.2 B1: Channel 39: 2441MHz @ @ 8DPSK)


Agilent Spectro	ım Analyzer - Swept S	A							
<mark>w</mark> Marker 1	RF 50 Q 2.67033000	AC 0000 GHz PNO: Fast	Trig: Free			ALIGN OFF : Log-Pwr 19/100	TRAC	4 Jan 20, 2016 E <mark>1 2 3 4 5 6</mark> PE M WWWWW	Peak Search
10 dB/div	Ref Offset 0.6 Ref 20.00 dl	IFGain:Low		dB		Mk	(r1 2.67)	0 3 GHz 15 dBm	Next Peak
10.0									Next Pk Right
0.00 -10.0								-15.80 dBm	Next Pk Left
-20.0									Marker Delta
-40.0									Mkr→CF
	New March 1999	million and the second strategical	polation to provide the second second	panton yahala	, de la contraction d	quilderna spords		Invitionalitican	Mkr→RefLvl
-70.0 Start 30	MHz						Stop 3	.000 GHz	More 1 of 2
#Res BW ^{⋈SG}	100 kHz	#VI	BW 300 kHz				83.9 ms (1001 pts) nment Failur	e

(Plot 4.9.2 B3: Channel 39: 2441MHz @ @ 8DPSK)


Agilent Spectrum Analyzer - Swept SA X RF 50 Ω AC Marker 1 2.479830000000) GHz	Avg Type:	:Log-Pwr T	2 AM Jan 20, 2016 RACE 1 2 3 4 5 6	Peak Search
Ref Offset 0.6 dB 10 dB/div Ref 20.00 dBm	PN0: Wide Trig: Free R IFGain:Low Atten: 30 d		Mkr1 2.47	9 83 GHz 787 dBm	Next Peak
10.0	1				Next Pk Right
-10.0		Mm			Next Pk Left
-20.0					Marker Delta
-40.0					Mkr→CF
-50.0 Marthan Martin M	WA	- Marine Mari	Lu hannan	Andread and the	Mkr→RefLvl
-70.0	#\/E\// 000 111		Span	10.00 MHz	More 1 of 2
#Res BW 100 kHz ^{MSG}	#VBW 300 kHz		Sweep 1.000 ms Co <mark>status</mark> SRF A		



(Plot 4.9.2 C2: Channel 78: 2480MHz @ @ 8DPSK)

Agilent	Spectrum	Analyzer - Swe	pt SA								
<mark>w</mark> Mar	ker 1 2	RF 50 23.17400		GHz PNO: Fast		Run		ALIGN OFF : Log-Pwr 2/100	TRAC	M Jan 20, 2016 26 1 2 3 4 5 6 26 M WWWWWW T P N N N N N	Peak Search
10 dE Log	3/div	Ref Offset (Ref 20.00	.6 dB	FGain:Low	Atten: 30			М	kr1 23.1	74 GHz 60 dBm	Next Peak
10.0											Next Pk Right
0.00 -10.0											Next Pk Left
-20.0 -30.0										-16.21 dBm	Marker Delta
-40.0										∮ ¹	Mkr→CF
-50.0 -60.0	Majnafiljist	plota ^{landa} lahafan dari	herwillerstationnet	ullan who was	with the start	_{ye} ndysely ^{nynyn}	an an the second second	have while the	pagelot population of the	^{pra} k ^o toraju	Mkr→RefLvl
-70.0 Star	t 3.00 (GH7							Stop 2	5.00 GHz	More 1 of 2
		00 kHz		#VBW	300 kHz				2.103 s (1001 pts) nment Failur	9

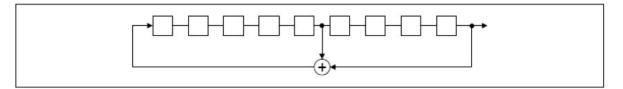
(Plot 4.9.2 D1: Left Band edge hoping on@ 8DPSK)

Agilent Spectrum Analyzer - Swept SA				
W RF 50 Ω AC Marker 1 2.475820000000 GHz	SENSE:INT	ALIGN OFF	10:04:41 AM Jan 20, 2016 TRACE 1 2 3 4 5 6	Peak Search
PNO: Fas		Avg Hold:>100/100	TYPE MWWWWWW DET P N N N N N	
IFGain:Lov	Atten: 30 dB			NextPeak
Ref Offset 0.6 dB		Mkr	1 2.475 82 GHz	NEXIFEAN
10 dB/div Ref 20.00 dBm			3.794 dBm	
Log 1				
				Next Pk Right
0.00 h f_{λ}				_
-10.0 M VR YF IV 'Y C C VI VY 'Y VX Y				
-20.0				
-30.0				Next Pk Left
-40.0	հե			
-50.0	· · · · · · · · · · · · · · · · · · ·			
-60.0			. A	Marker Delta
		and a second		Marker Della
-70.0				
Start 2.47000 GHz			Stop 2.50000 GHz	
	/BW 300 kHz	Sweep 2	.933 ms (1001 pts)	Mkr→CF
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f 2.475 82 GHz	3.794 dBm	Tokenok Tokenok width		
2 N 1 f 2.483 50 GHz	-58.766 dBm			
4				Mkr→RefLvl
5				
7				
8				More
10				1 of 2
11				
		L or rue		
MSG			RF Alignment Failur	e

(Plot 4.9.2 D2: Right Band edge hoping on @ 8DPSK)

4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	78	1	73 75 7
Т						1		
					L E			
				- 1	11	1		

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.For normal BT devices, the GFSK mode is used.

Conducted power refer ANSI C63.10 :2013 Output power test procedure for frequency-hopping spreadspectrum (FHSS) devices

Radiated power refer to ANSI C63.10 :2013 Radiated emissions tests.

Measurement parameters

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1MHz			
Video bandwidth:	3MHz			
Trace-Mode:	Max hold			

Limits

FCC	IC					
Antenna Gain						
6 dBi						

Results

T _{nom}	V _{nom}	Lowest Channel 2402 MHz	Middle Channel 2441 MHz	Highest Channel 2480 MHz		
	bower [dBm] GFSK modulation	4.79	5.11	4.69		
	ower [dBm] FSK modulation	5.68	6.08	5.53		
Gain [dBi] Calculated		0.89	0.97	0.84		
Measuremer	nt uncertainty	± 0.6 dB (cond.) / ± 2.56 dB (rad.)				

5 <u>Test Setup Photos of the EUT</u>

Please refer to separated files for Test Setup Photos of the EUT.

6 External Photos of the EUT

Please refer to separated files for External Photos of the EUT.

7 Internal Photos of the EUT

Please refer to separated files for Internal Photos of the EUT.

.....End of Report.....